
Automated	Planning

Roman Barták
Charles University in Prague, Faculty of Mathematics and Physics

bartak@ktiml.mff.cuni.cz

What	is	planning?

A

B

C

D
A

D

Plan
pickup(C)
putontable(C,table)
pickup(B)
puton(B,D)
pickup(C)
puton(C,B)

B

C

Initial state

A D
B
CGoal

Blockworld

Planning	task	at	glance

Input:
– initial (current) state of the world
– description of actions that can change the world
– desired state of the world

Output:
– a sequence of actions (a plan)

Properties:
– actions in the plan are unknown
– time and resources are not assumed

Planning	and	scheduling

Planning
– deciding which actions are necessary to

achieve the goals
– topic of artificial intelligence
– complexity is usually worse than NP-c

(in general, undecidable)

Scheduling
– deciding how to process the actions using

given restricted resources and time
– topic of operations research
– complexity is typically NP-c

planning

scheduling

executing

Deep Space 1

Launch:	October	24,	1998

Target:	Comet	Borrelly

testing	a	payload	of	12	advanced,	high	risk	
technologies
– autonomous	remote	agent

• planning,	execution,	and	monitoring	spacecraft	activities

based	on	general	commands	from	operators

• three	testing	scenarios

– 12	hours	of	low	autonomy	(execution	and	monitoring)

– 6	days	of	high	autonomy	(operating	camera,	simulation	of	faults)

– 2	days	of	high	autonomy	(keep	direction)

» beware	of	backtracking!
» beware	of	deadlock	in	plans!

Tutorial	outline

• Problem	Formalisation
– models	and	representations

• State-space	Planning
– forward	and	backward	search

• Plan-space	Planning
– partial-order	planning

• Control	Knowledge	in	Planning
– heuristics

– control	rules

Conceptual	model

Planning deals with selection and organization
of actions that are changing world states.

System ! modelling states and transitions:
– set of states S (recursively enumerable)
– set of actions A (recursively enumerable)

• actions are controlled by the planner!
• no-op

– set of events E (recursively enumerable)
• events are out of control of the planner!
• neutral event "

– transition function #: S x A x E → 2S

• actions and events are sometimes applied separately
#: Sx(A ∪	E) →	 P(S)

Goals	in	planning

A planning task is to find which actions are applied
to world states to reach some goal from a given
initial state.

What is a goal?
– goal state or a set of of goal states
– satisfaction of some constraint over a sequence

of visited states
• for example, some states must be excluded or some states

must be visited
– optimisation of some objective function over a

sequence of visited states (actions)
• for example, maximal cost or a sum of costs

Example

!	= (S,A,E, #)
– S = {s0, …, s5}
– E = {} resp. {"}
– A = {move1,

move2,
put, take, load,
unload}

– #: see figure

• init: s0
• goal: s5

location 1 location 2

s0

location 1 location 2

s1

take

put

move1

put

take

move1

move1move2

loadunload

move2

move2

s4

location 1 location 2

s5

location 1 location 2

location 1 location 2

s3

location 1 location 2

s2

How	does	it	work?

A	planner	generates	plans
A	controller	takes	care	
about	plan	execution

– for	each	state	it	selects	an	

action	to	execute

– observations	(sensor	

input)	are	translated	to	

world	state

Dynamic	planning	 involves	re-planning	when	the	state	is	
not	as	expected.	

Some	assumptions

• the system is finite
• the system is fully observable

– We know the current state completely.
• the system is deterministic

– ∀s∈S ∀u∈(A ∪	E): |#(s,u)|≤1
• the system is static

– There are no external events.
• the goals are restricted

– The aim is to reach one of the goal states.
• the plans are sequential

– A plan consists of a (linearly ordered) sequence of actions.
• time is implicit

– Actions are instantaneous (no duration is assumed)).
• planning is done offline

– State of the world does not change during planning.

Classical	planning

We will work with a deterministic, static, finite, and
fully observable state-transition system with
restricted goals and implicit time ! = (S,A, #).

Planning problem P = (!,s0,g):
– s0 is the initial state
– g describes the goal states

A solution to the planning problem P is a
sequence of actions �a1,a2,…,ak� with a
corresponding sequence of states �s0,s1,…,sk�
such that si = #(si-1,ai) and sk satisfies g

F Classical planning (STRIPS planning) E

Simplification?

Planning in the restricted model reduces to “path
finding” in the graph defined by states and state
transitions.

Is it really so simple?
5 locations, 3 piles per location, 100 containers,

3 robots
Ä10277 states

This is 10190 times more than the largest
estimate of the number of particles in the
whole universe!

This	tutorial

How to represent states and actions
without enumerating the sets S and A?

– recall 10277 states with respect to the number of
particles in the universe

How to efficiently solve planning
problems?

– How to find a path in a graph with 10277 nodes?

Tutorial	outline

• Problem	Formalisation
– models	and	representations

• State-space	Planning
– Forward	and	backward	search

• Plan-space	Planning
– Partial-order	planning

• Control	Knowledge	in	Planning
– heuristics

– control	rules

Set	representation

Each state	is	described	using	a	set	of	propositions	
that	hold	at	that	state.

example:	{onground,	at2}

Each	action is	a	syntactic	expression	describing:

• which	propositions	must	hold	in	a	state	so	the	

action	is	applicable	to	that	state

example:	take:	{onground}

• which	propositions	are	added	and	deleted	from	

the	state	to	make	a	new	state

example:
take: {onground}-,

{holding}+ take
location 1 location 2

s0

location 1 location 2

s1

Set	representation:	a	planning	domain

Let L= {p1, …, pn} be a finite set of propositional
symbols (language).

A planning domain ! over L is a triple (S,A,#):
– S ⊆ 2L, i.e. state s is a subset of L describing which

propositions hold in that state
• if p ∈ s, then p holds in s
• if p ∉ s, then p does not hold in s

– action a ∈ A is a triple of subsets of L
a = (precond(a),effects-(a),effects+(a))

• effects-(a) ∩ effects+(a) = ∅
• action a is applicable to state s iff precond(a) ⊆ s

– transition function #:
• #(s,a) = (s – effects-(a)) ∪ effects+(a), if a is applicable to s

Set	representation:	a	planning	problem

Planning problem P is a triple (!,s0,g):
– ! = (S,A,#) is a planning domain over L
– s0 is an initial state, s0 ∈ S
– g ⊆ L is a set of goal propositions

• Sg = {s ∈	S | g ⊆ s} is a set of goal states

Plan . is a sequence of actions �a1,a2,…,ak�
– the length of plan . is k = | .	|
– a state obtained by the plan . (a transitive closure of #)

• #(s, .) = s, if k=0 (plan . is empty)
• #(s, .) = #(#(s,a1), �a2,…,ak�), if k>0 and a1 is applicable to s
• #(s, .) = undefined, otherwise

Plan . is a solution plan for P iff g ⊆ #(s0, .).
– redundant plan contains a subsequence of actions that also

solves P
– minimal plan: there is no shorter solution plan for P

Set	representation:	example

L = {onground, onrobot,
holding, at1, at2}

s0 = {onground, at2}
g = {onrobot}

load = (
{holding,at1},
{holding},
{onrobot})

�take,move1,load,move2�
is a plan,
but not a minimal plan

location 1 location 2

location 1 location 2

s1

s3

s4

take

put

location 1 location 2

location 1 location 2

s0

s2

s5

move1

put

take

move1

move1move2

loadunload

move2

move2

location 1 location 2 location 1 location 2

Set	representation:	properties

• Simplicity
– easy	to	read

How	many	states	for	n	containers?

• Computations
– the	transition	function	is	easy	to	model/compute	using	set	

operations

– if	precond(a)	⊆ s,	then

#(s,a)	=	(s	– effects-(a))	∪ effects+(a),

• Expressivity
– some	sets	of	propositions	do	not	describe	real	states

• {holding,	onrobot,	at2}

– for	many	domains,	the	set	representation	 is	still	too	large	

and	not	practical

8.n.n! states

{nothing-on-c3, c3-on-c1,c1-on-pile1, nothing-on-c2, c2-on-pile2,
crane-empty, robot-at-loc2}

Classical	representation

Classical	representation	generalize	the	set	representation	
by	exploiting	first-order	logic.

– State	is	a	set	of	logical	atoms	that	are	true	in	a	given	

state.

– Action	is	an	instance	of	planning	operator	that	
changes	true	value	of	some	atoms.

More	precisely:
• L	(language)	is	a	finite	set	of	predicate	symbols	and	

constants	(there	are	no	function	symbols!).

• Atom	is	a	predicate	symbol	with	arguments.

example:	on(c3,c1)
• We	can	use	variables in	the	operators.
example:	on(x,y)

Classical	representation:	states

State	is	a	set	of	instantiated	atoms	(no	variables).	There	
is	a	finite	number	of	states!

– The	truth	value	of	some	atoms	

is	changing	in	states:

• fluents
• example:	at(r1,loc2)

– The	truth	value	of	some	state	

is	the	same	in	all	states

• rigid	atoms
• example:	
adjacent(loc1,loc2)

We	will	use	a	classical	closed	world	assumption.
An	atom	that	is	not	included	in	the	state	does	not	hold	at	that	

state!

Classical	representation:	planning	operators

operator o	is	a	triple	(name(o),	precond(o),	effects(o))

– name(o):	 	name	of	the	operator	in	the	form	n(x1,…,xk)

• n:	a	symbol	of	the	operator	(a	unique	name	for	each	operator)

• x1,…,xk:	symbols	for	variables	(operator	parameters)

– Must	contain	all	variables	appearing	in	the	operator	definition!

– precond(o):
• literals	that	must	hold	in	the	state	so	the	operator	is	applicable	on	it

– effects(o):
• literals	that	will	become	true	after	operator	application	(only	fluents

can	be	there!)

Classical	representation:	actions

An action is a fully instantiated operator
– substitute constants to variables

action

operator

Classical	representation:	action	usage

Notation:
– S+ = {positive atoms in S}
– S– = {atoms, whose negation is in S}

Action a is applicable to state s if any only
precond+(a) ⊆ s ∧ precond–(a) ∩ s = ∅

The result of application of action a to s is
#(s,a) = (s – effects–(a)) ∪ effects+(a)

Classical	representation:	a	planning	domain

Let L be a language and O be a set of operators.
Planning domain ! over language L with operators

O is a triple (S,A, #):
– states S ⊆ 2{all instantiated atoms from L}

– actions A = {all instantiated operators from O over L}
• action a is applicable to state s if

precond+(a) ⊆ s ∧ precond–(a) ∩ s = ∅
– transition function #:

• #(s,a) = (s – effects-(a)) ∪ effects+(a), if a is applicable on s
• S is closed with respect to # (if s ∈ S, then for every action a

applicable to s it holds #(s,a) ∈ S)

Classical	representation:	a	planning	problem

Planning	problem	P	is	a	triple	(!,s0,g):
– ! =	(S,A, #)	is	a	planning	domain

– s0 is	an	initial	state,	s0	∈ S

– g	is	a	set	of	instantiated	literals

• state	s satisfies	the	goal	condition	g if	and	only	if
g+	⊆ s ∧ g– 	∩ s =	∅

• Sg =	{s ∈ S	|	s satisfies	g}	– a	set	of	goal	states

Usually	the	planning	problem	is	given	by	a	triple	

(O,s0,g).

– O	defines	the	the	operators	and	predicates	used

– s0 provides	the	particular	constants	(objects)

Classical	representation:	an	example	plan

s1= g = {loaded(r1,c3), at(r1,loc2)}

move(r1,loc2,loc1),
take(crane1,loc1,c3,c1,p1),
load(crane1,loc1,c3,r1),
move(r1,loc1,loc2)

take(crane1,loc1,c3,c1,p1),
move(r1,loc2,loc1),
load(crane1,loc1,c3,r1),
move(r1,loc1,loc2)

our goal

Comparison	of	representations

Expressive	power	of	both	representations	is	identical.
However,	the	translation	from	the	classical	

representation	to	a	set	representation	brings	exponential	
increase	of	size.

classical
representation

set
representation

trivial

make all possible
instances

{on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), …}
…

{on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, …}
…

states

take-crane1-loc1-c3-c1-p1
precond: belong-crane1-loc1, attached-p1-loc1,

empty-crane1, top-c3-p1, on-c3-c1
delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1
add: holding-crane1-c3, top-c1-p1

actions

Blockworld:	an	example	problem

The	blocks	world
– infinitely	large	table	with	a	finite	set	of	blocks

– the	exact	location	of	block	on	the	table	is	irrelevant

– a block	can	be	on	the	table	or	on	another	(single)	block

– the	planning	domain	deals	with	moving	blocks	by	a	

computer	hand	that	can	hold	at	most	one	block

situation	example

c

a
bc

a b e

d

Blockworld:	classical	representation

Constants
– blocks: a,b,c,d,e

Predicates:
– ontable(x)

block x is on a table
– on(x,y)

block x is on y
– clear(x)

block x is free to move
– holding(x)

the hand holds block x
– handempty

the hand is empty

Actions
unstack(x,y)

Precond: on(x,y), clear(x), handempty
Effects: ¬on(x,y), ¬	clear(x), clear(y),

¬handempty, holding(x),

stack(x,y)
Precond: holding(x), clear(y)
Effects: ¬holding(x), ¬clear(y),

on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: ¬ontable(x), ¬clear(x),

¬handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: ¬holding(x), ontable(x),

clear(x), handempty

c

a b

c
a b

c

a b

c

a
b

c

a b

Blockworld:	set	representation

Propositions:
36 propositions for 5 blocks

• ontable-a
block a is on table (5x)

• on-c-a
block c is on block a (20x)

• clear-c
block c is free to move (5x)

• holding-d
the hand holds block d (5x)

• handempty
the hand is empty (1x)

Actions
50 actions for 5 blocks

unstack-c-a
Pre: on-c-a, clear-c, handempty
Del: on-c-a, clear-c, handempty
Add: holding-c, clear-a

stack-c-a
Pre: holding-c, clear-a
Del: holding-c, clear-a
Add: on-c-a, clear-c, handempty

pickup-b
Pre: ontable-b, clear-b, handempty
Del: ontable-b, clear-b, handempty
Add: holding-b

putdown-b
Pre: holding-b
Del: holding-b
Add: ontable-b, clear-b, handempty

c

a b

c
a b

c

a b

c

a
b

c

a b

Tutorial	outline

• Problem	Formalisation
– models	and	representations

• State-space	Planning
– forward	and	backward	search

• Plan-space	Planning
– partial-order	planning

• Control	Knowledge	in	Planning
– heuristics

– control	rules

State-space	planning

The	search	space	corresponds	to	the	state	space	of	the	
planning	problem.

– search	nodes	correspond	to	world	states

– arcs	correspond	to	state	transitions	by	means	of	actions

– the	task	is	to	find	a	path	from	the	initial	state	to	some	goal	

state

Basic	approaches
– forward	search

– backward	search

• lifting

• STRIPS

– problem	dependent	 (blocks	world)

Note:	all	algorithms	will	be	presented	for	the	classical	
representation

Forward	planning

Start	in	the	initial	state	and	go	towards	some	goal	
state.

We	need	to	know:

– whether	a	given	state	is	a	goal	state
– how	to	find	a	set	of	applicable	actions for	a	given	
state

– how	to	define	a	state	after	applying	a	given	action

Forward	planning:	algorithm

move r1

take c2
…

take c3

of an operator in O,

Forward	planning: example

{belong(crane1,loc1), adjacent(loc2,loc1),
holding(crane1,c3), unloaded(r1),
at(r1,loc2), ¬occupied(loc1),
occupied(loc2),…}

move(r1,loc2,loc1)

{belong(crane1,loc1),
adjacent(loc2,loc1), holding(crane1,c3), unloaded(r1),
at(r1,loc1), occupied(loc1), …}

load(crane1,loc1,c3,r1)

{belong(crane1,loc1), adjacent(loc2,loc1),
empty(crane1), loaded(r1,c3),
at(r1,loc1), occupied(loc1), …}

Goal = {at(r1,loc1),loaded(r1,c3)}

initial state

loc1
goal

Forward	planning:	properties

Forward planning algorithm is sound.
– If some plan is found then it is a solution plan..
– It is easy to verify by using s = #(s0,1).

Forward planning algorithm is complete.
– If there is any solution plan then at least one search

branch corresponds to this plan.
– induction by the plan length
– at each step, the algorithm can select the correct action

from the solution plan (if correct actions were selected n
the previous steps)

Deterministic	implementations

We	need	to	implement	the	presented	algorithm	

in	a	deterministic	way:

– breadth-first	search
• sound,	complete,	but	memory	consuming

– depth-first	search
• sound,	completeness	can	be	guaranteed	 by	loop	checks	

(no	state	repeats	at	the	same	branch)

– A*
• if	we	have	some	admissible	heuristic

• the	most	widely	used	approach

Branching

What	is	the	major	problem	of	forward	planning?

Large	branching	factor	– the	number	of	options

• This	is	a	problem	for	deterministic	algorithm	that	needs	

to	explore	the	possible	options.

Possible	approaches:
– heuristic recommends	an	action	to	apply

– pruning	of	the	search	space
• For	example,	if	plans	11 and	12 reached	 the	same	state	then	we	know	

that	plans	11 13 and	12 13 will	also	reach	the	same	state.	Hence	the	

longer	of	the	plans	11 and	12 does	not	need	to	expanded.

We	need	to	remember	 the	visited	states	L.

50 possible
blocks to
pick up a3

a1
a2

…a1 a2 a50a3

initial state goal

Backward	planning

Start	with	a	goal	(not	a	goal	state	as	there	might	
be	more	goal	states)	and	through	sub-goals	try	
to	reach	the	initial	state.

We	need	to	know:

– whether	the	state	satisfies	the	current	goal
– how	to	find	relevant	actions	for	any	goal
– how	to	define	the	previous	goal	such	that	the	
action	converts	it	to	a	current	goal

Backward	planning:	relevant	actions

Action	a	is	relevant	for	a	goal	g if	and	only	if:
– action	a	contributes	to	goal	g:	g ∩ effects(a)	≠ ∅
– effects	of	action	a	are	not	conflicting	goal	g:

• g-∩ effects+(a)	= ∅
• g+	∩ effects-(a)	=	∅

A	regression	set	of	the	goal	g for	(relevant)	action	a is
#-1(g,a)	=	(g	- effects(a))	∪ precond(a)

Example:
goal:	{on(a,b),	on(b,c)}
action	stack(a,b) is	relevant
by	backward	application	of	the	action	we	get	a	new	goal:

{holding(a),	clear(b),	on(b,c)}

stack(x,y)
Precond: holding(x), clear(y)
Effects: ~holding(x), ~clear(y),

on(x,y), clear(x), handempty

Backward planning:	algorithm

take c3,c1

take c3,c2
move r1

Backward planning:	an example

Goal = {at(r1,loc1),loaded(r1,c3)}

load(crane1,loc1,c3,r1)

{at(r1,loc1), belong(crane1,loc1),
holding(crane1,c3), unloaded(r1)}

move(r1,loc2,loc1)

{belong(crane1,loc1), holding(crane1,c3),
unloaded(r1),
adjacent(loc2,loc1),
at(r1,loc2),
¬occupied(loc1)}

loc1

Initial state

Backward	planning:	properties

Backward	planning	is	sound	and	complete.
We	can	implement	a	deterministic version	of	the	
algorithm	(via	search).

– For	completeness	we	need	 loop	checks.

• Let	(g1,…,gk)	be	a	sequence	of	goals.	If	∃i<k	gi⊆ gk then	we	can	

stop	search	exploring	this	branch.

Branching
– The	number	of	options	can	be	smaller	than	for	the	forward	

planning	(less	relevant	actions	for	the	goal).

– Still,	it	could	be	too	large.

• If	we	want	a	robot	to	be	at	the	position	loc51	and	there	are	direct	

connections	from	states	loc1,…,loc50,	then	we	have	50	relevant	

actions. However,	at	this	stage,	the	start	location	is	not	important!

• We	can	instantiate	actions	only	partially	(some	variables	remain	

free.	This	is	called	lifting.

Backward	planning:	a	lifted	version

Notes:
• standardization	=	a	copy	with	fresh	variables

• mgu =	most	general	unifier

• by	using	the	variables	we	can	decrease	the	branching	factor	

but	the	trade	off	is	more	complicated	loop	check

STRIPS

How	can	we	further	reduce	the	search	space?

STRIPS	algorithm reduces	the	search	space	of	backward	

planning	in	the	following	way:

– only	part	of	the	goal	is	assumed	in	each	step,	namely	the	
preconditions	 of	the	last	selected	action

• instead	of	4-1(s,a)	we	can	use	precond(a)	as	the	new	goal
• the	rest	of	the	goal	must	be	covered	later

• This	makes	the	algorithm	incomplete!

– If	the	current	state	satisfies	the	preconditions	 of	the	selected	
action	then	this	action	 is	used	and	never	removed	later	upon	
backtracking.

STRIPS	algorithm

The original STRIPS algorithm is a lifted
version of the algorithm below.

g2 = (g - effects(a2)) ∪precond(a2)
π� = �a6, a4 � is a plan for precond(a2)
s = 4(4(s0,a6),a4) is a state satisfying precond(a2)

g

g1 g2
g3

a1 a2
a3

g4 g5

g3

a4

a5

a6

g6

a3

satisfied in s0

Sussman	anomaly

Sussman anomaly is a famous example that
causes troubles to the STRIPS algorithm (the
algorithm can only find redundant plans).
Block world

A plan found by STRIPS may look like this:
• unstack(c,a),putdown(c),pickup(a),stack(a,b)

now we satisfied subgoal on(a,b)
• unstack(a,b),putdown(a),pickup(b),stack(b,c)

now we satisfied subgoal on(b,c),
but we need to re-satisfy on(a,b) again

• pickup(a),stack(a,b)

A plan found by STRIPS may look like this:
• unstack(c,a),putdown(c),pickup(a),stack(a,b)

now we satisfied subgoal on(a,b)
• unstack(a,b),putdown(a),pickup(b),stack(b,c)

now we satisfied subgoal on(b,c),
but we need to re-satisfy on(a,b) again

• pickup(a),stack(a,b) red actions can be deleted

c
a b c

a
b

Initial state goal

How	to	plan	for	blocks	world?

Solving	Sussman anomaly
– interleaving	plans

• plan-space	planning

– using	domain	dependent	information
• When	does	a	solution	plan	exist	for	a	blocks	world?

– all	blocks	from	the	goal	are	present	 in	the	initial	state

– no	block	in	the	goal	stays	on	two	other	blocks	(or	on	itself)

– …

• How	to	find	a	solution	plan?

Actually,	it	is	easy	and	very	fast!

– put	all	blocks	on	the	table	(separately)

– build	the	requested	 towers

We	can	do	it	even	better	with	additional	knowledge!

Blocksworld:	domain	knowledge

When do we need to move block x?
Exactly in one of the following situations:

– s contains ontable(x) and g contains on(x,y)
– s contains on(x,y) and g contains ontable(x)
– s contains on(x,y) and g contains on(x,z) for some y≠z
– s contains on(x,y) and y must be moved

initial state goal

e

d

d

ba
c c

a
b

Fast	planning	for	blocksworld

Position is consistent with block c if there is no reason to move c.

c
a b

Initial state

c

a b

ca b

ca

b

ca
b

c

a
b

c

a
b

c

a
b

Goal

unstack(c,a)

putdown(c)

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)

Tutorial	outline

• Problem	Formalisation
– models	and	representations

• State-space	Planning
– forward	and	backward	search

• Plan-space	Planning
– partial-order	planning

• Control	Knowledge	in	Planning
– heuristics

– control	rules

Plan	space	planning:	core	idea	

The	principle	of	plan	space	planning	is	similar	to	

backward	planning:

– start	from	an	„empty”	plan containing	just	the	
description	of	initial	state	and	goal

– add	other	actions to	satisfy	not	yet	covered	(open)	
goals

– if	necessary	add	other	relations between	actions	in	
the	plan

Planning	is	realised	as	repairing	flaws	in	a	partial	
plan

– go	from	one	partial	plan	to	another	partial	plan	until	

a	complete	plan	is	found

Assume	a	partial	plan	with	the	following	two	actions:

– take(k1,c1,p1,l1)

– load(k1,c1,r1,l1)

Possible	modifications	 of	the	plan:
– adding	a	new	action

• to	apply	action	load,	robot	r1	must	be	at	location	l1

• action	move(r1,l,l1)	moves	robot	r1	to	location	l1	from	some	location	l

– binding	the	variables
• action	move is	used	for	the	right	robot	and	the	right	location

– ordering	some	actions
• the	robot	must	move	to	the	location	before	the	action	load can	be	used

• the	order	with	respect	to	action	take is	not	relevant
– adding	a	causal	relation

• new	action	 is	added	to	move	the	robot	to	a	given	location	that	is	a	

precondition	of	another	action

• the	causal	relation	between	move and	load ensures	that	no	other	action	

between	them	moves	the	robot	to	another	location

Plan	space	planning:	an	example

The	initial	state	and	the	goal	are	encoded	using	two	
special actions	in	the	initial	partial	plan:

– Action	a0 represents	the	initial	state in	such	a	way	that	
atoms	from	the	initial	state	define	effects	of	the	action	and	

there	are	no	preconditions.	This	action	will	be	before	all	

other	actions	in	the	partial	plan.

– Action	a∞ represents	the	goal in	a	similar	way	– atoms	

from	the	goal	define	the	precondition	of	that	action	and	

there	is	no	effect.	This	action	will	be	after	all	other	actions.

Planning	is	realised	by	repairing	flaws	in	the	partial	
plan.

Plan	space	planning:	the	initial	plan

The	search	nodes	correspond	to	partial	plans.
A	partial	plan	6 is	a	tuple	(A,<,B,L),	where

– A	is	a	set	of	partially	instantiated	planning	

operators	{a1,…,ak}

– <		is	a	partial	order	on	A	(ai<aj)

– B	is	set	of	constraints	in	the	form	x=y,	x≠y	or	x∈Di

– L	is	a	set	of	causal	relations	(ai→paj)

• ai,aj are	ordered	actions	ai<aj

• p	is	a	literal	that	is	effect	of	ai and	precondition	of	aj

• B	contains	relations	that	bind	the	corresponding	

variables	in	p

Search	nodes	and	partial	plans

Partial	plan:	an	example

action
precondition

action
effect

causal
relations

partial
ordering

Open	goal is	an	example	of	a	flaw.
This	is	a	precondition	p	of	some	operator	b	 in	the	partial	
plan	such	that	no	action	was	decided	to	satisfy	this	

precondition	(there	is	no	causal	relation	ai→pb).

The	open	goal	p	of	action	b	can	be	resolved	by:
– finding	an	operator	a (either	present	in	the	partial	plan	or	a	
new	one)	that	can	give	p (p is	among	the	effects	of	a	and	a	
can	be	before	b)

– binding	the	variables	from	p
– adding	a	causal	relation	a→pb

Open	goals

Threats

Threat	is	another	example	of	flaw.
This	is	action	that	can	influence	existing	causal	relation.

– Let		ai→paj be	a	causal	relation	and	action	b	has	among	its	

effects	a	literal	unifiable	with	the	negation	of	p	and	action	b	
can	be	between	 actions	ai and	aj.	Then	b	 is	threat	for	that	
causal	relation.

We	can	remove	the	threat	by	one	of	the	ways:
– ordering	b before	ai
– ordering	b after	aj
– binding	variables	in	b	
in	such	a	way	that	p
does not	bind	with

the	negation	of	p

Partial	plan	6 =	(A,<,B,L)	is	a	solution	plan	for	the	problem	

P	=	(Σ,s0,g)	if:
– partial	ordering	<	and	constraints	B	are	globally	consistent

• there	are	no	cycles	in	the	partial	ordering

• we	can	assign	variables	 in	such	a	way	that	constraints	from	B	hold

– Any	linearly	ordered	sequence	of	fully	instantiated	actions	

from	A	satisfying	<	and	B	goes	from	s0 to	a	state	satisfying	g.

Hmm,	but	this	definition	does	not	say	how	to	verify	that	a	
partial	plan	is	a	solution	plan!

Solution	plan

How	to	efficiently	verify	that	a	partial	plan	is	a	
solution	plan?

Claim:
Partial	plan	6 =	(A,<,B,L)	is	a	solution	plan	if:

– there	are	no	flaws	(no	open	goals	and	no	threats)

– partial	ordering	<	and	constraints	B	are	globally	consistent

Proof	by	induction	using	the	plan	length
– {a0,a1,a∞}	is	a	solution	plan

– for	more	actions	take	one	of	the	possible	first	actions	and	

join	it	with	action	a0

Solution	plan	– a	constructive	view

Algorithm	PSP

PSP	=	Plan-Space	 Planning

Notes:
• The	selection	of	flaw	is	deterministic	(all	flaws	must	be	resolved).

• The	resolvent is	selected	non-deterministically	 (search	in	case	of	

failure).

PSP	– some details

Open	goals	can	be	maintained	in	an	agenda of	action	
preconditions	without	causal	relations.	Adding	a	causal	

relation	for	p	removes	p from	the	agenda.

All	threats can	be	found	in	time	O(n3)	by	verifying	

triples	of	actions	or	threats	can	be	maintained	

incrementally:	after	adding	a	new	action,	check	causal	

relations	influenced	(O(n2)),	after	adding	a	causal	

relation	find	its	threats	(O(n)).

Open	goals	and	threats	are	resolved	only	by	consistent	
refinements	of	the	partial	plan.

– consistent	ordering	can	be	detected	by	finding	cycles	or	by	

maintaining	a	transitive	closure	of	<

– consistency	of	constraints	in	B

• If	there	 is	no	negation	then	we	can	use	arc	consistency.

• In	case	of	negation,	the	problem	of	checking	global	consistency	is	

NP-complete.

Properties	of	PSP

Algorithm	PSP	is	complete	and	sound.
– soundness

• If	the	algorithm	finishes,	 it	returns	a	consistent	plan	with	no	flaws	

so	it	is	a	solution	plan.

– completeness
• If	there	 is	a	solution	plan	then	the	algorithm	has	the	option	to	

select	the	right	actions	to	the	partial	plan.

Be	careful	about	the	deterministic	implementation!
– The	search	space	is	not	finite!
– A	complete	deterministic	procedure	must	guarantee	that	it	

eventually	 finds	a	solution	plan	of	any	length	– iterative	
deepening	can	be	applied.

Algorithm	PoP

PoP is	a	popular	instance	of	algorithm	PSP.

– Agenda is	a	set	of	pairs	
(a,p),	where	p is	an	
open	precondition	of	

action	a.
– First	find	an	action	ai to	
cover	some	p from	the	

agenda.

– At	the	second	stage	
resolve	all	threats that	
appeared	by	adding	

action	ai or	from	a	

causal	relation	with	ai.

Plan-space	planning:	a	running	example

Initial	state:
– At(Home),	 Sells(OBI,Drill),	 Sells(Tesco,Milk),	Sells(Tesco,Banana)

– so	action	Start	is	defined	as:
Precond:	none

Effects:	At(Home),	Sells(OBI,Drill),	Sells(Tesco,Milk),	 Sells(Tesco,Banana)

Goal:
– Have(Drill),	Have(Milk),	Have(Banana),	 At(Home)

– so	action	Finish	is	defined	as:
Precond:	Have(Drill),	Have(Milk),	Have(Banana),	At(Home)

Effects:	none

The	following	two	operators	are	available:
– Go(l,m)	;;	go	from	location	l to	m

Precond:	At(l)
Effects:	At(m),	¬At(l)

– Buy(p,s)	;;	buy	p	at	location	s
Precond:	At(s),	Sells(s,p)
Effects:	Have(p)

The initial (empty) plan

Sells(Tesco,Milk), Sells(Tesco,Bananas)At(Home), Sells(OBI,Drill),

Have(Bananas), At(Home)Have(Drill), Have(Milk),

action
preconditions

above the action

action effects
below the

action

Plan-space	planning:	a	running	example

Operators

Go(l,m)
Precond: At(l)
Effects: At(m), ¬At(l)

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

There is only one way to satisfy the
open goals Have, and this is via
actions Buy (no threats added).

At(s1), Sells(s1,Drill) At(s2), Sells(s2,Milk) At(s3), Sells(s3,Bananas)

Buy(Drill, s1) Buy(Milk, s2) Buy(Bananas, s3)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Plan-space	planning:	a	running	example

Operators

Go(l,m)
Precond: At(l)
Effects: At(m), ¬At(l)

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

There is again a single way to satisfy
preconditions Sells and this is
substituting the right constants.

Buy(Drill,OBI) Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Plan-space	planning:	a	running	example

Operators

Go(l,m)
Precond: At(l)
Effects: At(m), ¬At(l)

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

The only way to satisfy open goals is
by adding actions Go.

– There are new threats!

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

At(x)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(l2)

Go(l2, Tesco)
At(l1)

Go(l1,OBI)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Plan-space	planning:	a	running	example

Operators

Go(l,m)
Precond: At(l)
Effects: At(m), ¬At(l)

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

One threat can be solved by ordering
Buy(Drill) before Go(Tesco)

– This solves all the threats!

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

At(x)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(l2)

Go(l2, Tesco)
At(l1)

Go(l1,OBI)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Plan-space	planning:	a	running	example

Operators

Go(l,m)
Precond: At(l)
Effects: At(m), ¬At(l)

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

Open goal At(l1) can be satisfied by
assignment l1=Home taken from the
action Start.

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(l2)

Go(l2, Tesco)
At(Home)

Go(Home,OBI)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Plan-space	planning:	a	running	example

Operators

Go(l,m)
Precond: At(l)
Effects: At(m), ¬At(l)

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

Open goal At(l2) can be satisfied by
assignment l2=OBI from action
Go(Home, OBI)

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(OBI)

Go(OBI, Tesco)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(Home)

Go(Home,OBI)

Plan-space	planning:	a	running	example

Operators

Go(l,m)
Precond: At(l)
Effects: At(m), ¬At(l)

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

Open goal At(Home) from Finish is
satisfied by action Go

– new threats appear

At(l3)

Go(l3, Home)

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(OBI)

Go(OBI, Tesco)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(Home)

Go(Home,OBI)

Plan-space	planning:	a	running	example

Operators

Go(l,m)
Precond: At(l)
Effects: At(m), ¬At(l)

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

Threats for At(Tesco) are removed by
ordering Go(Home) after both actions
Buy

At(l3)

Go(l3, Home)

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(OBI)

Go(OBI, Tesco)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(Home)

Go(Home,OBI)

Plan-space	planning:	a	running	example

Operators

Go(l,m)
Precond: At(l)
Effects: At(m), ¬At(l)

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

Open goal At(l3) is satisfied by
asignment l3=Tesco from action
Go(OBI,Tesco).

Operators

Go(l,m)
Precond: At(l)
Effects: At(m), ¬At(l)

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

At(Tesco)
Go(Tesco,
Home)

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(OBI)

Go(OBI, Tesco)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(Home)

Go(Home,OBI)

Plan-space	planning:	a	running	example

State	space	planning	 is	much	faster	today	thanks	to	heuristics	
based	on	state	evaluation.

However,	plan	space	planning:
– makes	more	flexible	plans thanks	to	partial	order
– supports	further	extensions	such	as	adding	explicit	time	and	resources

State	space	planning Plan	space	planning

search	space finite infinite

search	nodes simple

(world	states)

complex

(partial	plans)

world	states explicit not	used

partial	plan action	selection	and	

ordering	done	together

action	selection	and	

ordering	separated

plan	structure linear causal	relations

Comparison

Tutorial	outline

• Problem	Formalisation
– models	and	representations

• State-space	Planning
– forward	and	backward	search

• Plan-space	Planning
– partial-order	planning

• Control	Knowledge	in	Planning
– heuristics

– control	rules

Heuristics	are	used	to	select	next	search	node	to	be	explored	
(recall,	that	we	described	the	planning	algorithms	using	non-

determinism).

– Note:	If	we	know,	which	node	to	select	 to	get	a	solution,	then	we	use	

oracle.	With	oracle	we	will	find	the	solution	deterministically.

Naturally,	we	prefer	the	heuristic	to	be	as	close as	possible	to
oracle while	being	computed	efficiently.
A	typical	way	to	obtain	(admissible)	heuristics	is	via	solving	a	

relaxed	problem	 (some	problem	constraints	are	relaxed	– not	

assumed).

– solve	the	relaxed	problem	for	the	successor	nodes

– select	the	node	with	the	best	solution	of	the	relaxed	problem

For	optimisation	problems	the	heuristic	h(u)	estimates	the	real	

cost	h*(u)	of	the	best	solution	reachable	via	node	u.

– the	heuristic	is	admissible,	 if	h(u)	≤ h*(u)	 (for	minimization)

– the	search	algorithms	using	admissible	heuristics	are	optimal

Heuristics

State-space	heuristics

Heuristic	estimates	the	number	of	actions	to	reach	a	goal	state	from	a	

given	state	or	to	reach	a	given	predicate	or	a	set	of	predicates.

Based	on	solving	a	“relaxed”	problem:

– assume	only	positive	effects

– assume	that	different	atoms	can	be	reached	 independently

Zero	attempt:
– ∆0(s,p)	=	0 if	p∈s
– ∆0(s,g)	=	0 if	g⊆s
– ∆0(s,p)	=	∞ if	p∉s	and	∀a∈A,	p∉effects+(a)
– ∆0(s,p)	=	mina{1+∆0(s,precond(a))	 |	p∈effects+(a)}
– ∆0(s,g)	=	Σp∈g ∆0(s,p)

This	heuristic	is	not	admissible
(for	optimal	planning)	because	it

does	not	provide	a	lower	bound

for	the	plan	length!

A	first	attempt	to	admissible	heuristic
– …

– ∆1(s,g)=	max{∆0(s,p)	|	p∈g}
– If	the	heuristic	value	is	greater	than	the	best	so-far	solution	then	

we	can	cut-off	the	search	branch.

– Based	on	experiments,	heuristic	∆1 is	less	informed	than	∆0.

A	second	attempt	to	admissible	heuristic
Let	us	try	to	explore	reachability	of	pairs	of	atoms	together.

– …

– ∆2(s,p)=mina{1+ ∆2(s,precond(a))	|	p∈effects+(a)}
– ∆2(s,{p,q})=min{

mina{1+ ∆2(s,precond(a))	|	{p,q}	⊆	effects+(a)},
mina{1+ ∆2(s,{q}∪precond(a))	|	p ∈	effects+(a)},
mina{1+ ∆2(s,{p}∪precond(a))	|	q ∈	effects+(a)}}

– ∆2(s,g)=	maxp,q{∆2(s,{p,q})	|	{p,q} ⊆	g}
We	can	generalise	the	above	idea	to	larger	sets	of	atoms,	but	for	k>2	this	

heuristic	is	computationally	expensive.

State-space	admissible	heuristics

State-space	planning	with	heuristics

Forward	planning
• Prefer	 the	action	leading	to	a	

state	with	smaller	heuristic	

distance	to	a	goal.

• Heuristic	is	computed	in	every	

search	step.

Backward	planning
• First,	compute	the	heuristic	

distance	from	the	initial	state	s0
to	all	atoms:	∆(s0,p)
– can	be	done	incrementally

• Prefer	 the	action	whose	

regression	set	is	heuristically	

closer	to	the	initial	state.

Plan-space planning is based on AND-OR search.
There are two types of choices:

– the choice of flaw (AND node)
– the choice of resolver (OR node)

Flaw-selection heuristic
– This is a form of serialization of

the AND/OR tree, in particular
the AND node is split into several nodes.

– Which serialization is better?

– Better serialization leads to a smaller number of nodes in the graph.
– FAF (fewest alternatives first) heuristic

• first repair the flaws with fewer ways for repair

Plan-space	heuristics

Which	resolver	for	a	flaw	should	be	tried	first?
Let	{11,…,	1m}	be	partial	plans	obtained	by	applying	different	 flaw	resolvers	

and	g1 be	a	set	of	open	goals	in	1.
• Zero	attempt

prefer	a	partial	plan	with	fewer	open	goals

c 90(1)	=	|g 1|
– However,	this	does	not	really	estimate	the	size	of	the	plan.

• Next	attempt
Generate	an	AND-OR	graph	for	1 till	given	depth	k	and	count	the	number	

of	new	actions	and	the	number	of	open	goals	not	in	s0
c 9k(1)
– This	is	too	computationally	expensive.

• One	more	improvement
Construct	a	planning	graph	(once)	for	the	original	goal.	Then	find	an	open	

goal	p	in	1,	that	was	added	last	to	the	graph	and	on	the	path	from	s0 to	p	

count	the	number	of	actions	that	are	not	in	1	
c 9(1)

Resolver-selection	heuristic

Heuristics	guide	the	planner	towards	a	goal	state	by	ordering	

alternative	plans.	They	do	not	solve	the	problem	with	the	large	
number	of	alternatives.
Can	we	detect	and	prune	bad	alternatives?

Example	 (blockworld)
– If	a	block	is	placed	correctly	(consistent	with	the	goal)	then	any	action	

that	moves	that	block	just	enlarges	 the	plan.

– If	a	block	is	on	a	wrong	place	and	there	is	an	action	that	moves	it	to	

the	correct	place	then	any	action	that	moves	the	block	elsewhere	 just	

enlarges	the	plan.

Domain	dependent	 information	can	prune	the	search	space,	but	

the	open	question	 is	how	to	express	such	information	for	a	

general	planning	algorithm.

– control	rules

Pruning

We	need	a	formalism	to	express	relations	between	the	

current	world	state	and	future	states.

Simple	temporal	logic
– extension	of	first-order	logic	by	modal	operators

• :1 ∪ :2 (until) :1 is	true	in	all	states	until	the	first	state	(if	any)

in	which	:2 is	true

• ¨ : (always) : is	true	now	and	in	all	future	states

• ¯ : (eventually) : is	true	now	or	in	any	future	state

• ¡ : (next) : is	true	in	the	next	state

• GOAL(:) : (no	modal	operators) is	true	in	the	goal	state

– : is	a	logical	formula	expressing	relations	between	the	objects	

of	the	world	(it	can	include	modal	operators)

Temporal	logics

The	interpretation of	modal	formula	involves	not	just	the	current	state	but	

we	need	to	work	with	a	triple	(S,	si,	g):
– S	=	�s0,	s1,…	� is	an	infinite	sequence	of	states

– si∈ S is	the	current	state

– g is	a	goal	formula

Plan	1 =	�a1,	a2,…,	an� gives	a	finite	sequence	of	states	S1 =	�s0,	s1,…,	sn �
where	si+1 =	4(si,ai+1),	that	can	be	made	infinite	�s0,	s1,…	,sn-1,	sn,	sn,	sn,… �

(S,	si,	g)	� : is	defined	as	follows:

• (S,	si,	g)	� :	 iff si � : for	atom	:
• (S,	si,	g)	� :1 ∧ :2 iff (S,	si,	g)	� :1 a	(S,	si,	g)	� :2

• …

• (S,	si,	g)	� :1 ∪ :2 iff there	exists	j	≥ i st. (S,	sj,	g)	� :2

and	for	each	k:	i≤k<j	(S,	sk,	g)	� :1

• (S,	si,	g)	�¨ :	 iff (S,	sj,	g)	� : for	each	j ≥	i
• (S,	si,	g)	�¯ :	 iff (S,	sj,	g)	� : for	some	j ≥	i
• (S,	si,	g)	�¡ :	 iff (S,	si+1,	g)	� :
• (S,	si,	g)	� GOAL(:) iff : ∈	g

Semantics	of	modal	operators

Goodtower is	a	tower	such	that
no	block	needs	 to	be	moved.

Badtower is	a	tower	that	is	not	good.

Control	rule:

goodtower

badtower

goodtower remains goodtower

do not put anything on
badtower

do not take a block from a table until you
can put it on a goodtower

Control	rules:	an	example

To	use	control	rules	 in	planning	we	need	to	express	how	the	formula	changes	when	we	

go	from	state	si to	state	si+1.
– We	look	for	a	formula	progr(:,	si)	that	is	true	in	si+1,	if	: is	true	in	state	si

• : does	not	contain	any	modal	operator

– progr(:,	si)	=	true					if	si� :	
=	false					if	si� : does	not	hold

• :with	logical	connectives

– progr(:1 ∧ :2,	si)	=	progr(:1,	si)	∧ progr(:2,	si)	

– progr(¬:,	si)	=	¬progr(:,	si)
• :with	quantifiers	(no	function	symbols,	just	k	constants	cj)

– progr(∀x	:,	si)	=	progr(:{x/c1},	si)	∧…	∧ progr(:{x/ck},	si)
– progr(∃ x	:,	si)	=	progr(:{x/c1},	si)	∨ …	∨ progr(:{x/ck},	si)

• :with	modal	operators

– progr(:1∪:2,	si)	=	((:1 ∪:2)	∧ progr (:1,	si))	∨ progr (:2,	si)

– progr(¨:,	si)	=	(¨ :)	∧ progr(:,	si)	
– progr(¯:,	si)	=	(¯ :)	∨ progr(:,	si)
– progr(¡:,	si)	=	:

Technical	notes:
– progress(:,	si)	is	obtained	from	progr(:,	si)	by	cleaning	(true	∧ d	→ d,	¬true	→ false,	…)

– Can	be	extended	to	a	sequence	of	states	�s0,	…	,sn�
progress(:,	�s0,	…	,sn �)	=	:	 if	n	=	0

=	progress(progress(:,	�s0,	…	,sn-1 �),	sn) otherwise

Progression

(S,si,g)� : iff (S,si+1,g)� progress(:,	si).
– i.e.	progress	behaves	as	we	need

(S,s0,g)� : then	for	any	prefix	S‘	=	�s0,	…	,si� of	S	it	holds	
progress(:,S‘)	≠ false.

– If	the	control	rule	is	satisfied	then	progress	is	not	false

If	plan	1 is	applicable	to	s0 and	progress(:,	S1)	=	false,	then	there	
is	no	extension	S‘	of	S1 st. (S‘,s0,g)� :

– If	progress	 is	false	then	the	control	rule	cannot	be	satisfied

The	planning	algorithm	will	modify	the	control	rule	for	next	

states	by	applying	progress	and	if	progress	is	false	then	we	

know	that	there	is	no	plan	(going	through	a	given	state)	

satisfying	the	control	rule.

Properties	of	progression

Forward	state-space	planning	guided	by	control	rules.

– If	a	partial	plan	S1 violates	the	control	rule	progress(:,	S1),	
then	the	plan	is	not	expanded.

a partial plan violates the control rule :

a complete plan found

actions applicable to state s

control rule progression :

a new state after the action

Planning	with	control	rules

Conclusions

• What	we	did	not	cover:

– State-variable	representation

– Problem	solving	by	transformation	to	SAT/CSP

– Hierarchical	task	networks

– Planning	with	time	and	resources

– Planning	with	uncertainty	and	dynamic	worlds

• What	we	have	learned:

– Formalization	of	planning	problems

– Mainstream	solving	approaches

Textbook

Automated Planning:
Theory and Practice

• M. Ghallab, D. Nau, P. Traverso
• http://www.laas.fr/planning/
• Morgan Kaufmann

© 2016 Roman Barták
Charles University in Prague, Faculty of Mathematics and Physics

bartak@ktiml.mff.cuni.cz

