
Modeling Planning
Domains

Roman Barták, Lukáš Chrpa

Introduction

Action planning deals with the problem of finding a
sequence of actions (a plan) to transfer the world from
the current state to a desired state.

There are causal relations between actions (pick-up
is done before put-down).
A formal model of actions is required so planning is a
model-based approach.

This tutorial is about how to model planning problems.

Tutorial outline

Part I: Introduction and Background
– AI Planning
– Formal models (STRIPS, control rules, HTNs)

Part II. Planning Domain Modelling Languages and Tools
– Modelling languages
– Modelling tools
– Lessons from ICKEPS

Part III. Designing and Developing a Domain Model
– 15-puzzle, Nomystery problem
– Road Traffic Accident Management

Part IV. Development of Real-World Planning Application
– Petrobras
– Task Planning for Autonomous Underwater Vehicles

Part V. Closing Remarks and Open Problems

INTRODUCTION AND BACKGROUND
Part I:

Automated Planning

Planning deals with selection and organization of
actions that are changing world states.

System S modelling states and transitions:
– set of states S (recursively enumerable)
– set of actions A (recursively enumerable)

• actions are controlled by the planner!
• no-op

– set of events E (recursively enumerable)
• events are out of control of the planner!
• neutral event e

– transition function g: S´A´E ® 2S

• actions and events are sometimes applied separately
g: S´(AÈE) ® 2S

Goals in planning

A planning task is to find which actions are applied to
world states to reach some goal from a given initial
state.

What is a goal?
– goal state or a set of of goal states
– satisfaction of some constraint over a sequence of visited

states
• for example, some states must be excluded or some states must

be visited
– optimisation of some objective function over a sequence

of visited states (actions)
• for example, maximal cost or a sum of costs

Modeling planning problems

Representing world states as sets of atoms
(factored representation).
Representing actions as entities changing
validity of certain atoms.

Classical representation: states

State is a set of instantiated atoms (no variables). There is
a finite number of states!

– The truth value of some
atoms is changing in states:
• fluents
• example: at(r1,loc2)

– The truth value of some state
is the same in all states
• rigid atoms
• example:

adjacent(loc1,loc2)

We will use a classical closed world assumption.
An atom that is not included in the state does not hold at that state!

Classical representation: planning operators

operator o is a triple (name(o), precond(o), effects(o))
– name(o): name of the operator in the form n(x1,…,xk)

• n: a symbol of the operator (a unique name for each operator)
• x1,…,xk: symbols for variables (operator parameters)

– Must contain all variables appearing in the operator definition!

– precond(o):
• literals that must hold in the state so the operator is applicable on it

– effects(o):
• literals that will become true after operator application (only fluents

can be there!)

Classical representation: actions

An action is a fully instantiated operator
– substitute constants to variables

action

operator

Classical representation: action usage

Notation:
– S+ = {positive atoms in S}
– S– = {atoms, whose negation is in S}

Action a is applicable to state s if any only
precond+(a) ⊆ s ∧ precond–(a) ∩ s = ∅

The result of application of action a to s is
%(s,a) = (s – effects–(a)) ∪ effects+(a)

Classical representation: a planning problem

The planning problem is given by a triple (O,s0,g).
– O defines the the operators and predicates used

(this is also called a domain model)
– s0 is an initial state, it provides the particular

constants (objects)
– g is a set of instantiated literals

• state s satisfies the goal condition g if and only if
g+ ⊆ s ∧ g– 	∩ s = ∅

• Sg = {s ∈ S | s satisfies g} – a set of goal states

Blockworld: classical representation

Constants
– blocks: a,b,c,d,e

Predicates:
– ontable(x)

block x is on a table
– on(x,y)

block x is on y
– clear(x)

block x is free to move
– holding(x)

the hand holds block x
– handempty

the hand is empty

Operators
unstack(x,y)

Precond: on(x,y), clear(x), handempty
Effects: ¬on(x,y), ¬clear(x), clear(y),

¬handempty, holding(x),

stack(x,y)
Precond: holding(x), clear(y)
Effects: ¬holding(x), ¬clear(y),

on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: ¬ontable(x), ¬clear(x),

¬handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: ¬holding(x), ontable(x),

clear(x), handempty

c

a b

c
a b

c

a b

c

a
b

c

a b

Forward planning

move r1

take c2
…

take c3

of an operator in O,
Heuristics suggest

which action to
select

Domain knowledge

Heuristics guide the planner towards a goal state by ordering
alternative plans. They do not solve the problem with the large
number of alternatives.

Example (blockworld)
– If a block is placed correctly (consistent with the goal) then any action

that moves that block just enlarges the plan.
– If a block is on a wrong place and there is an action that moves it to

the correct place then any action that moves the block elsewhere just
enlarges the plan.

It is possible to describe desirable/forbidden sequences of states
using linear temporal logic.

– control rules

It is possible to describe expected plans via task decompositions.
– hierarchical task networks

Temporal logic

We need a formalism to express relations between the
current world state and future states.

Simple temporal logic
– extension of first-order logic by modal operators

• !1 ∪ !2 (until) !1 is true in all states until the first state (if any)
in which !2 is true

• ¨ ! (always) ! is true now and in all future states
• ¯ ! (eventually) ! is true now or in any future state
• ¡ ! (next) ! is true in the next state
• GOAL(!) ! (no modal operators) is true in the goal state

– ! is a logical formula expressing relations between the
objects of the world (it can include modal operators)

Control rules: an example

Goodtower is a tower such that
no block needs to be moved.
Badtower is a tower that is not good.

Control rule:

goodtower

badtower

goodtower remains goodtower

do not put anything on
badtower

do not take a block from a table until you
can put it on a goodtower

Planning with control rules

Forward state-space planning guided by control rules.
– If a partial plan S! violates the control rule progress(", S!),

then the plan is not expanded.

a partial plan violates the control rule "

a complete plan found

actions applicable to state s

control rule progression "

a new state after the action

Hierarchical Task Network Planning

Classical planning assumes primitive actions
connected via causal relations.
In real-life we can frequently use “recipes” to solve
a particular task.
– recipe is a set of operations to achieve a sub-goal

HTN planning is based on performing a set of tasks
(instead of achieving goals).
– primitive task: performed by a classical planning

operator
– non-primitive task: decomposed by

a method to other tasks (can use recursion)

Task networks

How to describe a recipe to perform a given task?
– specify sub-tasks and their relations

A task network is a pair (U,C), where U is a set of
tasks and C is a set of constraints.
– tasks are named similarly to operators: t(r1,…,rn)
– constraints are in the form:

• precedence constraint: u < v (task u is performed before
task v)

• before-constraint: before(U’,l) (literal l is true right before
the set of tasks U’)

• after-constraint: after(U’,l) (literal l is true right after the set
of tasks U’)

• between-constraint: between(U’,U’’,l) (literal l must be true
right after U’, right before U’’ and in all states in between)

HTN methods

To perform non-primitive tasks, we need to
decompose them to other tasks using a method.
An HTN method is a tuple
m = (name, task, subtasks, constr)
– name is n(x1,…,xn), where {x1,…,xn} are all variables in

m and n is a unique name of the method,
– task is a non-primitive task,
– (subtasks, constr) is a task network.

There may be more methods for a single non-
primitive task.

Task decomposition

precedence constraint

non-primitive task

primitive task (operator)

method

HTN Problem

Now, the planning problem is specified somehow
differently from classical planning as a process to
obtain a plan from decomposition of tasks in a
given task network.
An HTN planning domain is a pair (O,M)
– O is a set of operators
– M is a set of HTN methods

An HTN planning problem is a 4-tuple (s0,w,O,M)
– s0 is the initial state
– w is the initial task network
– (O,M) is the HTN planning domain

HTN Planning

decomposition of a task

performing application-
specific computations

PLANNING DOMAIN MODELLING
LANGUAGES AND TOOLS

Part II.

Domain-independent planning concept

Domain Model
(environment,actions)

Problem Specification
(initial state, goals)

Planning Engine

Plan

Domain-independent planning concept

● A (description) language
– Describe domain model and problem

specification (usually one domain model for a class of problems)

● A planning engine
– must support the language
– should be efficient for the given domain

model
● Plans interpreting

PDDL [McDermott et al, 1998]

● Planning Domain
Definition Language
(PDDL)

● Inspired by the STRIPS
and ADL languages

● Most widespread
● Official language of

International Planning
Competitions (IPCs)

(define (domain blocksworld)
(:requirements :strips :typing)
(:types block)
(:predicates (on ?x - block ?y - block)

(ontable ?x - block)
(clear ?x - block)
(handempty)
(holding ?x - block)
)

(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x)

(ontable ?x)
(handempty))

:effect (and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x))

)
…

Versions of PDDL

● PDDL 1.2
– Predicate centric (i.e., classical representation)
– Object types
– ADL features (e.g., conditional effects, equality)

● PDDL 2.1
– Numeric Fluents
– Durative Actions

● PDDL 2.2
– Timed-initial literals
– Derived Predicates

● PDDL 3.0
– State-trajectory constraints (hard constraints for the planning

process)
– Preferences (soft constraints for the planning process)

• PDDL 3.1
– Object Fluents

Extensions of PDDL

● PDDL+
– Continuous processes
– Exogenous events

● PPDDL
– Probabilistic action effects
– Reward fluents

● MA-PDDL
– Multi-agent planning

NDDL [Frank & Jonsson, 2002]

● NASA’s response to
PDDL

● Variable
representation

● Timelines/activities
● Constraints between

activities

class Instrument
{

Rover rover;
InstrumentLocation location;
InstrumentState state;

Instrument(Rover r)
{

rover = r;
location = new InstrumentLocation();

state = new InstrumentState();
}

action TakeSample{
Location rock;
eq(10, duration);

}
…

}

Instrument::TakeSample
{

met_by(condition object.state.Placed on);
eq(on.rock, rock);

contained_by(condition object.location.Unstowed);

equals(effect object.state.Sampling sample);
eq(sample.rock, rock);

starts(effect object.rover.mainBattery.consume tx);
eq(tx.quantity, 120); // consume battery power

}

https://github.com/nasa/europa/wiki/Example-Rover

ANML [Smith et al., 2008]

● Combines aspects from
NDDL and PDDL
– Actions and states

(PDDL)
– Variable representation

(NDDL)
– Temporal Constraints

(NDDL)
● Hierarchical methods

action Pickup (crew ev, object item)
{
duration := 5 ;
[start] located(ev) == located(item);
[all] possesses(ev,item) ==
FALSE:−>TRUE ;
[end] located(item) := POSSESSED ;
}

action Putaway (crew ev, object item,
location stowage)
{
Duration := 10 ;
[start] located(ev) == stowage ;
[all] possesses(ev, item) ==
TRUE:−>FALSE ;
[end] located(item):= stowage ;
}

[Boddy & Bonasso, 2010]

RDDL [Sanner, 2011]

● became the official
language of the
probabilistic track of
the IPC since 2011

● models partial
observability

● efficient description of
(PO)MDPs

domain wildfire_mdp {

types {
x_pos : object;
y_pos : object;
};

pvariables {

// Action costs and penalties
COST_CUTOUT : {non-fluent, real, default = -5 }; //
Cost to cut-out fuel from a cell
COST_PUTOUT : {non-fluent, real, default = -10 }; //
Cost to put-out a fire from a cell
PENALTY_TARGET_BURN : {non-fluent, real, default = -100 }; //
Penalty for each target cell that is burning
PENALTY_NONTARGET_BURN : {non-fluent, real, default = -5 };
// Penalty for each non-target cell that is burning
…..
}

cpfs{
burning'(?x, ?y) = if (put-out(?x, ?y)) // Intervention to
put out fire?

then false
// Modification: targets can only start to burn if at

least one neighbor is on fire
else if (~out-of-fuel(?x, ?y) ^ ~burning(?x, ?y))

// Ignition of a new fire? Depends on neighbors.
then [if (TARGET(?x, ?y) ^ ~exists_{?x2: x_pos,

?y2: y_pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) ^ burning(?x2, ?y2)))
then false
else Bernoulli(1.0 / (1.0 + exp[4.5 -

(sum_{?x2: x_pos, ?y2: y_pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) ^
burning(?x2, ?y2)))]))]

else
burning(?x, ?y); // State persists

…
}

https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/

Domain-independent planners

● Dozens of classical planners
– support typed STRIPS
– newer planners support action costs, and some ADL

features
– many of them are optimal

● Several temporal planners
– support durative actions
– few support numeric fluents or timed-initial literals
– few fully support concurrency
– very few are optimal

● Several probabilistic planners
– (PO)MDP
– FOND

● A few continuous planners
●

Language expressiveness vs. planning engines

“It is almost a law in PDDL planning that for
every language feature one adds to a domain
definition, the number of planners that can solve
(or even parse) it, and the efficiency of those
planners, falls exponentially” [anonymous
reviewer]
Motivate development of more expressive
planning engines
Reduce the number of features in models

Picat

Picat is a logic-based multi-paradigm language
that integrates logic programming, functional
programming, constraint programming, and
scripting.
– logic variables, unification, backtracking, pattern-

matching rules, functions, list/array
comprehensions, loops, assignments

– tabling for dynamic programming and planning
– constraint solving with CP (constraint

programming), SAT (satisfiability), and MIP (mixed
integer programming).

Picat planning module

Forward planning in Picat language (using tabling):

Cost optimization done via:
– iterative deepening
– branch-and-bound

plan(S,Plan,Cost),final(S) =>
Plan=[],Cost=0.

plan(S,Plan,Cost) =>
action(S,S1,Action,ActionCost),
plan(S1,Plan1,Cost1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

table (+,-,min)
plan(S,Plan,Cost),final(S) =>

Plan=[],Cost=0.
plan(S,Plan,Cost) =>

action(S,S1,Action,ActionCost),
plan(S1,Plan1,Cost1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

table (+,-,min)

Picat Planning Domain Model

Goal condition
final(+State) => goal_condition.

Action description
action(+State,-NextState,-Action,-Cost),

precondition,
[control_knowledge]

?=>
description_of_next_state,
action_cost_calculation,
[heuristic_and_deadend_verification].

Example: The farmer’s problem

action([F,F,G,C],S1, Action,Cost) ?=>
Action=farmer_wolf, Cost=1,
opposite(F,F1),
S1=[F1,F1,G,C], safe(S1).

action([F,W,F,C],S1, Action,Cost) ?=>
Action=farmer_goat, Cost=1,
opposite(F,F1),
S1=[F1,W,F1,C], safe(S1).

action([F,W,G,F],S1, Action,Cost) ?=>
Action=farmer_cabbage, Cost=1,
opposite(F,F1),
S1=[F1,W,G,F1], safe(S1).

action([F,W,G,C],S1, Action,Cost) =>
Action=farmer_alone, Cost=1,
opposite(F,F1),
S1=[F1,W,G,C], safe(S1).

Locations of
Farmer, Wolf, Goat, and Cabbage

KE Tools for Planning Domain
Modelling

Purpose of KE tools

Assist in domain developing process
– Support development cycle (as in SW

engineering)
– Visualize (parts of) the model
– Verification and Validation support (e.g.

consistency check)
– …

Usable by non-experts (but with basic knowledge of
planning)

GIPO [Simpson et al., 2007]

● GIPO (Graphical Interface for Planning with
Objects) won the ICKEPS 2005 competition

● Based on the OCL (Object-Centred Language)

● Define life histories of objects
● Supports “classical” PDDL (limitedly also

”durative” actions)

● Supports HTN (HyHTN planner is integrated)
[McCluskey et al., 2003]

ItSimple [Vaquero et al., 2007;2012]

● Supports development cycle
● Exploits UML for domain modelling
● Exploits Petri Nets for dynamic analysis of

state machines (e.g. reachability analysis)
● Supports PDDL 3.1
● Project webpage
 https://code.google.com/archive/p/itsimple/

• Tutorial on domain modelling in ItSimple by
Chris Muise

 http://www.youtube.com/watch?feature=player_embedded&v=FGBhvBnzyvo

ItSimple – sample use case

ItSimple – sample class diagram

ItSimple – sample state machine (Satellite)

ItSimple – sample state machine (Instrument)

Some other KE frameworks

● EUROPA [Barreiro et al., 2012]
– Framework supporting NDDL and ANML

● JABBAH [Gonzalez-Ferrer et al., 2009]
– Supports HTN

● KEWI [Wickler et al., 2014]
– Object Centred (including inheritance)
– Web Application (supports collaboration)

● VIZ [Vodrážka & Chrpa, 2010]
– A “light-weight” KE tool

Planning.Domains

● “A Collection of Tools for Working with
Planning Domains” [Muise]

● Web application
● Rich editor (syntax highlighting, autocomplete,

etc.)
● Plug-in support
● Repository of all domains and problems from

the IPCs

Planning.Domains – sample domain (Satellite)

Planning.Domains – sample plan (Satellite domain)

Planning.Domains – analysis (by TorchLight)

The Fifth International Competition
on Knowledge Engineering for

Planning and Scheduling
(ICKEPS 2016)

ICKEPS mission

“Promote the knowledge-based and domain
modelling aspects of AI P&S, to accelerate

knowledge engineering research, to encourage
the development and sharing of prototype tools
or software platforms that promise more rapid,

accessible, and effective ways to construct
reliable and efficient P&S systems”

ICKEPS history

● ICKEPS 2005 (San Francisco) - Tools and Tools
Environments for KE

● ICKEPS 2007 (Providence) - teams working
(offline) on KE tasks and application scenarios

● ICKEPS 2009 (Thessaloniki) - Tools for translating
into planner-ready language from application-
oriented language

● ICKEPS 2012 (Sao Paulo) - teams working (offline)
on KE tasks and application scenarios

● ICKEPS 2016 (London) teams working (online) on
KE tasks and application scenarios

ICKEPS 2016 roadmap

● Pre-competition
– Organizers prepared 4 scenarios

● 2 temporal (Star-trek, Roundabout)
● 2 classical (RPG, Match Three Harry)

– Organizers composed competition rules and
evaluation criteria

● On-site modelling
– Teams up to 4 members
– 6 hours time limit for modelling

● Demonstration
– 10 minutes per team to present their KE process

● Board of Judges
– Deciding the winners

ICKEPS 2016 evaluation criteria

● KE process
– Use of KE tools
– Teamwork

● Models
– Correctness
– Generality
– Readability
– Planners’ performance

ICKEPS 2016 key observations

● It was fun !
● Teams often selected easier domains to tackle

(e.g. classical ones)
● Provided models were different, in some cases

quite considerably
● Interesting modelling approaches – e.g. analysing

domain transition graph to identify “bad” states
● Not many KE tools were exploited

– The winning team (Muise & Lipovetzky)
exploited the Planning.Domains framework

RPG domain – some observations

● According to the specification the hero dies if:
– does not have a sword and enters a room with a

monster
– destroys the sword in a room with a monster
– in a room with a trap, the hero performs any other

action than “disarm” (for this action the hero must
be empty handed)

● The competitors observed:
– the hero must have a sword in order to enter a

room with a monster
– the hero must be empty handed to enter a room

with a trap

RPG domain – some observations

● The models do not explicitly consider hero's
death

● Some Planning Operators encoded in the models:
– move-without-sword
– move-with-sword
– destroy-sword-move-disarm
– …

● Models were rather “planner-friendly” than
“user-friendly”

Future of ICKEPS

● Modelling oriented rather than KE tools oriented
● Practical applications

– Combine offline and on-site modelling
● Get more competing teams

– 6 teams competed on ICKEPS 2016
● Automatize the model evaluation process
● Attract interest outside “planning” community

– “expert bias” can be mitigated
● ...

DESIGNING AND DEVELOPING
A DOMAIN MODEL

Part III.

15-Puzzle

State representation

main =>
Init = [(1,2),(2,2),(4,4),(1,3),(1,1),(3,2),(1,4),(2,4),

(4,2),(3,1),(3,3),(2,3),(2,1),(4,1),(4,3),(3,4)],
best_plan(Init,Plan).

Initial state Goal state

final(S) => S = [(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)].

Position of
gap

Position of
1

Position of
2

15-Puzzle: actions

action([P0@(R0,C0)|Tiles],NextS,Action,Cost) =>
Cost = 1,
(R1 = R0-1, R1 >= 1, C1 = C0, Action = up;
R1 = R0+1, R1 =< 4, C1 = C0, Action = down;
R1 = R0, C1 = C0-1, C1 >= 1, Action = left;
R1 = R0, C1 = C0+1, C1 =< 4, Action = right),
P1 = (R1,C1),
slide(P0,P1,Tiles,NTiles),
NextS = [P1|NTiles].

% slide the tile at P1 to the empty square at P0
slide(P0,P1,[P1|Tiles],NTiles) =>

NTiles = [P0|Tiles].
slide(P0,P1,[Tile|Tiles],NTiles) =>

NTiles=[Tile|NTilesR],
slide(P0,P1,Tiles,NTilesR).

15-Puzzle: heuristics and performance

Heuristic function

Performance
– Picat planner easily solves 15-puzzle instances
– It can even solve some hard 24-puzzle instances if

a better heuristic is used

heuristic(Tiles) = Dist =>
final([_|FTiles]),
Dist = sum([abs(R-FR)+abs(C-FC) :

{(R,C),(FR,FC)} in zip(Tiles,FTiles)]).

NoMystery problem

A truck moves between locations to pickup and
deliver packages while consuming fuel during
moves.
– setting:

• initial locations of packages and truck
• goal locations of packages
• initial fuel level, fuel cost for moving between locations

– possible actions: load, unload, drive
– assumption: track can carry any number

of packages

Nomystery: state representation

Factored representation
– state = a set of atoms that hold in that state (a vector of

values of state variables)
{at(p0,l2),at(p1,l2),at(p2,l1),at(t0,l2),
in(p3,t0),in(p4,t0),in(p5,t0),
fuel(t0,level84)}

Structured representation
– state = a term describing objects and their relations

objects represented by properties rather than by names
to break object symmetries

s(l2, level84, [l2,l2,l4], [[l1|l3],[l2|l3],[l2|l4]])

truck location

fuel level

destinations of
loaded packages

current and desired locations of
waiting packages

Nomystery: actions

Factored representation
action(S,NextS,Act,Cost),

truck(T), member(at(T,L),S),
select(at(P,L),S,RestS), P != T

?=>
Act = load(L,P,T), Cost = 1,
NewS = insert_ordered(RestS,in(P,T)).

Structured representation
action(s(Loc,Fuel,LPs,WPs),NextS,Act,Cost),

select([Loc|PkGoal],WPs,WPs1)
?=>

Act = load(Loc,PkGoal), Cost = 1,
LPs1 = insert_ordered(LPs,PkGoal),
NextS = s(Loc,Fuel,LPs1,WPs1).

Nomystery: heuristics

Estimate distance to goal
Precise heuristic for Nomystery domain:
– each package must be loaded and unloaded
– each place with packages to load or unload must

be visited
action(S,NextS,Act,Cost),

truck(T), member(at(T,L),S),
select(at(P,L),S,RestS), P != T

?=>
Act = load(L,P,T), Cost = 1,
NewS = insert_ordered(RestS,in(P,T)),
heuristics(NewS) < current_resource().

Nomystery: control knowledge

Tell the planner what to do at a given state based on the
goal
• unload all packages destined for current location (and

only those packages)

• load all undelivered packages at current location
• move somewhere

– move to a location with waiting package or to a destination
of some loaded package

action(s(Loc,Fuel,LoadedPks,WaitPks), NextState, Action, Cost),
select(Loc,LoadedPks,LoadedPks1)

=>
Action = unload(Loc,Loc),
NextState = s(Loc,Fuel,LoadedPks1, WaitPks),
Cost = 1.

NoMystery model

action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost),
select(Loc,LoadedCGs,LoadedCGs1)

=>
Action = unload(Loc,Loc),
NextState = s(Loc,Fuel,LoadedCGs1,Cargoes), Cost = 1.

Action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost),
select([Loc|CargoGoal],Cargoes,Cargoes1)

=>
insert_ordered(CargoGoal,LoadedCGs,LoadedCGs1),
Action = load(Loc,CargoGoal),
NextState = s(Loc,Fuel,LoadedCGs1,Cargoes1) , Cost = 1.

Action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost)
?=>

Action = drive(Loc,Loc1),
NextState = s(Loc1,Fuel1,LoadedCGs,Cargoes),
fuelcost(FuelCost,Loc,Loc1),
Fuel1 is Fuel-FuelCost,
Fuel1 >= 0, Cost = 1.

Factored vs. structured representations

Iterative deepening

Branch and bound

Heuristics vs. control knowledge (ID)

Structured representation

Factored representation

Heuristics vs. control knowledge (B-and-B)

Structured representation

Factored representation

Take home message

• using structured representation of states
instead of factored representation
– object symmetry breaking

• control knowledge helps more than heuristics
• heuristics are more important for iterative-

deepening than for branch-and-bound
• control knowledge is critical for branch-and-

bound

Modelling Road Traffic Accident
Management Domain: Exploring KE

Strategies
In collaboration with University of Huddersfield

[Shah et al., 2013]

Motivation for the study

● No standard modelling procedure (so far)
● Domain modelling is ad-hoc and depends on

planning expert’s knowledge
● Little knowledge about how existing KE tools

influence the modelling process
● We investigated two KE methods

● Hand-coding
● Using KE tool (ItSimple)

Road Traffic Accident Management (RTAM) domain

● RTAM domain deals with situations that raise
immediately after traffic accident(s) are reported

● Requirements
– The accident site has to be secured
– Accident victims have to be released from

damaged vehicles and taken to hospitals
– Damages vehicles have to be towed away

● Situations have to be “sorted out” asap

Method A: hand-coding

● A planning expert uses a (plain) text editor to
encode the RTAM domain

● Validate the model on several (easy) problem
instances

● In case of any issue (e.g. incorrect plan or no
plan at all), fix the model

● Repeat until no issue remains

Method B: ItSimple

● ItSimple [Vaquero et al, 2007] uses UML
standards for domain modelling

● Design of class diagrams
● Definition of state machines
● Translation of UML models to PDDL
● Validation of the model on several (easy)

problem instances (as in Method A)

Formal conceptualization - objects

● Assets (X)
– Static Assets (XS)
– Mobile Assets (XM)

● Artifacts (Y)
● Locations (L)
● Properties (P)

– Characterizing a state of assets and/or
artifacts

Formal conceptualization – relations and invariants

§ loc: X→ L ∪ {⊥} (asset's location)
§ connected ⊆ L�L (locations are directly connected)
§ in: Y→ X ∪ L ∪ {⊥} (artifact “attached” to an asset or

a location)
§ cap: X→ ℕ (asset's capacity)
§ Property ⊆ X ∪ Y� P (properties of assets and

artifacts)

● An asset x can have at most cap(x) artifacts attached to
it at the same time.

● Static assets have constant location.

Formal conceptualization - actions

● Move
– Moves a mobile asset from one location to another

● Attach
– Attaches an artifact to an asset

● Detach
– Detaches an artifact to an asset

● Interact
– Changes properties of assets/artifacts
– First-aid, Extinguish-fire, Secure-location, Release-

victim

Formal conceptualization - actions

Move (xm,l1,l2)
Precondition:

At start: loc(xm)=l1

Over all: (l1,l2)∈ connected

Effects:
At start: loc(xm)=⊥
At end: loc(xm)=l2

Formal conceptualization - actions

Attach (y,x,l)
Precondition:

At start: in(y)=l

Over all: loc(x)=l, |{y’ | in(y’)=x}| ≤ cap(x)

Effects:
At start: in(y)=⊥
At end: in(y)= x

Formal conceptualization - actions

Detach (y,x,l)
Precondition:

At start: in(y)=x

Over all: loc(x)=l

Effects:
At start: in(y)=⊥
At end: in(y)= l

Formal conceptualization - actions

Interact (e1,e2,l,p1,p2,p3,p4,p5,p6)
Precondition:

At start: (e1,p1) ∈ property, (e2,p2) ∈ property

Over all: loc(e1)=l ∨ in(e1)=l, loc(e2)=l ∨ in(e2)=l

Effects:
At start: (e1,p1) ∉ property, (e2,p2) ∉ property, (e1,p3) ∈ property,

(e2,p4) ∈ property

At end: (e1,p3) ∉ property, (e2,p4) ∉ property, (e1,p5) ∈ property,
(e2,p6) ∈ property

Considered models for evaluation

● “Classical” model
– Typed Strips PDDL

● Temporal model
– PDDL 2.1
– Durative actions

A sample action in PDDL 2.1

(:durative-action release-victim
:parameters (?V - fire_brigade ?P - acc_victim

?A - accident_location)
:duration (= ?duration (releasing-time))
:condition (and

(at start (at ?P ?A))
(at start (at ?V ?A))
(at start (certified ?P))
(at start (available ?V))
(at start (waiting ?P))
(at start (trapped ?P))

)
:effect (and

(at start (not (available ?V)))
(at end (not (trapped ?P)))
(at end (available ?V))

)
)

Class diagram in ItSimple

Evaluation

● Inspired by software engineering evaluation
criteria

● Process
● From the domain conceptualization to the final

domain model
● Project

● Project execution and resources needed
● Product

● Quality of the produced domain model

Process

Method A
● Depends on skills and

judgment of the expert
● Hard to replicate
● Can be used with any

language (e.g. PDDL,
ANML, Picat)

Method B
● ItSimple supports a

“disciplined” design
cycle

● The process can be
repeated

● Can be used only with
limited number of
languages/features

Project

Method A
● Domain modelling

took around 2 man-
days

● Issues in the model
and hard to spot

● Most of the time was
spent on debugging

Method B
● Domain modelling

took around 3 man-
days

● Issues in the model
are easier to spot

● Most of the time
was spent on model
design

Product

Method A
● More preconditions

and effects per
operator

● Harder to “read”
● Slightly less “planner-

friendly” (LPG was
slower)

Method B
● More operators (releasing

victims and extinguishing
fire was split into two
operators each)

● Easier to “read” (the UML
diagrams, not the
generated PDDL !)

● Slightly more “planner-
friendly” (LPG was faster)

Take home message

● The best strategy for generating readable and
easy to maintain models is the use of KE tools
– Limited language/features support
– “Expert bias”

● Decision what language and what features
will be used must be done early (before
formal conceptualization)

● There is no strategy (yet) for developing
“planner-friendly” domain models

DEVELOPMENT OF REAL-WORLD
PLANNING APPLICATION

Part IV.

Petrobras problem

• one of the challenge problems at ICKEPS 2012
• transporting cargo items between ports and

petroleum platforms while assuming limited
capacity of vessels and fuel consumption during
transport

• basic operations:
– navigating, docking/undocking, loading/unloading,

refueling
• objectives:
– fuel consumption, makespan, docking cost,

waiting queues, the number of ships

Petrobras problem

Petrobras - existing approaches

• Classical planning
– the planning part (decision of actions) modeled in PDDL

2.1 and solved by SGPlan (optimize fuel)
– the scheduling part (time allocation) solved in post-

processing
• Temporal planning

– modeled completely in PDDL 2.1 (durative actions and
resources)

– solved using the Filuta planner (optimize makespan)
• Monte Carlo Tree Search

– using abstract actions (Load, Unload, Refuel, GoToWaiting)
– solved using MCTS (optimize “usedFuel + 10 ∗ numActions

+ 5 ∗ makespan”)

Petrobras integrated (B-Prolog) – states

• Each vessel modeled separately as a timeline
(sequence of actions)
[Start,Fuel,Action,Loc,LoadedCargo,Dur]
LoadedCargo = [Weight,CargoLoc,Dest]

• left-to-right scheduling with rolling horizon

vessel 1

vessel 2

vessel 3

Petrobras integrated – actions

This does not work!
– more vessels heading for the same cargo (but only the

first vessel will load it)
– useless planned actions (just to do something –

refueling)

navigate

wait

dock undock

load

unload

refuel

w
aiting area

port
platform

refueling station

loaded

something
to load

Petrobras integrated – actions

Exploiting macro actions, landmarks (cargo must
be picked up), control rules, heuristics

Pickup
navigate, dock, load,{refuel}, undock

Deliver
navigate, dock, unload,{refuel}, undock

Go2Wait
{navigate, dock, refuel, undock}, navigate

Wait

cargo available
loaded

loaded
available cargo
+empty

empty

Petrobras separated (Picat) - states

• Solving approach:
– separate planning (fuel optimization) from

scheduling (time allocation, makespan)
– separate route selection from cargo-to-deliver

selection
• State representation:
– cargo Items: [[OriginLoc, [DestinationLoc,
Weight1,Weight2,...]], ...]

– vessels: [[Location, FuelLevel1,
FuelLevel2,...], ...]

Removes symmetries between items and vessels.

Petrobras separated - main loop

table (+,+, -,min)
plan([], _Vessels, Plan, Fuel) =>

Plan = [], Fuel = 0.
plan(Cargo, Vessels, Plan, Fuel) =>

select_port(Cargo, Port, PortCargo, RestCargo),
select_cargo(PortCargo,Destinations,FreeCap,RestPortCargo),
select_and_move_vessel(Vessels, Port, FuelLevel1,
RestVessels, Plan1, Fuel1),
load_at_other_ports(RestCargo, Port, FreeCap, FuelLevel1,
Destinations2, RestCargo2, Port2, FuelLevel2, Plan2,
Fuel2),
path_plan(Port2, FuelLevel2, Destinations ++ Destinations2,

FinalLoc, FinalLevel, Plan3, Fuel3),
plan(addCargo(RestCargo2, Port, RestPortCargo),

addVessel(RestVessels, FinalLoc, FinalLevel),Plan4,Fuel4),
Plan = Plan1 ++ $[load(Port),undock(Port)] ++ Plan2

++ Plan3 ++ Plan4,
Fuel = Fuel1 + Fuel2 + Fuel3 + Fuel4.

Petrobras results: setting

• The challenge problem from ICKEPS 2012
– 10 vessels with fuel capacity 600l, 15 cargo items

• Random problems from ICTAI 2012
– varying the number of vessels, fuel capacity:

• Group A – 3 vessels, fuel tank capacity 600 liters
• Group B – 10 vessels, fuel tank capacity 600 liters

– varying the number of items (1-15) in each group

• Comparison of
– temporal planner FILUTA

– MCTS planner

– B-Prolog planner

– Picat planner

Petrobras results: objectives

System
Optimization Criteria

Fuel
(l)

Makespan
(h)

Vessels Runtime
(ms)

B-Prolog 1263 162 4 ~60 000

Filuta 1989 263 4 ~600 000

MCTS 887 204 5 ~600 000

Picat 812 341 3 813

10 vessels with fuel capacity 600l, 15 cargo items

Petrobras results: fuel consumption

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

2000"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"

to
ta
l%f
ue

l%c
on

su
m
p.

on
%

cargo%items%

MCTS"

B1Prolog"

Filuta"

Picat"

Group%A%(3%vessels)% Group%B%(10%vessels)%

Petrobras results: makespan

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"

m
ak
es
pa

n(

cargo(items(

MCTS"

B1Prolog"

Filuta"

Picat"

Group(A((3(vessels)(Group(B((10(vessels)(

Petrobras results: vessels used

0"

1"

2"

3"

4"

5"

6"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"

ve
ss
el
s%

cargo%items%

MCTS"

Filuta"

Picat"

Group%A%(3%vessels)% Group%B%(10%vessels)%

Mixed-initiative Task Planning for
Autonomous Underwater Vehicles

In collaboration with LSTS lab, University of Porto
[Chrpa et al., 2015;2017]

System requirements [Chrpa et al., 2015]

● Necessity to control multiple heterogeneous
Autonomous Underwater Vehicles (AUVs)

● An operator (human) specifies high-level tasks
(e.g. “sample an object with ctd camera”)

● Task assignment to each AUV should be
automatized

How task assignment can be automatized ?

● Each task has specific requirements
● Each vehicle has specific capabilities
● For completing tasks AUVs have to perform

certain sequences of actions
● Hence, we need to find a plan that if

executed, the AUVs will complete all given
tasks

Available “machinery”

● In LSTS, AUVs are controlled via NEPTUS (a
decision support tool with GUI) and DUNE
(onboard vehicle control) → “low-level” control

● Domain-independent AI planning (i.e., finding a
sequence of actions that achieves a defined goal)
→ “high-level” task planning
– PDDL, a language for specifying planning

domain models and problem instances
– LPG-td, a planning engine accepting domain

and problem descriptions in PDDL and returning
a plan (if exists)

Modular architecture

● User specifies tasks in
NEPTUS

● NEPTUS generate a
planning problem and
sends it to LPG-td

● LPG-td returns a plan to
NEPTUS

● NEPTUS distributes the
plan to each of the
vehicles

“High-level” specification

● Each AUV has certain payloads attached to it
● Each task must be completed by using a certain

payload (e.g. camera, sidescan)
● Each AUV has a limited amount of energy that is

consumed by executing actions
● Collected data can be communicated while an AUV is

in its “depot” (a “safe spot” close to shore/ship)
● Two (or more) AUVs cannot be at the same location

or perform the same task simultaneously

Formal conceptualization - objects

● Vehicles (V)
● Payloads (P)
● Phenomenons (X)
● Tasks (T)
● Locations (L)

Formal conceptualization – predicates

● at ⊆ V�L (vehicle’s location)
● base ⊆ V�L (vehicle’s “depot”)
● has ⊆ V�P (attached payloads to the vehicle)
● at-phen ⊆ X�L (phenomenon’s location)
● task ⊆ T�X�P (task description)
● sampled ⊆ T�V (acquired task data by vehicle)
● data ⊆ T (acquired task data by the control

centre)

Formal conceptualization – (numeric) fluents

● dist: L � L → ℝ+ (distance between locations)
● survey-dist: L � L → ℝ+ (length of survey)
● speed: V → ℝ+ (vehicle’s speed)
● battery-level: V → ℝ+ (vehicle’s battery level)
● battery-use: V∪ P → ℝ+ (vehicle’s or payload’s

energy consumption)

Formal conceptualization - actions

Move (v,l1,l2)
Duration: d=dist(l1,l2)/speed(v)
Precondition:

At start: (v,l1)∈at, battery-level(v)≥ d*battery-use(v)

At end: ∄v’≠v: (v’,l2)∈at

Effects:
At start: (v,l1)∉at, battery-level(v)=battery-level(v)-d*battery-use(v)

At end: (v,l2)∈at

Formal conceptualization - actions

Sample (v,t,x,p,l)
Duration: d=60 (constant duration)
Precondition:

At start: battery-level(v)≥ d*battery-use(p)

Overall: (v,l)∈at, (x,l)∈at-phen, (v,p)∈has, (t,x,v)∈task

Effects:
At start: battery-level(v)=battery-level(v)-d*battery-use(p)

At end: (t,v)∈sampled

Formal conceptualization - actions

Survey (v,t,x,p,l1,l2)
Duration: d=survey-dist(l1,l2)
Precondition:

At start: (v,l1)∈at, battery-level(v)≥ d*(battery-use(v)+battery-use(p))

Overall: (x,l1)∈at-phen, (x,l2)∈at-phen, (v,p)∈has, (t,x,v)∈task

Effects:
At start: (v,l1)∉at,

battery-level(v)=battery-level(v)-d*(battery-use(v)+battery-use(p))

At end: (v,l2)∈at, (t,v)∈sampled

No concurrent survey action can be executed over x

Formal conceptualization - actions

Collect-data (v,t,l)
Duration: d=60 (constant duration)
Precondition:

Overall: (v,l)∈at, (v,l)∈base,(t,v)∈sampled

Effects:
At end: t∈data

PDDL model of the Sample action

(:durative-action sample
:parameters (?v - vehicle ?l – location ?t -task

?o - phenomenon ?p - payload)
:duration (= ?duration 60)
:condition (and (over all (at-phen ?o ?l))

(over all (task ?t ?o ?p))
(over all (at ?v ?l))
(over all (has ?p ?v))
(at start (>= (battery-level ?v)

(* (battery-use ?p) 60))))
:effect (and (at end (sampled ?t ?v))

(at start (decrease (battery-level ?v)
(* (battery-use ?p) 60)))))

Execution of the model: settings

● Evaluated in Leixões
Harbour, Porto

● 3 light AUVs carrying
different payloads

● In phase one, areas of
interest were surveyed

● In phase two, contacts
identified in phase one
were explored

Planned vs. execution time

● The plans were
executable

● High discrepancies,
especially for move
and survey actions

● Rough time
predictions that were
done only on distance
and type of vehicle

Vehicle Action Time Difference

Noptilus-1

move
survey
sample
communicate

47.80 ± 49.11
23.15 ± 23.26
1.33 ± 0.58
0.16 ± 0.17

Noptilus-2

move
survey
sample
communicate

39.57 ± 35.66
107.88 ± 141.10
N/A
0.25 ± 0.07

Noptilus-3

move
survey
sample
communicate

59.90 ± 57.05
24.00 ± 0.00
9.57 ± 13.64
0.11 ± 0.16

Additional assumptions [Chrpa et al., 2017]

1) Users can add, remove or modify tasks during
the mission

2) Vehicles might fail to execute an action

3) Communication with the control center is
possible only when a vehicle is in its “depot”

Additional requirements for the system

● System has to be flexible (e.g. a user can add a
new task) and robust (e.g. handling vehicles’
failures)

● Dynamic Planning, Execution and Re-planning
– Automatized response on task changes by

user and/or exceptional circumstances during
plan execution

● How the “one shot” model has to be changed?

Model amendments

● Removed battery constraints
– vehicles’ battery levels were much higher than duration of

operations
● Added maximum “away” time constraints

– Vehicles have to come to their depots to establish
communication (if they are “away” communication might
not be possible)

● Split the move action into move-to-sample, move-to-survey,
move-to-base, the former two must be succeeded by
sample and survey action respectively

● Optimizing plans (vehicles cannot go to locations they do
not have anything to do)

● Modified representation of phenomenons (objects and
areas of interests are explicitly distinguished)

Maximum “away” time constraints

● Numeric fluents
– from-base: V → ℝ+ (how long the vehicle is “away”)
– max-to-base: V → ℝ+ (maximum “away”time)

● Preconditions (at start) of the move, sample, survey actions
contain (d – action duration):

– from-depot(v) ≤ max-to-depot(v) – d
● Effects (at end) of the move, sample, survey actions contain

(d – action duration):
– from-depot(v) = from-depot(v) + d

● Effects (at end) of the move-to-base action contain:
– from-depot(v)=0

PDDL model of amended sample action

(:durative-action sample
:parameters (?v - vehicle ?l - location ?t -task ?o – oi

?p - payload)
:duration (= ?duration 60)
:condition (and (over all (at-oi ?o ?l))

(over all (task ?t ?o ?p))
(over all (at ?v ?l))
(over all (has ?p ?v))
(at start (<= (from-base ?v)

(- (max-to-base ?v) 60)))
)

:effect (and (at end (sampled ?t ?v))
(at end (can-move ?v))
(at start (increase (from-base ?v) 60))

)
)

Considered models

● All Tasks
– Allocates all specified tasks to the vehicles
– Minimizes the plan execution time and the

number of vehicles’ returns to their depots
● One Round

– Allocates only tasks for the next “round” (i.e.,
after vehicles return to their depots they cannot
move)

– Maximizes the number of completed tasks

Execution

● Preprocessing
– Splitting large surveillance areas into smaller ones

● Planning
– NEPTUS generates a problem specification in PDDL, runs LPG-td, then

processes and distributes the plan among the vehicles

● Execution
– Each vehicle is responsible for executing its actions

– Move actions are translated into timed-waypoints for mitigating the

differences between planned and actual times

– When in depots vehicles communicate status of completed tasks

(success/failure) – failed tasks are “re-inserted”

● Replanning
– If a new planning request comes (e.g. a user added a new task),

vehicles continue to execute their current plans until they come back

to their depots, then they receive new plans

Execution of the models: settings

● Evaluated in Leixões Harbour,
Porto

● Mine-hunting scenario was
used

● 3 light AUVs, 2 carried
sidescan, one carried camera

● In phase one, areas of
interest were surveyed

● In phase two, contacts
identified in phase one
sampled to identify them as
mines, or false positives

Results of the models execution

● Both models produced correct
plans that were successfully
executed

● During one of the executions one
AUV (Noptilus 3) failed (depth
sensor fault) – tasks were
automatically re-inserted and
allocated to a different AUV, which
completed them

● All Tasks model produces better
quality plans (for larger scenarios,
however, One Round model might
be more efficient)

• Most planned/actual differences are
quite small (less than 3 seconds).

• Around time 1000 a noticeable
difference occurred (vehicle had to
ascend during the survey). The delay
was eliminated by accelerating
during the following move action.

CLOSING REMARKS AND OPEN
PROBLEMS

Part V.

Summary

● Domain model is the key component for domain-
independent planning
– User-friendly (e.g., human readable)
– Planner-friendly (e.g. planners are efficient)

● We have languages to describe domain models
● We have planning engines supporting those

languages
● We have (some) KE tools supporting domain

modelling

Good news

● Planning succeeded in many real-world
applications
– Space Exploration
– Manufacture Planning
– Narrative Generation
– Task Planning for Autonomous Robots
– Urban Traffic Control
– …...

Not so good news

● A limited number of expressive planning engines
– In IPC 2014, 67 planners participated, out of

which only 6 competed in temporal track

● Domain modelling is still a “black art”
– “Expert bias”

– No guidelines (e.g. how to make model planner-
efficient)

– Limited tool support (e.g. debugging is still
manual)

– Lack of interest from the community

Questions to ask ourselves

● Do researches outside the planning community use
domain-independent planning ?

● If not, why ?
– Lack of guidelines for domain modelling
– Lack of efficient and expressive planning engines
– Lack of awareness
– ….

● How can we motivate researches outside the planning
community to use domain-independent planning in
their research ?

Challenges

● The notion of quality of domain models
– What it exactly stands for
– How to assess it

● KE tool support
– Debugging
– Dynamic testing
– Planner efficiency assessing
– …

● Adopting SW engineering principles
– Development life cycle
– Collaboration
– Maintenance
– ….

