Automated Planning

Roman Barták

Charles University in Prague, Faculty of Mathematics and Physics

Blockworld

Plan

pickup(C)
putontable(C,table)
pickup(B)
puton(B,D)
pickup(C)
puton(C,B)

Input:

- initial (current) state of the world
- description of actions that can change the world
- desired state of the world

Output:

- a sequence of actions (a plan)

Properties:

- actions in the plan are unknown
- time and resources are not assumed

Planning

- deciding which actions are necessary to achieve the goals
- topic of artificial intelligence
- complexity is usually worse than NP-c (in general, undecidable)
planning

scheduling

Scheduling

- deciding how to process the actions using given restricted resources and time
- topic of operations research
- complexity is typically NP-c

testing a payload of 12 advanced, high risk technologies

- autonomous remote agent

- planning, execution, and monitoring spacecraft activities based on general commands from operators
- three testing scenarios
- 12 hours of low autonomy (execution and monitoring)
-6 days of high autonomy (operating camera, simulation of faults)
- 2 days of high autonomy (keep direction)
» beware of backtracking!
» beware of deadlock in plans!

Tutorial outline

- Problem Formalisation
- models and representations
- State-space Planning
- forward and backward search
- Plan-space Planning
- partial-order planning
- Control Knowledge in Planning
- heuristics
- control rules

Planning deals with selection and organization of actions that are changing world states.

System Σ modelling states and transitions:

- set of states \mathbf{S} (recursively enumerable)
- set of actions A (recursively enumerable)
- actions are controlled by the planner!
- no-op
- set of events \mathbf{E} (recursively enumerable)
- events are out of control of the planner!
- neutral event ε
- transition function $\gamma: S \times A \times E \rightarrow 2^{S}$
- actions and events are sometimes applied separately $\gamma: \mathrm{Sx}(\mathrm{A} \cup \mathrm{E}) \rightarrow \mathrm{P}(\mathrm{S})$

A planning task is to find which actions are applied to world states to reach some goal from a given initial state.

What is a goal?

- goal state or a set of of goal states
- satisfaction of some constraint over a sequence of visited states
- for example, some states must be excluded or some states must be visited
- optimisation of some objective function over a sequence of visited states (actions)
- for example, maximal cost or a sum of costs

$$
\begin{aligned}
& \boldsymbol{\Sigma}=(\mathrm{S}, \mathrm{~A}, \mathrm{E}, \boldsymbol{\gamma}) \\
&-\mathrm{S}=\left\{\mathrm{s}_{0}, \ldots, \mathrm{~S}_{5}\right\} \\
&-\mathrm{E}=\{ \} \text { resp. }\{\varepsilon\} \\
&-\mathrm{A}=\{\text { move1, } \\
& \text { move2, } \\
& \text { put, take, load, } \\
&\text { unload }\}
\end{aligned}
$$

$-\gamma$: see figure

- init: s_{0}
- goal: S_{5}

How does it work?

A planner generates plans

A controller takes care about plan execution

- for each state it selects an action to execute
- observations (sensor input) are translated to world state

Dynamic planning involves re-planning when the state is not as expected.

- the system is finite
- the system is fully observable
- We know the current state completely.
- the system is deterministic
- $\forall s \in S \quad \forall u \in(A \cup E):|\gamma(s, u)| \leq 1$
- the system is static
- There are no external events.
- the goals are restricted
- The aim is to reach one of the goal states.
- the plans are sequential
- A plan consists of a (linearly ordered) sequence of actions.
- time is implicit
- Actions are instantaneous (no duration is assumed)).
- planning is done offline
- State of the world does not change during planning.

We will work with a deterministic, static, finite, and fully observable state-transition system with restricted goals and implicit time $\boldsymbol{\Sigma}=(\mathrm{S}, \mathrm{A}, \gamma)$.

Planning problem $P=\left(\Sigma, \mathbf{s}_{0}, \mathbf{g}\right):$

$-s_{0}$ is the initial state

- g describes the goal states

A solution to the planning problem P is a sequence of actions $\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}}\right\rangle$ with a corresponding sequence of states $\left\langle\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}\right\rangle$ such that $\mathrm{s}_{\mathrm{i}}=\gamma\left(\mathrm{s}_{\mathrm{i}-1}, \mathrm{a}_{\mathrm{i}}\right)$ and s_{k} satisfies g

[^0]Planning in the restricted model reduces to "path finding" in the graph defined by states and state transitions.

Is it really so simple?

5 locations, 3 piles per location, 100 containers, 3 robots
4 $\mathbf{1 0}^{\mathbf{2 7 7}}$ states
This is 10^{190} times more than the largest estimate of the number of particles in the whole universe!

How to represent states and actions without enumerating the sets S and A ?

- recall 10^{277} states with respect to the number of particles in the universe

How to efficiently solve planning problems?

- How to find a path in a graph with 10^{277} nodes?
- Problem Formalisation
- models and representations

- State-space Planning

- Forward and backward search

Plan-space Planning

- Partial-order planning

Each state is described using a set of propositions that hold at that state. example: \{onground, at2\}

Each action is a syntactic expression describing:

- which propositions must hold in a state so the action is applicable to that state example: take: \{onground\}
- which propositions are added and deleted from the state to make a new state example:
take: \{onground\}, \{holding\} ${ }^{+}$

Let $L=\left\{p_{1,}, \ldots, p_{n}\right\}$ be a finite set of propositional

 symbols (language).
A planning domain Σ over L is a triple ((S, A, γ) :

$-S \subseteq 2^{L}$, i.e. state s is a subset of L describing which propositions hold in that state

- if $\mathbf{p} \in \mathbf{s}$, then \mathbf{p} holds in \mathbf{s}
- if $\mathbf{p} \notin \mathbf{s}$, then \mathbf{p} does not hold in \mathbf{s}
- action $a \in A$ is a triple of subsets of L $a=\left(p r e c o n d(a)\right.$, effects $^{-}(a)$, effects $\left.^{+}(a)\right)$
- effects-(a) \cap effects $^{+}(a)=\varnothing$
- action a is applicable to state \mathbf{s} iff precond $(\mathbf{a}) \subseteq \mathbf{s}$
- transition function γ :
- $\gamma(\mathbf{s}, \mathbf{a})=\left(\mathbf{s}-\right.$ effects $\left.\left.^{-(} \mathbf{a}\right)\right) \cup$ effects $^{+}(\mathbf{a})$, if \mathbf{a} is applicable to \mathbf{s}

Planning problem P is a triple $\left(\Sigma, \mathrm{s}_{0}, \mathrm{~g}\right)$:
$-\boldsymbol{\Sigma}=(\mathrm{S}, \mathrm{A}, \gamma)$ is a planning domain over L

- s_{0} is an initial state, $s_{0} \in S$
$-\mathrm{g} \subseteq \mathrm{L}$ is a set of goal propositions
- $S_{g}=\{s \in S \mid g \subseteq s\}$ is a set of goal states

Plan $\boldsymbol{\pi}$ is a sequence of actions $\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$

- the length of plan π is $k=|\pi|$
- a state obtained by the plan $\boldsymbol{\pi}$ (a transitive closure of γ)
- $\gamma(\mathrm{s}, \pi)=\mathrm{s}$, if $\mathrm{k}=0$ (plan π is empty)
- $\gamma(\mathrm{s}, \pi)=\gamma\left(\gamma\left(\mathrm{s}, \mathrm{a}_{1}\right),\left\langle\mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}}\right\rangle\right)$, if $\mathrm{k}>0$ and a_{1} is applicable to s
- $\gamma(\mathrm{s}, \pi)=$ undefined, otherwise

Plan π is a solution plan for P iff $\mathrm{g} \subseteq \gamma\left(\mathrm{s}_{0}, \pi\right)$.

- redundant plan contains a subsequence of actions that also solves P
- minimal plan: there is no shorter solution plan for P

$$
\begin{aligned}
\mathrm{L}= & \text { \{onground, onrobot, } \\
& \text { holding, at1, at } 2\} \\
\mathrm{s}_{0}= & \{\text { onground, at } 2\} \\
\mathrm{g}= & \{\text { onrobot }\}
\end{aligned}
$$

load $=($
\{holding,at1\}, \{holding\}, \{onrobot\})

〈take,move1,load,move2〉
is a plan, but not a minimal plan

Set representation: properties

- Simplicity

- easy to read

How many states for n containers?

- Computations
- the transition function is easy to model/compute using set operations
- if precond(a) $\subseteq s$, then

$$
\gamma(s, a)=\left(s-\operatorname{effects}^{-}(a)\right) \cup \text { effects }^{+}(a)
$$

- Expressivity

- some sets of propositions do not describe real states
- \{holding, onrobot, at2\}
- for many domains, the set representation is still too large and not practical

Classical representation generalize the set representation by exploiting first-order logic.

- State is a set of logical atoms that are true in a given state.
- Action is an instance of planning operator that changes true value of some atoms.

More precisely:

- L (language) is a finite set of predicate symbols and constants (there are no function symbols!).
- Atom is a predicate symbol with arguments. example: on(c3,c1)
- We can use variables in the operators. example: on (x, y)

Classical representation: states

State is a set of instantiated atoms (no variables). There is a finite number of states!

\{attached(p1,loc1), in(c1,p1), in(c3,p1), top($\mathrm{c} 3, \mathrm{p} 1$), on($\mathrm{c} 3, \mathrm{c} 1$), on(c 1 , pallet), attached($\mathrm{p} 2, \operatorname{loc} 1)$, in($\mathrm{c} 2, \mathrm{p} 2)$, top($\mathrm{c} 2, \mathrm{p} 2$), on(c2,pallet), belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2), unloaded(r1)\}.

- The truth value of some atoms is changing in states:
- fluents
- example: at(r1,loc2)
- The truth value of some state is the same in all states
- rigid atoms
- example: adjacent(loc1,loc2)

We will use a classical closed world assumption.
An atom that is not included in the state does not hold at that state!

operator o is a triple (name(o), precond(o), effects(o))

- name(o): name of the operator in the form $n\left(x_{1}, \ldots, x_{k}\right)$
- n : a symbol of the operator (a unique name for each operator)
- $\mathrm{x}_{1}, \ldots ., \mathrm{x}_{\mathrm{k}}$: symbols for variables (operator parameters)
- Must contain all variables appearing in the operator definition!

- precond(o):

- literals that must hold in the state so the operator is applicable on it
- effects(o):
- literals that will become true after operator application (only fluents can be there!)

```
take(k,l,c,d,p)
```

;; crane k at location l takes c off of d in pile p
precond: belong (k, l), attached (p, l), empty $(k), \operatorname{top}(c, p)$, on (c, d) effects: $\quad \operatorname{holding}(k, c), \neg \operatorname{empty}(k), \neg \operatorname{in}(c, p), \neg \operatorname{top}(c, p), \neg \operatorname{on}(c, d), \operatorname{top}(d, p)$

Classical representation: actions

An action is a fully instantiated operator

- substitute constants to variables
take (k, l, c, d, p)
;; crane k at location l takes c off of d in pile p
 precond: belong $(k, l), \operatorname{attached}(p, l)$, empty $(k), \operatorname{top}(c, p)$, on (c, d) effects: $\quad \operatorname{holding}(k, c), \neg \operatorname{empty}(k), \neg \operatorname{in}(c, p), \neg \operatorname{top}(c, p), \neg \operatorname{on}(c, d), \operatorname{top}(d, p)$

```
take(crane1,loc1,c3,c1,p1)
```

action
;; crane crane1 at location loc1 takes c3 off c1 in pile p1
precond: belong(crane1,loc1), attached(p1,loc1), empty(crane1), top(c3,p1), on(c3,c1)

effects: holding(crane1,c3), ᄀempty(crane1), $\neg \mathrm{in}(\mathrm{c} 3, \mathrm{p} 1)$, \rightarrow top (c3,p1), ᄀon(c3,c1), top(c1,p1)

Notation:

$-\mathrm{S}^{+}=\{$positive atoms in S$\}$
$-\mathrm{S}^{-}=\{$atoms, whose negation is in S$\}$
Action a is applicable to state \mathbf{s} if any only precond $^{+}(\mathbf{a}) \subseteq \mathbf{s} \wedge \operatorname{precond}^{-}(\mathbf{a}) \cap \mathbf{s}=\varnothing$
The result of application of action a to s is $\boldsymbol{\gamma}(\mathbf{s}, \mathbf{a})=\left(\mathbf{s}-\operatorname{effects}^{-}(\mathbf{a})\right) \cup$ effects $^{+}(\mathbf{a})$

```
take(crane1,loc1,c3,c1,p1)
    ;; crane crane1 at location loc1 takes c3 off c1 in pile p1
    precond: belong(crane1,loc1), attached(p1,loc1),
        empty(crane1), top(c3,p1), on(c3,c1)
    effects: holding(crane1,c3), ᄀempty(crane1), ᄀin(c3,p1),
        \negtop(c3,p1), ᄀon(c3,c1), top(c1,p1)
```


Classical representation: a planning domain

Let L be a language and O be a set of operators.

Planning domain $\boldsymbol{\Sigma}$ over language L with operators

O is a triple ($\mathrm{S}, \mathrm{A}, \gamma$):

- states $S \subseteq 2$ \{all instantiated atoms from L\}
- actions A = \{all instantiated operators from O over L\}
- action a is applicable to state \mathbf{s} if precond ${ }^{+}(\mathbf{a}) \subseteq \mathbf{s} \wedge$ precond $^{-}(\mathbf{a}) \cap \mathbf{s}=\varnothing$
- transition function γ :
- $\gamma(\mathbf{s}, \mathbf{a})=\left(\mathbf{s}-\right.$ effects $\left.^{-}(\mathbf{a})\right) \cup$ effects $^{+}(\mathbf{a})$, if \mathbf{a} is applicable on \mathbf{s}
- S is closed with respect to $\boldsymbol{\gamma}$ (if $\mathbf{s} \in \mathrm{S}$, then for every action a applicable to \mathbf{s} it holds $\gamma(\mathbf{s}, \mathbf{a}) \in \mathrm{S}$)

Planning problem P is a triple $\left(\Sigma, \mathrm{s}_{0}, \mathrm{~g}\right)$:

$-\boldsymbol{\Sigma}=(\mathrm{S}, \mathrm{A}, \boldsymbol{\gamma})$ is a planning domain
$-s_{0}$ is an initial state, $s_{0} \in S$
-g is a set of instantiated literals

- state \mathbf{s} satisfies the goal condition \mathbf{g} if and only if

$$
\mathbf{g}^{+} \subseteq \mathbf{s} \wedge \mathbf{g}^{-} \cap \mathbf{s}=\varnothing
$$

- $\mathrm{S}_{\mathrm{g}}=\{\mathbf{s} \in \mathrm{S} \mid \mathbf{s}$ satisfies $\mathbf{g}\}-$ a set of goal states

Usually the planning problem is given by a triple

 ($0, \mathrm{~s}_{0}, \mathrm{~g}$).- O defines the the operators and predicates used
$-s_{0}$ provides the particular constants (objects)

Classical representation: an example plan

Expressive power of both representations is identical.

 However, the translation from the classical representation to a set representation brings exponential increase of size.

Blockworld: an example problem

The blocks world

- infinitely large table with a finite set of blocks
- the exact location of block on the table is irrelevant
- a block can be on the table or on another (single) block
- the planning domain deals with moving blocks by a computer hand that can hold at most one block
situation example

Constants

- blocks: a,b,c,d,e

Predicates:

- ontable(x)
block x is on a table
- on(x, y)
block x is on y
- clear (x)
block x is free to move
- holding(x)
the hand holds block x
- handempty the hand is empty

Actions

Blockworld: set representation

Propositions:

36 propositions for 5 blocks

- ontable-a
block \mathbf{a} is on table (5 x)
- on-c-a
block \mathbf{c} is on block \mathbf{a} (20x)
- clear-c
block \mathbf{c} is free to move (5 x)
- holding-d
the hand holds block d (5x)
- handempty the hand is empty (1 x)

Actions

- Problem Formalisation

- State-space Planning

- forward and backward search

Plan-space Planning

- partial-order planning

Control Knowledge in Planning - heuristics

The search space corresponds to the state space of the planning problem.

- search nodes correspond to world states
- arcs correspond to state transitions by means of actions
- the task is to find a path from the initial state to some goal state

Basic approaches

- forward search
- backward search
- lifting
- STRIPS
- problem dependent (blocks world)

Note: all algorithms will be presented for the classical representation

Start in the initial state and go towards some goal state.

We need to know:

- whether a given state is a goal state
- how to find a set of applicable actions for a given state
- how to define a state after applying a given action

Forward planning: properties

Forward planning algorithm is sound.

- If some plan is found then it is a solution plan..
- It is easy to verify by using $\mathrm{s}=\gamma\left(\mathrm{s}_{0}, \pi\right)$.

Forward planning algorithm is complete.

- If there is any solution plan then at least one search branch corresponds to this plan.
- induction by the plan length
- at each step, the algorithm can select the correct action from the solution plan (if correct actions were selected n the previous steps)

We need to implement the presented algorithm

in a deterministic way:

- breadth-first search
- sound, complete, but memory consuming

- depth-first search

- sound, completeness can be guaranteed by loop checks (no state repeats at the same branch)
- A*
- if we have some admissible heuristic
- the most widely used approach

What is the major problem of forward planning?
Large branching factor - the number of options

- This is a problem for deterministic algorithm that needs to explore the possible options.

Possible approaches:

- heuristic recommends an action to apply
- pruning of the search space
- For example, if plans π_{1} and π_{2} reached the same state then we know that plans $\pi_{1} \pi_{3}$ and $\pi_{2} \pi_{3}$ will also reach the same state. Hence the longer of the plans π_{1} and π_{2} does not need to expanded.
We need to remember the visited states $\theta_{\text {. }}$.

Start with a goal (not a goal state as there might

 be more goal states) and through sub-goals try to reach the initial state.We need to know:

- whether the state satisfies the current goal
- how to find relevant actions for any goal
- how to define the previous goal such that the action converts it to a current goal

Action a is relevant for a goal g if and only if:

- action a contributes to goal \mathbf{g} : $\mathbf{g} \cap$ effects(a) $\neq \varnothing$
- effects of action a are not conflicting goal \mathbf{g} :
- $\mathrm{g} \cap$ effects $^{+}(\mathrm{a})=\varnothing$
- $\mathrm{g}^{+} \cap$ effects $-(\mathrm{a})=\varnothing$

A regression set of the goal \mathbf{g} for (relevant) action a is $\boldsymbol{\gamma}^{-1}(\mathrm{~g}, \mathrm{a})=(\mathrm{g}-\operatorname{effects}(\mathrm{a})) \cup$ precond (a)

Example:

goal: $\{o n(a, b)$, on(b,c) $\}$
action stack(\mathbf{a}, \mathbf{b}) is relevant

Precond: holding (x), clear (y)
Effects: ~holding $(x), \sim \operatorname{clear}(y)$, on (x, y), clear (x), handempty
by backward application of the action we get a new goal:
\{holding(a), clear(b), on(b,c)\}

Backward planning: an example

Goal $=\{$ at(r1,loc1),loaded(r1,c3) $\}$

load(crane1,loc1,c3,r1)
$\operatorname{load}(k, l, c, r)$
;; crane k at location l loads container c onto robot r precond: belong (k, l), holding (k, c), at (r, l), unloaded (r) effects: \quad empty $(k), \neg$ holding (k, c), loaded $(r, c), \neg$ unloaded (r)
\{at(r1,loc1), belong(crane1,loc1),
holding(crane1,c3), unloaded(r1)\}
\{belong(crane1,loc1), holding(crane1,c3), unloaded(r1), adjacent(loc2,loc1), at(r1,loc2), \neg occupied(loc1)\}

Backward planning is sound and complete.

We can implement a deterministic version of the algorithm (via search).

- For completeness we need loop checks.
- Let $\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{k}}\right)$ be a sequence of goals. If $\exists \mathrm{i}<\mathrm{k} \mathrm{g}_{\mathrm{i}} \subseteq \mathrm{g}_{\mathrm{k}}$ then we can stop search exploring this branch.

Branching

- The number of options can be smaller than for the forward planning (less relevant actions for the goal).
- Still, it could be too large.
- If we want a robot to be at the position loc51 and there are direct connections from states loc1,...,loc50, then we have 50 relevant actions. However, at this stage, the start location is not important!
- We can instantiate actions only partially (some variables remain free. This is called lifting.

Backward planning: a lifted version

Lifted-backward-search $\left(O, s_{0}, g\right)$
$\pi \leftarrow$ the empty plan
loop
if s_{0} satisfies g then return π
$A \leftarrow\{(o, \theta) \mid o$ is a standardization of an operator in O,
θ is an mgu for an atom of g and an atom offects (o), and $\gamma^{-1}(\theta(g), \theta(o))$ is defined $\}$
if $A=\emptyset$ then return failure
nondeterministically choose a pair $(o, \theta) \in A$
$\pi \leftarrow$ the concatenation of $\theta(o)$ and $\theta(\pi)$
$g \leftarrow \gamma^{-1}(\theta(g), \theta(o))$

Notes:

- standardization = a copy with fresh variables
- mgu = most general unifier
- by using the variables we can decrease the branching factor but the trade off is more complicated loop check

How can we further reduce the search space?

STRIPS algorithm reduces the search space of backward

 planning in the following way:- only part of the goal is assumed in each step, namely the preconditions of the last selected action
- instead of $\gamma^{-1}(\mathbf{s}, \mathbf{a})$ we can use precond(\mathbf{a}) as the new goal
- the rest of the goal must be covered later
- This makes the algorithm incomplete!
- If the current state satisfies the preconditions of the selected action then this action is used and never removed later upon backtracking.

STRIPS algorithm

The original STRIPS algorithm is a lifted version of the algorithm below.

```
Ground-STRIPS( \(O, s, g\) )
    \(\pi \leftarrow\) the empty plan
        loop
            if \(s\) satisfies \(g\) then return \(\pi\)
            \(A \leftarrow\{a \mid a\) is a ground instance of an operator in \(O\),
                and \(a\) is relevant for \(g\) \}
            if \(A=\emptyset\) then return failure
            nondeterministically choose any action \(a \in A\)
            \(\pi^{\prime} \leftarrow \operatorname{Ground}-\operatorname{STRIPS}(O, s\), precond \((a))\)
            if \(\pi^{\prime}=\) failure then return failure
            ;if we get here, then \(\pi^{\prime}\) achieves precond \((a)\) from \(s\)
            \(s \leftarrow \gamma\left(s, \pi^{\prime}\right)\)
            ;; \(s\) now satisfies precond \((a)\)
            \(s \leftarrow \gamma(s, a)\)
    \(\pi \leftarrow \pi \cdot \pi^{\prime} \cdot a\)
```

 \(g_{2}=\left(g-\operatorname{effects}\left(a_{2}\right)\right) \cup \operatorname{precond}\left(a_{2}\right)\)
 \(\pi^{\prime}=\left\langle a_{6}, a_{4}\right\rangle\) is a plan for precond \(\left(a_{2}\right)\)
 \(s=\gamma\left(\gamma\left(s_{0}, a_{6}\right), a_{4}\right)\) is a state satisfying precond \(\left(a_{2}\right)\)

Sussman anomaly is a famous example that causes troubles to the STRIPS algorithm (the algorithm can only find redundant plans).

Block world

A plan found by STRIPS may look like this:

- unstack(c,a),putdown(c),pickup(a),stack(a,b)
now we satisfied subgoal on(a,b)
- unstack(a,b),putdown(a),pickup(b),stack(b,c) now we satisfied subgoal on(b,c), but we need to re-satisfy on (a, b) again
- pickup(a),stack(a,b)
red actions can be deleted

Solving Sussman anomaly

- interleaving plans
- plan-space planning

- using domain dependent information

- When does a solution plan exist for a blocks world?
- all blocks from the goal are present in the initial state
- no block in the goal stays on two other blocks (or on itself)
- ...
- How to find a solution plan?

Actually, it is easy and very fast!

- put all blocks on the table (separately)
- build the requested towers

We can do it even better with additional knowledge!

When do we need to move block x ?

Exactly in one of the following situations:

- s contains ontable(x) and g contains on (x, y)
 $-s$ contains on (x, y) and g contains ontable(x)
 $-s$ contains on (x, y) and g contains on (x, z) for some $y \neq z$
 $-s$ contains on (x, y) and y must be moved

Fast planning for blocksworld

Stack-containers $\left(O, s_{0}, g\right)$:
if g does not satisfy the consistency conditions then

$$
\text { return failure } \quad ; \text { the planning problem is unsolvable }
$$

$\pi \leftarrow$ the empty plan
$s \leftarrow s_{0}$
loop
if s satisfies g then return π
if there are containers b and c at the tops of their piles such that position (c, s) is consistent with g and on $(b, c) \in g$
then
append actions to π that move b to c
$s \leftarrow$ the result of applying these actions to s
;; we will never need to move b again
else if there is a container b at the top of its pile such that position (b, s) is inconsistent with g and there is no c such that on $(b, c) \in g$
then
append actions to π that move b to an empty auxiliary pile
$s \leftarrow$ the result of applying these actions to s
;; we will never need to move b again
else
nondeterministically choose any container c such that c is at the top of a pile and position (c, s) is inconsistent with g append actions to π that move c to an empty auxiliary pallet
$s \leftarrow$ the result of applying these actions to s

- Problem Formalisation

- models and representations

State-space Planning

- forward and backward search

- Plan-space Planning
- partial-order planning

The principle of plan space planning is similar to backward planning:

- start from an „empty" plan containing just the description of initial state and goal
- add other actions to satisfy not yet covered (open) goals
- if necessary add other relations between actions in the plan

Planning is realised as repairing flaws in a partial plan

- go from one partial plan to another partial plan until a complete plan is found

Assume a partial plan with the following two actions:

- take(k1,c1,p1,11)
- load(k1,c1,r1,11)

Possible modifications of the plan:

- adding a new action
- to apply action load, robot r 1 must be at location 11
- action move(r1,I,l1) moves robot r1 to location I1 from some location I
- binding the variables
- action move is used for the right robot and the right location
- ordering some actions
- the robot must move to the location before the action load can be used
- the order with respect to action take is not relevant
- adding a causal relation
- new action is added to move the robot to a given location that is a precondition of another action
- the causal relation between move and load ensures that no other action between them moves the robot to another location

Plan space planning: the initial plan

The initial state and the goal are encoded using two special actions in the initial partial plan:

- Action a_{0} represents the initial state in such a way that atoms from the initial state define effects of the action and there are no preconditions. This action will be before all other actions in the partial plan.
- Action a_{∞} represents the goal in a similar way - atoms from the goal define the precondition of that action and there is no effect. This action will be after all other actions.

Planning is realised by repairing flaws in the partial plan.

The search nodes correspond to partial plans.

A partial plan Π is a tuple ($\mathrm{A},<, \mathrm{B}, \mathrm{L}$), where

$-A$ is a set of partially instantiated planning operators $\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right\}$

- < is a partial order on $A\left(a_{i}<a_{j}\right)$
$-B$ is set of constraints in the form $x=y, x \neq y$ or $x \in D_{i}$
$-L$ is a set of causal relations $\left(a_{i} \rightarrow^{p} a_{j}\right)$
- a_{i}, a_{j} are ordered actions $a_{i}<a_{j}$
- p is a literal that is effect of a_{i} and precondition of a_{j}
- B contains relations that bind the corresponding variables in p

Open goal is an example of a flaw.
This is a precondition \mathbf{p} of some operator \mathbf{b} in the partial plan such that no action was decided to satisfy this precondition (there is no causal relation $\mathrm{a}_{\mathrm{i}} \rightarrow_{\mathrm{p} b}$).

The open goal p of action b can be resolved by:

- finding an operator a (either present in the partial plan or a new one) that can give \mathbf{p} (\mathbf{p} is among the effects of \mathbf{a} and \mathbf{a} can be before b)
- binding the variables from p
- adding a causal relation $\mathbf{a} \rightarrow \mathbf{P} \mathbf{b}$

Threat is another example of flaw.

This is action that can influence existing causal relation.

- Let $a_{i} \rightarrow^{p} a_{j}$ be a causal relation and action \boldsymbol{b} has among its effects a literal unifiable with the negation of \mathbf{p} and action \mathbf{b} can be between actions a_{i} and a_{j}. Then \mathbf{b} is threat for that causal relation.

We can remove the threat by one of the ways:

- ordering \mathbf{b} before $\mathbf{a}_{\mathbf{i}}$
- ordering \mathbf{b} after $\mathbf{a}_{\mathbf{j}}$
- binding variables in \mathbf{b} in such a way that \mathbf{p} does not bind with the negation of p

Partial plan $\boldsymbol{\Pi}=(\mathrm{A},<, \mathrm{B}, \mathrm{L})$ is a solution plan for the problem $P=\left(\Sigma, s_{0}, g\right)$ if:

- partial ordering < and constraints B are globally consistent
- there are no cycles in the partial ordering
- we can assign variables in such a way that constraints from B hold
- Any linearly ordered sequence of fully instantiated actions from A satisfying < and B goes from s_{0} to a state satisfying g.

Hmm, but this definition does not say how to verify that a partial plan is a solution plan!

How to efficiently verify that a partial plan is a solution plan?

Claim:

Partial plan $\boldsymbol{\Pi}=(\mathrm{A},<, \mathrm{B}, \mathrm{L})$ is a solution plan if:

- there are no flaws (no open goals and no threats)
- partial ordering < and constraints B are globally consistent

Proof by induction using the plan length
$-\left\{a_{0}, a_{1}, a_{\infty}\right\}$ is a solution plan

- for more actions take one of the possible first actions and join it with action a_{0}

PSP = Plan-Space Planning

```
\(\operatorname{PSP}(\pi)\)
    flaws \(\leftarrow\) OpenGoals \((\pi) \cup\) Threats \((\pi)\)
    if flaws \(=\emptyset\) then return \((\pi)\)
    select any flaw \(\phi \in\) flaws
    resolvers \(\leftarrow \operatorname{Resolve}(\phi, \pi)\)
    if resolvers \(=\emptyset\) then return(failure)
    nondeterministically choose a resolver \(\rho \in\) resolvers
    \(\pi^{\prime} \leftarrow \operatorname{Refine}(\rho, \pi)\)
    return( \(\left.\operatorname{PSP}\left(\pi^{\prime}\right)\right)\)
end
```


Notes:

- The selection of flaw is deterministic (all flaws must be resolved).
- The resolvent is selected non-deterministically (search in case of failure).

Open goals can be maintained in an agenda of action preconditions without causal relations. Adding a causal relation for \mathbf{p} removes \mathbf{p} from the agenda.
All threats can be found in time $O\left(n^{3}\right)$ by verifying triples of actions or threats can be maintained incrementally: after adding a new action, check causal relations influenced ($\mathrm{O}\left(\mathrm{n}^{2}\right)$), after adding a causal relation find its threats ($\mathrm{O}(\mathrm{n})$).
Open goals and threats are resolved only by consistent refinements of the partial plan.

- consistent ordering can be detected by finding cycles or by maintaining a transitive closure of <
- consistency of constraints in B
- If there is no negation then we can use arc consistency.
- In case of negation, the problem of checking global consistency is NP-complete.

Algorithm PSP is complete and sound.

- soundness
- If the algorithm finishes, it returns a consistent plan with no flaws so it is a solution plan.
- completeness
- If there is a solution plan then the algorithm has the option to select the right actions to the partial plan.

Be careful about the deterministic implementation!

- The search space is not finite!
- A complete deterministic procedure must guarantee that it eventually finds a solution plan of any length - iterative deepening can be applied.

PoP is a popular instance of algorithm PSP.

- Agenda is a set of pairs (\mathbf{a}, \mathbf{p}), where \mathbf{p} is an

```
PoP(\pi,agenda) ;; where }\pi=(A,\prec,B,L
    if agend }a=\emptyset\mathrm{ then return( }\pi\mathrm{ )
    select any pair ( }a,p)\mathrm{ in and remove it from agenda
    relevant }\leftarrow\operatorname{Providers}(p,\pi
    if relevant = \emptyset then return(failure)
    nondeterministically choose an action }\mp@subsup{a}{i}{}\in\mathrm{ relevant
    L\leftarrowL\cup{{\mp@subsup{a}{i}{}\xrightarrow{}{p}}\mp@subsup{a}{j}{}\rangle
    update }B\mathrm{ with the binding constraints of this causal link
    if }\mp@subsup{a}{i}{}\mathrm{ is a new action in }A\mathrm{ then do:
        update A with ai
        update < with ( }\mp@subsup{a}{i}{}\prec\mp@subsup{a}{j}{}),(\mp@subsup{a}{0}{}\prec\mp@subsup{a}{i}{}\prec\mp@subsup{a}{\infty}{}
        update agenda with all preconditions of ai
    for each threat on }\langle\mp@subsup{a}{i}{}\xrightarrow{}{p}\mp@subsup{a}{j}{\prime}\rangle\mathrm{ or due to }\mp@subsup{a}{i}{}\mathrm{ do:
        resolvers }\leftarrow\mathrm{ set of resolvers for this threat
        if resolvers = \emptyset then return(failure)
        nondeterministically choose a resolver in resolvers
        add that resolver to }<\mathrm{ or to B
    return(PoP(\pi, agenda))
end
``` open precondition of action a.
- First find an action \(a_{i}\) to cover some p from the agenda.
- At the second stage resolve all threats that appeared by adding action \(a_{i}\) or from a causal relation with \(\mathrm{a}_{\mathrm{i}}\).

\section*{Initial state:}
- At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Banana)
- so action Start is defined as:

Precond: none
Effects: At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Banana)

\section*{Goal:}
- Have(Drill), Have(Milk), Have(Banana), At(Home)
- so action Finish is defined as:

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home) Effects: none
The following two operators are available:
- Go(I,m) ;; go from location / to m Precond: At(/)
Effects: At(\(m\)), \(\neg \mathrm{At}(/)\)
- Buy(p,s) ;; buy \(p\) at location \(s\)

Precond: At(s), Sells(s,p)
Effects: Have(\(p\))

\section*{Plan-space planning: a running example}

\section*{The initial (empty) plan}

At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

There is only one way to satisfy the open goals Have, and this is via actions Buy (no threats added).

\section*{Operators}

Go(\(1, m\))
Precond: At()
Effects: At(\(m\)), \(\neg A t()\)

\section*{Buy \((\boldsymbol{p}, \boldsymbol{s})\)}

Precond: At(\((s)\), Sells \((s, p)\)
Effects: Have(p)

Plan-space planning: a running example

There is again a single way to satisfy preconditions Sells and this is substituting the right constants.

\section*{Operators}

Go(\(1, m\))
Precond: At()
Effects: At(\(m\)), ᄀAt()
\(\operatorname{Buy}(p, s)\)
Precond: At(s), Sells(s,p)
Effects: \(\operatorname{Have}(p)\)

\section*{The only way to satisfy open goals is by adding actions Go. \\ - There are new threats!}

Have(Drill), Have(Milk), Have(Bananas), At(Home)

\section*{Finish}

\section*{Plan-space planning: a running example}

One threat can be solved by ordering Buy(Drill) before Go(Tesco)
- This solves all the threats!

\section*{Operators}

Go(\(I, m\))
Precond: At()
Effects: At(\(m\)), ᄀAt()
\(\operatorname{Buy}(p, s)\)
Precond: At(\(s\)), Sells(\(s, p\)) Effects: \(\operatorname{Have}(p)\)

Have(Drill), Have(Milk), Have(Bananas), At(Home)
Finish

Open goal \(\mathbf{A t}\left(\boldsymbol{I}_{\mathbf{1}}\right)\) can be satisfied by assignment \(l_{1}=\) Home taken from the action Start.

\section*{Operators}

Go(\(1, m\))
Precond: At()
Effects: At(\(m\)), \(\neg A t()\)

\section*{Buy \((p, s)\)}

Precond: At(s), Sells(s,p)
Effects: Have(\(p\))

Have(Drill), Have(Milk), Have(Bananas), At(Home)

\section*{Finish}

\section*{Plan-space planning: a running example}

Open goal \(\operatorname{At}\left(I_{2}\right)\) can be satisfied by assignment \(l_{2}=\mathrm{OBI}\) from action Go(Home, OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)
Finish

Open goal At(Home) from Finish is satisfied by action Go
- new threats appear

\section*{Finish}

\section*{Plan-space planning: a running example}

Threats for At(Tesco) are removed by ordering Go(Home) after both actions Buy

\section*{Operators}

Go(\(I, m\))
Precond: At()
Effects: At(\(m\)), ᄀAt()
\(\operatorname{Buy}(p, s)\)
Precond: At(\(s\)), Sells \((s, p)\) Effects: Have(p)

Finish

Open goal \(\operatorname{At}\left(I_{3}\right)\) is satisfied by asignment \(t_{3}=\) Tesco from action Go(OBI,Tesco).

Finish

Comparison
\begin{tabular}{|l|l|l|}
\hline & State space planning & Plan space planning \\
\hline search space & finite & infinite \\
\hline search nodes & \begin{tabular}{l}
simple \\
(world states)
\end{tabular} & \begin{tabular}{l}
complex \\
(partial plans)
\end{tabular} \\
\hline world states & explicit & not used \\
\hline partial plan & \begin{tabular}{l}
action selection and \\
ordering done together
\end{tabular} & \begin{tabular}{l}
action selection and \\
ordering separated
\end{tabular} \\
\hline plan structure & linear & causal relations \\
\hline
\end{tabular}

State space planning is much faster today thanks to heuristics based on state evaluation.
However, plan space planning:
- makes more flexible plans thanks to partial order
- supports further extensions such as adding explicit time and resources
- Problem Formalisation - models and representations
- State-space Planning - forward and backward search

Plan-space Planning

\section*{- Control Knowledge in Planning}
- heuristics
- control rules

Heuristics are used to select next search node to be explored (recall, that we described the planning algorithms using nondeterminism).
- Note: If we know, which node to select to get a solution, then we use oracle. With oracle we will find the solution deterministically.
Naturally, we prefer the heuristic to be as close as possible to oracle while being computed efficiently.
A typical way to obtain (admissible) heuristics is via solving a relaxed problem (some problem constraints are relaxed - not assumed).
- solve the relaxed problem for the successor nodes
- select the node with the best solution of the relaxed problem

For optimisation problems the heuristic \(h(u)\) estimates the real cost \(h^{*}(u)\) of the best solution reachable via node \(u\).
- the heuristic is admissible, if \(\mathrm{h}(\mathrm{u}) \leq \mathrm{h}^{*}(\mathrm{u})\) (for minimization)
- the search algorithms using admissible heuristics are optimal

Heuristic estimates the number of actions to reach a goal state from a given state or to reach a given predicate or a set of predicates.
Based on solving a "relaxed" problem:
- assume only positive effects
- assume that different atoms can be reached independently

\section*{Zero attempt:}
- \(\Delta_{0}(s, p)=0 \quad\) if \(p \in s\)
\(-\Delta_{0}(s, g)=0 \quad\) if \(g \subseteq s\)
- \(\Delta_{0}(s, p)=\infty \quad\) if \(p \notin s\) and \(\forall a \in A, p \notin\) effects \(^{+}(a)\)
- \(\Delta_{0}(\mathrm{~s}, \mathrm{p})=\min _{\mathrm{a}}\left\{1+\Delta_{0}(\mathrm{~s}, \mathrm{precond}(\mathrm{a})) \mid \mathrm{p} \in\right.\) effects \(\left.^{+}(\mathrm{a})\right\}\)
\(-\Delta_{0}(\mathrm{~s}, \mathrm{~g})=\Sigma_{\mathrm{p} \in \mathrm{g}} \Delta_{0}(\mathrm{~s}, \mathrm{p})\)
This heuristic is not admissible (for optimal planning) because it does not provide a lower bound for the plan length!
```

Delta(s)
for each p do: if }p\ins\mathrm{ then }\mp@subsup{\Delta}{0}{}(s,p)\leftarrow0\mathrm{ , else }\mp@subsup{\Delta}{0}{}(s,p)\leftarrow
U}
iterate
for each a such that precond (a)\subseteqU do
U\leftarrowU\cdot\cup effects}\mp@subsup{}{}{+}(a
for each p
\Delta
until no change occurs in the above updates
end

```

\section*{State-space admissible heuristics}

\section*{A first attempt to admissible heuristic}
- ...
\(-\Delta_{1}(s, g)=\max \left\{\Delta_{0}(s, p) \mid p \in g\right\}\)
- If the heuristic value is greater than the best so-far solution then we can cut-off the search branch.
- Based on experiments, heuristic \(\Delta_{1}\) is less informed than \(\Delta_{0}\).

\section*{A second attempt to admissible heuristic}

Let us try to explore reachability of pairs of atoms together.
- ...
\(-\Delta_{2}(\mathrm{~s}, \mathrm{p})=\min _{\mathrm{a}}\left\{1+\Delta_{2}\left(\mathrm{~s}\right.\right.\), precond(a)) | \(\left.\mathrm{p} \in \operatorname{effects}^{+}(\mathrm{a})\right\}\)
\(-\Delta_{2}(s,\{p, q\})=\min \{\)
\(\min _{\mathrm{a}}\left\{1+\Delta_{2}\left(\mathrm{~s}\right.\right.\), precond(a)) \(\left.\mid\{\mathrm{p}, \mathrm{q}\} \subseteq \operatorname{effects}^{+}(\mathrm{a})\right\}\),
\(\min _{a}\left\{1+\Delta_{2}\left(\mathrm{~s},\{\mathrm{q}\} \cup\right.\right.\) precond(a)) \(\mid \mathrm{p} \in\) effects \(\left.^{+}(\mathrm{a})\right\}\),
\(\min _{\mathrm{a}}\left\{1+\Delta_{2}\left(\mathrm{~s},\{\mathrm{p}\} \cup\right.\right.\) precond(a)) \(\mid \mathrm{q} \in\) effects \(\left.\left.^{+}(\mathrm{a})\right\}\right\}\)
\(-\Delta_{2}(\mathrm{~s}, \mathrm{~g})=\max _{\mathrm{p}, \mathrm{q}}\left\{\Delta_{2}(\mathrm{~s},\{\mathrm{p}, \mathrm{q}\}) \mid\{\mathrm{p}, \mathrm{q}\} \subseteq \mathrm{g}\right\}\)
We can generalise the above idea to larger sets of atoms, but for \(\mathrm{k}>2\) this heuristic is computationally expensive.

\section*{Forward planning}
- Prefer the action leading to a state with smaller heuristic distance to a goal.
- Heuristic is computed in every search step.

\section*{Backward planning}
- First, compute the heuristic distance from the initial state \(\mathrm{s}_{0}\) to all atoms: \(\Delta\left(\mathrm{s}_{0}, \mathrm{p}\right)\)
- can be done incrementally
- Prefer the action whose regression set is heuristically closer to the initial state.
```

Heuristic-forward-search( }\pi,s,g,A
if s satisfies }g\mathrm{ then return }
options }\leftarrow{a\inA|a\mathrm{ applicable to s}
for each }a\in\mathrm{ options do Delta ( }\gamma(s,a)
while options }\not=\emptyset\mathrm{ do
a\leftarrow\operatorname{argmin}{\mp@subsup{\Delta}{0}{}(\gamma(s,a),g)|a\in options}
options }\leftarrow\mathrm{ options - {a}
\pi
if }\mp@subsup{\pi}{}{\prime}\not=\mathrm{ failure then return (}\mp@subsup{\pi}{}{\prime}
return(failure)
end

```

Backward-search \(\left(\pi, s_{0}, g, A\right)\)
if \(s_{0}\) satisfies \(g\) then return \((\pi)\)
options \(\leftarrow\{a \in A \mid a\) relevant for \(g\}\)
while options \(\neq \emptyset\) do
\(a \leftarrow \operatorname{argmin}\left\{\Delta_{0}\left(s_{0}, \gamma^{-1}(g, a)\right) \mid a \in\right.\) options \(\}\)
options \(\leftarrow\) options \(-\{a\}\)
\(\pi^{\prime} \leftarrow \operatorname{Backward}-\operatorname{search}\left(a . \pi, s_{0}, \gamma^{-1}(g, a), A\right)\)
if \(\pi^{\prime} \neq\) failure then return \(\left(\pi^{\prime}\right)\)
return failure

Plan-space planning is based on AND-OR search. There are two types of choices:
- the choice of flaw (AND node)
- the choice of resolver (OR node)

Flaw-selection heuristic
- This is a form of serialization of
the AND/OR tree, in particular

the AND node is split into several nodes.
- Which serialization is better?

- Better serialization leads to a smaller number of nodes in the graph.
- FAF (fewest alternatives first) heuristic
- first repair the flaws with fewer ways for repair

\section*{Which resolver for a flaw should be tried first?}

Let \(\left\{\pi_{1}, \ldots, \pi_{\mathrm{m}}\right\}\) be partial plans obtained by applying different flaw resolvers and \(g_{\pi}\) be a set of open goals in \(\pi\).
- Zero attempt
prefer a partial plan with fewer open goals
\(\Rightarrow \eta_{0}(\pi)=\left|g_{\pi}\right|\)
- However, this does not really estimate the size of the plan.
- Next attempt

Generate an AND-OR graph for \(\pi\) till given depth \(k\) and count the number of new actions and the number of open goals not in \(\mathrm{s}_{0}\)
\(\Rightarrow \eta_{\mathrm{k}}(\pi)\)
- This is too computationally expensive.
- One more improvement

Construct a planning graph (once) for the original goal. Then find an open goal \(p\) in \(\pi\), that was added last to the graph and on the path from \(s_{0}\) to \(p\) count the number of actions that are not in \(\pi\)
\(\Rightarrow \eta(\pi)\)

Heuristics guide the planner towards a goal state by ordering alternative plans. They do not solve the problem with the large number of alternatives.

\section*{Can we detect and prune bad alternatives?}

\section*{Example (blockworld)}
- If a block is placed correctly (consistent with the goal) then any action that moves that block just enlarges the plan.
- If a block is on a wrong place and there is an action that moves it to the correct place then any action that moves the block elsewhere just enlarges the plan.

Domain dependent information can prune the search space, but the open question is how to express such information for a general planning algorithm.
- control rules

\section*{We need a formalism to express relations between the current world state and future states.}

\section*{Simple temporal logic}
- extension of first-order logic by modal operators
- \(\phi_{1} \cup \phi_{2}\) (until) \(\phi_{1}\) is true in all states until the first state (if any) in which \(\phi_{2}\) is true
- \(\square \phi\) (always) \(\quad \phi\) is true now and in all future states
- \(\diamond \phi\) (eventually) \(\phi\) is true now or in any future state
- O \(\phi\) (next) \(\phi\) is true in the next state
- GOAL \((\phi) \quad \phi\) (no modal operators) is true in the goal state
\(-\phi\) is a logical formula expressing relations between the objects of the world (it can include modal operators)

\section*{Semantics of modal operators}

The interpretation of modal formula involves not just the current state but we need to work with a triple (\(\mathbf{S}, \mathbf{s}_{\mathbf{i}}, \mathbf{g}\)):
- \(S=\left\langle s_{0}, s_{1}, \ldots\right\rangle\) is an infinite sequence of states
\(-s_{i} \in S \quad\) is the current state
\(-\mathrm{g} \quad\) is a goal formula
Plan \(\pi=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\) gives a finite sequence of states \(S_{\pi}=\left\langle s_{0}, s_{1}, \ldots, s_{n}\right\rangle\) where \(s_{i+1}=\gamma\left(s_{i}, a_{i+1}\right)\), that can be made infinite \(\left\langle s_{0}, s_{1}, \ldots, s_{n-1}, s_{n}, s_{n}, s_{n}, \ldots\right\rangle\)
\(\left(\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{g}\right) \vDash \phi\) is defined as follows:
- \(\left(\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{g}\right) \vdash \phi \quad\) iff \(\mathrm{s}_{\mathrm{i}} \vdash \phi\) for atom \(\phi\)
- \(\left(\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{g}\right)=\phi_{1} \wedge \phi_{2} \quad\) iff \(\left(\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{g}\right)=\phi_{1} \mathrm{a}\left(\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{g}\right) \vDash \phi_{2}\)
- ...
- \(\left(\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{g}\right) \vDash \phi_{1} \cup \phi_{2} \quad\) iff there exists \(\mathrm{j} \geq \mathrm{i}\) st. \(\left(\mathrm{S}, \mathrm{s}_{\mathrm{j}}, \mathrm{g}\right) \vDash \phi_{2}\) and for each \(k\) : \(i \leq k<j\left(S, s_{k}, g\right)=\phi_{1}\)
- \(\left(\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{g}\right) \vDash \square \phi \quad\) iff \(\left(\mathrm{S}, \mathrm{s}_{\mathrm{j}}, \mathrm{g}\right) \vDash \phi\) for each \(\mathrm{j} \geq \mathrm{i}\)
- (\(\left.\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{g}\right) \vDash \diamond \phi \quad\) iff \(\left(\mathrm{S}, \mathrm{s}_{\mathrm{j}}, \mathrm{g}\right) \vDash \phi\) for some \(\mathrm{j} \geq \mathrm{i}\)
- \(\left(S, s_{i}, g\right) \vdash \bigcirc \phi \quad\) iff \(\left(S, s_{i+1}, g\right) \vdash \phi\)
- \(\left(\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{g}\right) \mid \operatorname{GOAL}(\phi)\) iff \(\phi \in \mathrm{g}\)

Goodtower is a tower such that no block needs to be moved. Badtower is a tower that is not good.

\(\operatorname{goodtower}(x) \triangleq \operatorname{clear}(x) \wedge \neg \operatorname{GOAL}(\) holding \((x)) \wedge\) Intial State goodtowerbelow \((x)\)
\(\operatorname{goodtowerbelow}(x) \triangleq(\operatorname{ontable}(x) \wedge \neg \exists[y: \operatorname{GOAL}(o n(x, y))]))\)
\(\vee \exists[y: o n(x, y)] \neg \operatorname{GOAL}(\) ontable \((x)) \wedge \neg \operatorname{GOAL}(\) holding \((y)) \wedge \neg \operatorname{GOAL}(\) clear \((y))\) \(\wedge \forall[z: \operatorname{GOAL}(o n(x, z))] z=y \wedge \forall[z: \operatorname{GOAL}(o n(z, y))] z=x\) \(\wedge\) goodtowerbelow \((y)\)
\(\operatorname{badtower}(x) \triangleq \operatorname{clear}(x) \wedge \neg \operatorname{goodtower}(x)\)

\section*{Control rule:}

goodtowerbelow \((x) \triangleq(\) ontable \((x) \wedge \neg \exists[y: \operatorname{GOAL}(o n(x, y))]))\)
 \(\wedge \forall[z: \operatorname{GOAL}(o n(x, z))] z=y \wedge \forall[z: \operatorname{GOAL}(o n(z, y))] z=x\)
 \(\wedge\) goodtowerbelow(y)
\(\square(\forall[x\) :clear \((x)]\) goodtower \((x) \Rightarrow \bigcirc(\) clear \((x) \vee \exists[y\) :on \((y, x)]\) goodtower \((y))\)
 \(\wedge\) badtower \((x) \Rightarrow \bigcirc(\neg \exists[y\) :on \((y, x)])\)
 \(\wedge(\) ontable \((x) \wedge \exists[y: \operatorname{GOAL}(\) on \((x, y))] \neg \operatorname{goodtower}(y))\)
\(\Rightarrow \bigcirc(\neg \operatorname{holding}(x)))\)

To use control rules in planning we need to express how the formula changes when we go from state \(s_{i}\) to state \(\mathrm{s}_{\mathrm{i}+1}\).
- We look for a formula \(\operatorname{progr}\left(\phi, s_{i}\right)\) that is true in \(s_{i+1}\), if \(\phi\) is true in state \(s_{i}\)
- \(\phi\) does not contain any modal operator
- \(\operatorname{progr}\left(\phi, \mathrm{s}_{\mathrm{i}}\right)=\operatorname{true}\) if \(\mathrm{s}_{\mathrm{i}} \mid \phi\)
\[
=\text { false if } s_{i} F \phi \text { does not hold }
\]
- \(\phi\) with logical connectives
\(-\operatorname{progr}\left(\phi_{1} \wedge \phi_{2}, \mathrm{~s}_{\mathrm{i}}\right)=\operatorname{progr}\left(\phi_{1}, \mathrm{~s}_{\mathrm{i}}\right) \wedge \operatorname{progr}\left(\phi_{2}, \mathrm{~s}_{\mathrm{i}}\right)\)
\(-\operatorname{progr}\left(\neg \phi, \mathrm{s}_{\mathrm{i}}\right)=\neg \operatorname{progr}\left(\phi, \mathrm{s}_{\mathrm{i}}\right)\)
- \(\phi\) with quantifiers (no function symbols, just \(k\) constants \(\mathrm{c}_{\mathrm{j}}\))
\(-\operatorname{progr}\left(\forall x \phi, s_{i}\right)=\operatorname{progr}\left(\phi\left\{x / c_{1}\right\}, s_{i}\right) \wedge \ldots \wedge \operatorname{progr}\left(\phi\left\{x / c_{k}\right\}, s_{i}\right)\)
\(-\operatorname{progr}\left(\exists \times \phi, s_{i}\right)=\operatorname{progr}\left(\phi\left\{x / c_{1}\right\}, s_{i}\right) \vee \ldots \vee \operatorname{progr}\left(\phi\left\{x / c_{k}\right\}, s_{i}\right)\)
- \(\quad \phi\) with modal operators
\(-\operatorname{progr}\left(\phi_{1} \cup \phi_{2}, \mathrm{~s}_{\mathrm{i}}\right)=\left(\left(\phi_{1} \cup \phi_{2}\right) \wedge \operatorname{progr}\left(\phi_{1}, \mathrm{~s}_{\mathrm{i}}\right)\right) \vee \operatorname{progr}\left(\phi_{2}, \mathrm{~s}_{\mathrm{i}}\right)\)
\(-\operatorname{progr}\left(\square \phi, \mathrm{s}_{\mathrm{i}}\right)=(\square \phi) \wedge \operatorname{progr}\left(\phi, \mathrm{s}_{\mathrm{i}}\right)\)
\(-\operatorname{progr}\left(\diamond \phi, \mathrm{s}_{\mathrm{i}}\right)=(\diamond \phi) \vee \operatorname{progr}\left(\phi, \mathrm{s}_{\mathrm{i}}\right)\)
\(-\operatorname{progr}\left(O \phi, s_{\mathrm{i}}\right)=\phi\)

\section*{Technical notes:}
- \(\operatorname{progress}\left(\phi, s_{i}\right)\) is obtained from \(\operatorname{progr}\left(\phi, s_{i}\right)\) by cleaning (true \(\wedge d \rightarrow d\), \(\neg\) true \(\rightarrow\) false, ...)
- Can be extended to a sequence of states \(\left\langle s_{0}, \ldots, s_{n}\right\rangle\) \(\operatorname{progress}\left(\phi,\left\langle s_{0}, \ldots, s_{n}\right\rangle\right)=\phi \quad\) if \(n=0\) \(=\operatorname{progress}\left(\operatorname{progress}\left(\phi,\left\langle s_{0}, \ldots, s_{n-1}\right\rangle\right), s_{n}\right) \quad\) otherwise
\(\left(\mathrm{S}, \mathrm{s}_{\mathrm{i}}, \mathrm{g}\right) \mid \phi\) iff \(\left(\mathrm{S}, \mathrm{s}_{\mathrm{i}+1}, \mathrm{~g}\right) \mid \operatorname{progress}\left(\phi, \mathrm{s}_{\mathrm{i}}\right)\).
- i.e. progress behaves as we need
\(\left(S, s_{0}, g\right) \mid \phi\) then for any prefix \(S^{\prime}=\left\langle s_{0}, \ldots, s_{i}\right\rangle\) of \(S\) it holds progress \(\left(\phi, S^{\prime}\right) \neq\) false.
- If the control rule is satisfied then progress is not false

If plan \(\pi\) is applicable to \(\mathrm{s}_{0}\) and \(\operatorname{progress}\left(\phi, \mathrm{S}_{\pi}\right)=\) false, then there is no extension \(S^{\prime}\) of \(S_{\pi} s t .\left(S^{\prime}, s_{0}, g\right) \vdash \phi\)
- If progress is false then the control rule cannot be satisfied

The planning algorithm will modify the control rule for next states by applying progress and if progress is false then we know that there is no plan (going through a given state) satisfying the control rule.

\section*{Planning with control rules}

\section*{Forward state-space planning guided by control rules.}
- If a partial plan \(S_{\pi}\) violates the control rule \(\operatorname{progress}\left(\phi, S_{\pi}\right)\), then the plan is not expanded.

- What we did not cover:
- State-variable representation
- Problem solving by transformation to SAT/CSP
- Hierarchical task networks
- Planning with time and resources
- Planning with uncertainty and dynamic worlds
- What we have learned:
- Formalization of planning problems
- Mainstream solving approaches

\section*{Automated Planning: Theory and Practice}
- M. Ghallab, D. Nau, P. Traverso
- http://www.laas.fr/planning/
- Morgan Kaufmann

© 2016 Roman Barták
Charles University in Prague, Faculty of Mathematics and Physics bartak@ktiml.mff.cuni.cz```

[^0]: Classical planning (STRIPS planning)

