
Ontology Oriented Exploration of an HTN Planning Domain
through Hypotheses and Diagnostic Execution

Li Jin and Keith S. Decker
University of Delaware

Department of Computer and Information Sciences
Newark, DE 19716, USA
{jin, decker@cis.udel.edu}

Abstract

We present a framework, HTN-Explorer, for case-based ex-
ploration of hierarchical task network planning domain ori-
ented by ontological background knowledge. With an exist-
ing simple, incomplete model as a seeding model extracted
from limited examples of plan solutions, HTN-Explorer ex-
plores more comprehensive planning domain knowledge by
expanding the seeding model through a discovery circle of
hypothesis generation, evaluation and diagnostic execution.
HTN-Explorer proposes hypothetical task methods by adapt-
ing an existing model for those situations not covered by
the original model. As well, hypothetical models are eval-
uated with heuristics that estimate the plausibility and dis-
coveries of hypotheses. The executions of hypothetical plans
based on hypothetical models provide information to diagno-
sis. This framework provides some desirable functionalities:
(1) it automatically explores HTN models by integrating var-
ious strategies; (2) it proposes hypotheses for experimental
testing based upon their evaluated plausibility and discover-
ies; (3) it facilitates encoding of background knowledge into
the exploration processes. We use a variation of the UM
Translog domain to evaluate our approach.

Introduction
Hierarchical task networks(HTNs) are an important, fre-
quently studied approach to solve problems in AI planning
research and have recently achieved several notable suc-
cesses (Nau 2007). Ahierarchical task network(HTN)
planner solves a problem by following task decomposition
descriptions to recursively decompose a complex task into
simpler tasks until the tasks can be accomplished by ac-
tions directly. HTN planning was first presented in the mid-
1970s (Sacerdoti 1975), and its formalisms and properties
were well studied in the mid-1990s (Erol, Nau, and Hendler
1994). Over the past decade, many planning systems based
on HTN decomposition (e.g. SIPE (Wilkins 1985), O-PLAN
(Currie and Tate 1991), and SHOP (Nau et al. 2005)) have
made successful achievements in the practical applications,
such as the Mars Rovers (Estlin et al. 2003) and Bridge
Baron (Smith, Nau, and Throop 1998).

Despite the achievements of HTN planning, there still ex-
ists a significant challenge, i.e. the difficulty of acquiring

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complete domain knowledge required by a planner to solve
a problem. In many application domains, it is difficult or
impossible to acquire accurate and complete HTN models
hard-coded by human experts due to multiple reasons, such
as the lack of necessary experiences or knowledge of the
domains, the complexities in the domains, and time or ef-
fort consumption. Consequently, researchers have recently
shown strong interest in developing algorithms or systems
to (semi)automatically learn planning theories from solution
cases/examples or from planning and execution experiences
(Zimmerman and Kambhampati 2003). However, most of
the previous research that learns a planning domain theory
from examples and experiences are passive, namely, it de-
pends on examples or previous planning experiences but
cannot actively explore new models not represented by or
not reasoned from example cases or experiences.

In this paper, we present HTN-Explorer, a general frame-
work that aims at facilitating exploration of an HTN plan-
ning domain with minimum human intervention. Our work
is motivated by many practical domains in which generally,
background knowledge is available, but domain specific task
decomposition or action descriptions may be only partially
provided by a human or learned by limited example cases.
In such a domain, there might be limited plan examples or
solution experiences available that do not cover all situa-
tions in the real world; thus, only example-driven learning
techniques (e.g. case-based learning) might not work very
well. We present an approach to learn comprehensive mod-
els through hypothesis generation and diagnostic execution.

With an assumption that background knowledge can be
represented in ontology, we develop HTN-Explorer as a self-
directed automated system that utilizes an ontology to ex-
pand an incomplete model by presenting hypotheses with
multiple strategies. The plausibility of a hypothesis is eval-
uated based on the assessment of the strength of its propos-
ing strategy and the underlying computational method. The
novelty of a hypothesis is estimated by new preconditions,
new kinds of tasks, new constrains or new solutions that the
hypothesis may cover or provide. HTN-Explorer is capa-
ble of presenting those hypotheses with high evaluations of
plausibility and novelty to a human or an experimental sys-
tem (e.g. a lab robot) for testing. The feedback information
will be used to update the original domain theory and will
be utilized to generate new hypothetical models.



This paper continues with brief introduction of HTN plan-
ning formalism. Next, we overview the architecture of
HTN-Explorer. After presenting the hypothesis generation
strategies implemented in HTN-Explorer, we will then ex-
plain the hypothesis evaluation heuristic function and thedi-
agnosis procedures. Then, we demonstrate an empirical case
study of exploring a variation of the UM Translog domain
(Andrews et al. 1995). Finally, we discuss related works
and make conclusions.

Preliminaries
In this paper, we follow the principles of the task decom-
position formalism of HTN planning defined in Chapter
11 by Ghallab et al. (Ghallab, Nau, and Traverso 2004).
HTN planning uses task decomposition description methods
to decompose non-primitive (also called compound) tasks
into simpler subtasks. Planning continues the decomposi-
tion process until primitive tasks are reached. A primitive
task can be accomplished by an action. A plan solution is
composed of a sequence of actions that can achieve the high-
level tasks of a problem.

Generally, an HTN planning theory is composed of two
sets of descriptions, one is a set of operators, the other is a
set of methods. An operator describes how a state is changed
if the operator is applied to the state when required precon-
ditions are satisfied. A method describes how a compound
task is decomposed into subtasks.

An operator is represented by a 4-tupleO =
(name(O), P reC,Add,Del), wherename(O) is the name
of the operator,PreC is a set of preconditions, andAdd
andDel are the adding list and deleting list that define how
to modify the current states (consisting of a collection of
ground atoms) whenO is applied tos by adding or deleting
atoms in the lists to or froms. A method is formalized as
a tripleM = {T, PreC, SubTs} specifying thatT , a non-
primitive task, can be achieved by the subtasksSubT when
the elements in the precondition setPreC are satisfied. A
task is of the formT (r1, . . . , rn), whereT is a task symbol,
i.e. the name of the task, andr1, . . . , rk are terms.

An HTN planning problem is a 4-tupleP =
(s0, T s,Os,Ms), wheres0 is the initial state,Ts is the
initial sequence of tasks, andOs andMs are sets of plan-
ning operators and methods respectively. A solution for
P is a plan consisting of a sequence of actions that can
achieveTs from the initial states0. As a ground in-
stance of a planning operator, an action is of the form
a = (name(a), preconditions(a), effects(a)). An action
can accomplish a ground primitive taskt in a states if a
is applicable tos when the preconditions of the action are
satisfied ins, anda is able to produce the effects (including
adding list and deleting list) that can succeed in achieving
the goals requested by the task.

We assume that an ontology describing background
knowledge of a domain is available. We use predicate to
represent the relationships of variables and constants in an
ontology, such as(class ?x C)indicating that a variable?x is
of a class typeC and(isa C C’) indicating thatC is a subclass
of C’. For instance, Figure 1 shows the ontology of the UM
Translog domain that is simplified from its original version

Figure 1: Ontology of the UM Translog domain.

(Andrews et al. 1995) and will be used in this paper to ex-
plain our approach. In Figure 1, the relationship thatSmall
Truck is a subclass ofTruck is represented by(isa Small-
Truck Truck). And the relationship of classSmall Truckand
its instancest1can be defined as(class st1 Small-Truck). We
also suppose that a simple incomplete model can be easily
hard coded by hand or extracted from limited solution exam-
ples. Then the simple model works as a seeding one from
which a more comprehensive model can be automatically
generated by using some strategies with the aid of ontology
knowledge.

Figure 2: Information flow of HTN-Explorer.



Overview of HTN-Explorer
Figure 2 shows the top-level control of the exploration pro-
cess in the HTN-Explorer. The process repeats the cycle of
hypothesis generation, evaluation, experiment and diagnosis
until no hypothesis has a plausible value above a stop crite-
rion.

The HTN-Explorer’s input consists of: (1) An initial set
of cases of planning problems and their HTN solutions that
are used to obtain the initial model to be expanded. The set
may be limited; thus, the initial model may be incomplete.
(2) Domain-specific background knowledge base stored in
an ontology. (3) Domain-specific novelties of discoveries
that are defined by a user. The output of HTN-Explorer is an
enhanced planning theory that is more comprehensive and
more accurate than the original one.

HTN-Explorer consists of the following main compo-
nents:

• A hypothesis generator that proposes plausible hypothet-
ical HTN methods or operators. It encodes multiple gen-
eral HTN planning model exploration strategies to pro-
pose hypotheses based on the background knowledge or-
ganized in an ontology until reaching stopping values of
the strategies.

• A hypothesis evaluator that estimates the plausibility and
novelty of a hypothesis through a heuristic function. It
selects candidates that are worth of the expense of exper-
imental tests. It provides a flexible framework for the us-
age of specific background knowledge and user defined
discoveries.

• An experiment designer that can design observations to be
made for a robot or a system or a human that can execute
experiments to test hypotheses, make observations, and
maintain the records.

• An experimental diagnosis component that interprets the
observed results and explains any divergence of the obser-
vations from the expected results predicted by the tests.
The planning knowledge base is updated by the diag-
noses.

Hypotheses Generation
With a set of HTN plan solution cases as input, HTN-
Explorer first generates a simple model by abstracting an
object with a variable of the deepest class in the ontology
that the object belongs to. For the example shown in Figure
3, a method in the right side is generated from the case in
the left side.

Then HTN-Explorer uses the following strategies to ex-
pand a simple model.

Analogical Expansion
One kind of hypotheses can be generated by modifying a
method through replacing an object variable with a similar
one in the object’s ontology leaf nodes. The similarity be-
tween two classes in one ontology is estimated quantitatively
as the division of the number of their common ancestors by
the sum of the numbers of their individual distinguish an-
cestors as shown in Equation (1). Hypotheses are created

Task: deliver pac1 from loc1 to loc2

Preconditions:

pac1 class: Small Package

loc1 class: Home

loc2 class: Post Office

loc1 in city1

loc2 in city1

city1 class: City

truck1 class: Small Truck

truck1 at loc1

Subtask:

load pac1 truck1

drive truck1 loc1 loc2

unload pac1 truck1

Task: deliver ?p from ?l1 to ?l2

Preconditions:

?p class: Small Package

?l1 class: Normal Location

?l2 class: Normal Location

differ ?l1 ?l2

?l1 in ?c1

?l2 in ?c2

?c1 class: City

?c2 class: City

same ?c1 ?c2

?v class: Small Truck

?v at ?l1

Subtask: load ?p ?v

drive ?v ?l1 ?l2

unload ?p ?v

Figure 3: Generating simple model from plan cases.

by this method when the similarity between the substituting
and original classes is higher than a prefixed value.

Sim(C1, C2) =
|Anc(C1)

⋂
Anc(C2)|

|Anc(C1)
⋃

Anc(C2)|
(1)

whereAnc(C) is a set of all ancestors ofC.
For example, based on the ontology shown in Figure 1,

Sim(Small Truck, Medium Truck)=1.0 andSim(Small Truck,
Small Train)=1/5=0.2; thus,Medium Truckis decided more
similar toSmall TruckthanSmall Train. As shown in Figure
4, a hypothetical method can be generated by adapting the
method in the right side of Figure 3 with modifying the class
of ?v from Small Truckto Medium Truck. After the hypoth-
esis and testing processes, the method in the right side of
Figure 3 will be adapted with all leaf classes in the ontology
shown in Figure 1.

Task: deliver ?p from ?l1 to ?l2

Preconditions: ?p class: Small Package

?l1 class: Normal Location

?l2 class: Normal Location

differ ?l1 ?l2

?l1 in ?c1

?l2 in ?c2

?c1 class: City

?c2 class: City

same ?c1 ?c2

?v class: Medium Truck

?v at ?l1

Subtask: load ?p ?v

drive ?v ?l1 ?l2

unload ?p ?v

Figure 4: Hypothetical method generated by analogical ex-
pansion.



However, hypotheses generated by this strategy may be
incorrect. For example, if a hypothetical method can be
generated by adapting the method in the right side of Fig-
ure 3 with modifying the class of?p from Small Packageto
Medium Package, then a solution generated by this method
will fail when it is executed. Therefore, hypotheses need ex-
perimental tests to prove it is correct or not. The testing and
diagnosis processes will be discussed in later sections.

Negation
The above strategy expands a seeding model by adapting the
model to more class types. There exist other kinds of pre-
conditions that are not related to class types, such as(same
?c1 ?c2)in Figure 3. The strategy of negation makes a pre-
condition unsatisfied by replacing it with a negative one;
then, the old method will fail under the negative precon-
dition. One way to repair the old method is adding a new
subtask that can use an already known method if it exists
to achieve the original precondition from the negative one.
Thus, a new method that combines the old method and the
added method for the new subtask will be generated to solve
a problem under the negative precondition. For example, in
Figure 3, the precondition(?v at ?l1)is denied to(not (?v at
?l1)), so a new task(drive ?v ?l1’ ?l1)with (not (same ?l1
?l1’)) can be added to achieve(?v at ?l1). Then the newly
generated method can be applied to a problem with the pre-
conditions(?v at ?l1’) and(not (same ?l1 ?l1’))instead of
(?v at ?l1).

However, for those unsatisfied preconditions that cannot
be achieved by a new task, the original solution should be
modified by using the already existing methods or proved
hypothetical methods. Then hypotheses can be proposed.
For example, when(same ?c1 ?c2)is negated as(not (same
?c1 ?c2))for which multiple possible methods can be pro-
posed: one is that a truck is still used to drive the package
from ?l1 to ?l2 if there is route connecting?l1 and?l2; an-
other is that the task is re-decomposed into three tasks: first,
deliver ?p to a train station, then a variable of train type is
used to deliver?p to another train station in?c2, then deliver
?p to ?l2.

Diversification
Diversification strategy selects a new precondition semanti-
cally different from the original preconditions but not con-
flicting with any of the original predictions; then combines
this new precondition to the originals. Semantical differ-
ence is defined as that in an ontology, the concept related to
a new precondition and the concepts related to original pre-
conditions do not have any common ancestors. This strategy
intends to generate methods for those rare situations that sel-
dom happen in example problems and solutions.

For the example in Figure 1, a new subclass can be added
to Thingsuch asWeatherwhereWeatheris considered as se-
mantically different fromPackageandLocation. Two pre-
conditions can be related toWeather, such as(Weather is
good)and(Weather is snowing). Different methods may be
preferred under the two weather preconditions, e.g. using a
method employing a train may be preferred under the pre-
condition of snow weather.

Generalization
This strategy generalizes a variable from its class to its par-
ent class in an ontology. This strategy should be applied
before all the class’s siblings in an ontology have been ex-
amined. This strategy only chooses one hypothesis that can
cover most of the individual methods that can be applied
to the children classes. Exclusive preconditions are added
to remove any conflictions from the children classes. This
strategy makes the new method more general and provides
a possible solution for those problems that are not solved by
the original theory.

For example, when the hypothetical methods related to
Medium Packageand Large Packagehave been generated
by adapting the method in Figure 3 and have been tested, the
method shown in Figure 5 can be generalized fromSmall
Package, Medium PackageandLarge Packageto Package.
BecauseLarge Truckcan work for all kinds of packages
(Small, MediumandLarge), this method is chosen as a gen-
eral method. If(?v class: Large Truck)is changed to(?v
class: Medium Truck), then a precondition,(not (?p class:
Large Package)), should be added to exclude the incorrect
solution thatMedium Truckis used to deliverLarge Pack-
age.

Task: deliver ?p from ?l1 to l2

Preconditions:

?p class: Package

?l1 class: Normal Location

?l2 class: Normal Location

differ ?l1 ?l2

?l1 in ?c1

?l2 in ?c2

?c1 class: City

?c2 class: City

same ?c1 ?c2

?v class: Large Truck

?v at ?l1

Subtask: load ?p ?v

drive ?v ?l1 ?l2

unload ?p ?v

Figure 5: Hypothesis generated by generalization.

Ranking Hypotheses by Heuristics
When multiple hypotheses are generated, they should be
evaluated to confirm that they are worthy experimental test
operated by a robot or a human. In our approach, the hy-
potheses are ranked with the following considerations:
• assessing corresponding strength of a strategy that is used

to propose a hypothesis;

• evaluating the plausibility of a hypothesis; namely, a hy-
pothetical method has a higher likelihood to be chosen to
solve a problem or to succeed when it is applied to a prac-
tical problem;

• estimating the novel discoveries that might be produced
by a hypothesis.



Based on these considerations, we define the following
heuristic function to evaluate a hypothesis:

Evaluate(h) = ws ∗ Ph ∗
∑

(Ih) (2)

where,h is a hypothesis,ws is the weight of the strategy
used to proposeh, Ph is the plausibility estimated forh
based on the underlying computation methods used in the
exploration strategies, andIh represents the estimation of
novelties ofh’s items interesting to a user or to a complete
domain theory. The purpose of this function is to balance
two factors related to a hypothesis, i.e. the appropriateness
of a hypothesis and the interests of domain knowledge dis-
covery or user preference. The appropriateness is encoded
in the plausibility of execution success when the hypothesis
is applied to a problem or the confidence that the hypothe-
sis is selected from multiple choices to accomplish a task.
The discovery of a hypothesis is represented by the summed
discovery scores estimated for the items involved in a hy-
pothesis.

For a general HTN domain, the plausibility of a hypoth-
esis can be estimated differently for different exploration
strategy together with the background knowledge and the
already known planning theory. Our approach makes the es-
timation by follows:

• For analogical expansion, the computational method as
shown in Equation (1) that estimates the similarity of two
classes in an ontology can be used to estimate the plausi-
bility of a hypothesis.

• For the strategy of generalization, the plausibility is esti-
mated by the percentage of coverage of the new hypothe-
sis over the methods of the children classes.

• For negation, the confidence of a hypothesis can be evalu-
ated by the success possibilities of the primitive tasks that
may estimated from the previous cases.

• Because analogical expansion provides various hypothe-
ses of lower classes that are bases for the strategy of
generalization, the strategy of analogical expansion is as-
signed higher priority.

• For diversification, the plausibility of a hypothesis may be
based on background knowledge if related knowledge ex-
ists; otherwise, diversification will be assigned the lowest
priority.

The general items of discoveries for an HTN planning do-
main can be categorized into groups with weights indicat-
ing preference to complete a domain theory or to satisfy a
user’s interest. As shown in Figure 6, this kind of estimated
weights of discoveries can be defined or modified based on
specific domains with the interestingness of specific items
domain-dependently defined and estimated.

Plan Execution, Observation and Diagnosis
A hypothetical method generated may be incorrect or in-
complete so that a plan solution based on hypothetical mod-
els (called a hypothetical plan) may fail when it is ex-
ecuted. Actually, a hypothetical plan provides informa-

Figure 6: Abstraction of discoveries and their weights.

tion about what is expected to happen during an execu-
tion. When a prediction is different from what is observed
in an execution, it means that an expectation failure hap-
pens. Such failures provide critical information for learn-
ing and refining a planning theory (Birnbaum et al. 1990;
Ram, Narayanan, and Cox 1995), especially for testing and
improving a hypothetical model in our approach.

We propose to apply model-based diagnosis technology
(Reiter 1987) to diagnose a hypothetical plan execution by
observing, comparing and analyzing the differences between
predictions and observations of the plan. The incorrectness
of hypothetical models can be identified and refined by the
diagnosis information.

To test a generated hypothetical HTN task method, the
following steps are necessary:

• Design a plan case to test the hypothetical method. A
testing plan can be created by instantiating a task method
with the instances of that variables. For the example of
the method in Figure 4, a hypothetical plan case similar
to the case in the left side of Figure 3 can be generated
by replacing the variables with instances of the variable
classes. For a hypothetical method containing variables
of the upper class in an ontology, the variables should be
instantiated with each instance of leaf classes; therefore,
multiple hypothetical plan cases may be generated to test
the model.

• Design observations to monitor during a plan execution.
Figure 7 shows how to decide what to be observed for a
hypothetical plan case. Here, we assume that a monitor
robot or a human is able to decide when an action begins
being executed and is able to know when this action is
finished. We define that a precondition or an effect that
can be monitored is observable.



• Diagnose a plan execution. Based on the difference be-
tween observations and predictions, decide if an execu-
tion succeeds or fails and give out the reasons of a failure.
The diagnosis of one case may be saved in the background
knowledge base to guide the future hypothesis generation.

function Observable(hp)
input : an HTN planhp = {T, S0, A, D}, T: task,S0:

initial state, A: action, D: domain knowledge
output : a set of atoms to be observed
S ←− ∅;
foreachactiona ∈ A do

foreachpreconditionc of a do
if c is observable and(c, before(a)) not∈ S then

insert(c, before(a)) into S;
endfor
foreacheffecte of a do

if e is observable and(e, after(a)) not∈ S then
insert(e, after(a)) into S;

endfor
endfor
returnS;

Figure 7: Designing an observable set of a plan.

Empirical Evaluations
To evaluate our approach, we adopt the variant of the UM
Translog domain presented by Xu and Muñoz-Avila (2005)
to do experiments for exploring HTN domain by generat-
ing hypotheses using the strategies described in the previous
section. The domain contains trucks, trains and airplanes to
transport packages of various sizes between different sites in
different distance ranges (intercity and intracity) as shown in
Figure 1. One region contains one or more cities with each
city having one or more city-locations that may be transport
centers or normal locations that are not transport centers.
The transport centers include airports or train stations, while
the normal locations serve as the origin or destination of a
package. Different kinds of transportation tools are used for
deliveries over different distance with different cost. For ex-
ample, a truck is used for intercity delivery, a train or an air-
plane is used for intracity transportation. It assumes thatany
two intercity locations are connected by a truck route, two
train stations are connected by a train route, and an airplane
route connects two airports.

The initial states are generated with 5 cities each hav-
ing one airport and one train station, 25 trucks, 20 trains,
20 airplanes and 20 packages. Each of the vehicles is ini-
tially located in a random city and randomly categorized into
big, medium, and small types. The packages of different
types are randomly located at various locations. We ran-
domly generate a set of 150 solvable problems from which
50 problems are randomly selected to consist a seeding set
and the left 100 problems become a testing set. For our
purpose, JSHOP2 system (Ilghami 2005) is used to simu-
late solving a problem in the seeding set that requires a do-
main description, including operators and methods to gener-

ate plans. The problems and their corresponding plan solu-
tions (including plans and task decomposition structures)are
stored as cases in the seeding set from which HTN-Explorer
abstracts a seeding model by replacing an instance object
with a variable of its type. The HTN-Explorer will use the
seeding model and the ontology to explore a more compre-
hensive model that will be tested by using JSHOP2 to solve
the problems in the testing set.

We conduct evaluation by choosing various numbers of
examples from the seeding set. The completeness of a seed-
ing model depends on how much of the domain theory is
covered by the selected solution cases. In detail, the experi-
ments are conducted as the following:

1. for N=1 to 50 do steps 2 to 5:

2. Randomly choose N problems with their solutions from
the seeding set. Extract an HTN model from each solution
and combine the models together to be an initial seeding
model.

3. Solve the problems in the testing set using the seeding
model.

4. Apply the strategies described in the previous section
to the seeding model to generate a more comprehensive
model.

5. Use the comprehensive model to solve the problems in the
testing set.

Figure 8 shows the results of an experiment in which one cir-
cle of hypothesis generation is applied to expand the seeding
models that are respectively extracted from the various num-
ber of examples in the seeding set. From Figure 8, we can
see that the HTN-Explorer can expand an incomplete do-
main theory efficiently. Figure 9 shows the average number
of those strategies that the HTN-Explorer uses to do the ex-
periments as shown in Figure 8. Because the experimental
domain is not so complex that the strategy ”diversification”
is not applied.

Figure 8: Experimental results of seeding models and ex-
panded models after one circle of hypothesis generation.

Related Work
Automated HTN planning requires that a domain theory (de-
scriptions of actions and methods) be present to a plan-



Figure 9: Strategies used to explore seeding models in Fig-
ure 8.

ner. Besides building up tools to facilitate effective plan-
ning domain acquisition and validation (e.g. GIPO (Mc-
Cluskey, Liu, and Simpson 2003) and itSIMPLE (Vaquero
et al. 2009)), researchers have been interested in pursuing
(semi)autonomous programs to generate a domain theory for
those complicated empirical domains.

CHEF and PRODIGY/ANALOGY (Veloso and Car-
bonell 1993) are two representative systems that extend
planning domain knowledge with the analogical knowledge
and case-based reasoning. While CHEF employs domain-
dependent reasoning knowledge, PRODIGY/ANALOGY
develops completely domain-independent analogical rea-
soning mechanisms and uses cases as search control knowl-
edge. PRODIGY/OBSERVER (Wang 1996) automatically
acquires and refines the preconditions and effects of opera-
tors by observing expert solution traces. PRODIGY/EXPO
(Carbonell and Gil 1990) refines incomplete operator mod-
els by proposing experiments to test the explanations for
those observed divergences. However, none of these sys-
tems does task model learning.

Instead of requiring a large numbers of training cases
as those case-based reasoning systems, some authors have
proposed an explanation-based learning approach that can
learn from a single training example with the aid of the do-
main knowledge (DeJong and Mooney 1986). For example,
GRASPHER (Bennett and Dejong 1996) implements a per-
missive planning approach to acquire and refine generalized
plan schema through explanation-based learning.

To learn or improve the hierarchical structures relating
tasks and subtasks (task models), one approach learns pre-
conditions of HTN methods from HTN plan solution ex-
amples, e.g. CaMeL(++) (Ilghami et al. 2005) and DIn-
CaD (Xu and Mũnoz-Avila 2005). The other approach elic-
its the hierarchical structures of tasks from a collection of
STRIPS action plans and hard-coded hierarchical annota-
tion, e.g. HTN-MAKER (Hogg, Mũnoz-Avila, and Kuter
2008). The generalization strategy proposed in this paper is
similar to the approach described in DInCaD; however, the
other exploration strategies presented in our work make our
approach go further in expanding planning domain knowl-

edge. The main difference between our approach and these
previous case-based systems is that the previous works can
only update their knowledge bases of HTN methods when
they are provided with new problem solution cases; thus,
they cannot produce methods that are not captured in the
plan examples.

Another approach to exploiting hierarchies in planning
is abstraction, such as ABSTRIPS (Sacerdoti 1974) and
ALPINE (Knoblock 1990). These systems use both a collec-
tion of operators and an abstraction model that benefits the
search process. Newton et al. (2008) learn control knowl-
edge not captured by examples with genetic approach.

In summary, different from the previous approaches,
HTN-Explorer integrates various strategies with an aim at
self-directed exploring a bigger search space that exam-
ple data does not provide. HTN-Explorer provides a flex-
ible framework to integrate general domain-independent
HTN exploration strategies and domain specific background
knowledge represented in an ontology. The strategies HTN-
Explorer implements to expand a domain space are not to-
tally example-dependent. In addition, HTN-Explorer im-
plements a heuristic function for evaluation of hypothe-
ses. Generally, HTN-Explorer is like a knowledge discov-
ery system, such as AM (Lenat 1982) and HAMB (Liv-
ingston, Rosenberg, and Buchana 2003). While AM focuses
on mathematics domain and HAMB concentrates on chem-
istry discovery, our work focuses on exploring an incomplete
HTN model.

Conclusion and Future Work

In this paper, we propose a framework that present hypothe-
ses to explore an incomplete HTN planning domain. We
present multiple exploration strategies and a heuristic func-
tion to estimate the value that a hypothesis deserves exper-
iments to provide new theory for a domain. Finally, we
demonstrate an empirical evaluation to test the effectiveness
of our approach with the UM Translog domain.

For future work, more useful exploration strategies will
be added to HTN-Explorer. In this paper, we have not con-
sidered the utilities of a plan execution, such as cost and
duration. In real world, these properties are also important
for hypothetical model generation. We will add utility con-
sideration into a hypothesis evaluation. In addition, in this
paper, we have only taken the advantage of the hierarchical
structure of an ontology. The future work will study how
to use the detailed properties of concepts in an ontology to
propose and evaluate hypothetical models.

In our opinion, a planning domain model (HTN or non-
HTN) can be improved by our approach. For example, an
operator model can be expanded by the hypothesis strate-
gies we presented. In addition, our approach can be ap-
plied to discover users’ preference or to discover interesting
knowledge for some real world domains whose background
knowledge can be represented in HTN formalism. In the fu-
ture, we will apply our approach to more planning domains
to test its effectiveness.



References
Andrews, S.; Kettler, B.; Erol, K.; and Hendler, J. 1995.
Um translog: A planning domain for the development
and benchmarking of planning systems.Technical Report,
Dept. of CS, Univ. of Maryland at College Park.
Bennett, S. W., and Dejong, G. F. 1996. Real-world
robotics: Learning to plan for robust execution.Machine
Learning23(2-3):121–161.
Birnbaum, L.; Collins, G.; Freed, M.; and Krulwich, B.
1990. Model-based diagnosis of planning failures. InPro-
ceedings of AAAI’90, 318–323.
Carbonell, Y. G., and Gil, Y. 1990. Learning by experimen-
tation: The operator refinement method.Machine Learning
3:191–213.
Currie, K., and Tate, A. 1991. O-plan: the open planning
architecture.Artificial Intelligence52:49–86.
DeJong, G. E., and Mooney, R. J. 1986. Explanation-based
learning: An alternative view.Machine Learning1(2):145–
176.
Erol, K.; Nau, D.; and Hendler, J. 1994. Htn planning:
Complexity and expressivity. InProceedings of AAAI’94,
1123–1128.
Estlin, T.; Castano, R.; Anderson, B.; Gaines, D.; Fisher,
F.; and Judd, M. 2003. Learning and planning for mars
rover science. InProceedings of IJCAI’03.
Ghallab, M.; Nau, D.; and Traverso, P. 2004.Automated
Planning: Theory and Practice. Morgan Kauffmann.
Hogg, C.; Mũnoz-Avila, H.; and Kuter, U. 2008. Htn-
maker: Learning htns with minimal additional knowledge
engineering required. InProceedings of AAAI’08.
Ilghami, O.; Mũnoz-Avila, H.; Nau, D. S.; and Aha, D. W.
2005. Learning approximate preconditions for methods in
hierarchical plans. InProceedings of ICML’05, 337–344.
Ilghami, O. 2005. Documentation for jshop2. Technical
Report CS-TR-4694, University of Maryland, Department
of Computer Science.
Knoblock, C. 1990. Learning abstraction hierarchies for
problem solving. InProceedings of AAAI’08, 923–928.
Lenat, D. 1982. Am: Discovery in mathematics as heuristic
search.Knowledge-Based Systems in Artificial Intelligence
3–225.
Livingston, G.; Rosenberg, J.; and Buchana, B. 2003. An
agenda- and justification-based framework for discovery
systems.Knowledge and Information Systems5:133–161.
McCluskey, T. L.; Liu, D.; and Simpson, R. 2003. Gipo
ii: Htn planning in a tool-supported knowledge engineering
environment. InProceedings of ICAPS’03.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Mũnoz-
Avila, H.; Murdock, J.; Wu, D.; and Yaman, F. 2005.
Applications of shop and shop2.IEEE Intelligent Systems
20(2):34–41.
Nau, D. S. 2007. Current trends in automated planning.AI
Magazine28(4):43–58.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2008.
Learning macros that are not captured by given example

plans. InSupplementary Online Proceedings for Poster Pa-
pers at ICAPS’08.
Ram, A.; Narayanan, S.; and Cox, M. T. 1995.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence32(1):57–96.
Sacerdoti, E. 1974. Planning in a hierarchy of abstraction
spaces.Artificial Intelligence5(2):115–135.
Sacerdoti, E. 1975. The nonlinear nature of plans. In
Proceedings of IJCAI’75, 206–214.
Smith, S. J. J.; Nau, D. S.; and Throop, T. 1998. Computer
bridge: A big win for ai planning.AI Magazine19(2):93–
105.
Vaquero, T. S.; Silva, J.; Ferreira, M.; Tonidandel, F.; and
Beck, J. 2009. itsimple3:0: From uml requirements and
petri net-based analysis to pddl representation in the pro-
cess of modeling plans for real applications. InProceeding
of ICAPS 2009 Workshop on Knowledge Engineering for
Planning and Scheduling.
Veloso, M. M., and Carbonell, J. G. 1993. Derivational
analogy in prodigy: Automating case acquisition, storage,
and utilization.Machine Learning10:249–278.
Wang, X. 1996. A mulitstrategy learning system for plan-
ning operator acquisition. InProceedings of the Third In-
ternational Workshop on Multistrategy Learning.
Wilkins, D. 1985. Recovering from execution errors in
sipe.Computational Intelligence1:33–45.
Xu, K., and Mũnoz-Avila, H. 2005. A domain-independent
system for case-based task decomposition without domain
theories. InProceedings of AAAI’05, 234–240.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: Looking back, taking stock,
going forward.AI Magazine24(2):73–96.


