
Integrating plans into BPM technologies for Human-Centric Process Execution

Juan Fdez-Olivares and Inmaculada Sánchez-Garzón and Arturo González-Ferrer and Luis Castillo
Department of Computer Science and Artificial Intelligence

University of Granada

Abstract

This work presents a translation process from a standard rep-
resentation of plans into a standard executable format for
Business Process Management (BPM). This translation is
conceived as a Knowledge Engineering for Planning pro-
cess that bridges the existing gap between AI Planning and
Busines Process Management and provides support for the
direct execution of plans playing the role of Human-Centric
processes.

Motivation
Human-Centric processes (Dayal, Hsu, and Ladin 2001) are
collections of tasks, mainly organized in sequential and/or
parallel control flows, which necessarily require human in-
teraction in order to control and manage their execution.
They are very common in any organization and they can be
seen as complementary to System-Centric processes, which
are devoted to exhaustively automate the data flow and pro-
cesses of an organization, reducing human intervention to
the minimum. This work is focused on a special kind
of Human-Centric processes, concretely those oriented to
knowledge workers(Myers et al. 2007): highly qualified per-
sonnel, like experts or decision makers, who need and pro-
duce knowledge in their daily work. These processes com-
monly support decisions and help to the accomplishment of
workflow tasks in several application domains. Examples of
such processes are a forest fire attack plan devoted to fire
fighting technical staff, a medical treatment plan for a clini-
cian, an e-learning course for a teacher, a military forces de-
ployment plan for a commander, etc. For the sake of simplic-
ity, we will designate these processes as Smart Processes.

The management and execution of Smart Processes de-
mand special technological requirements, due to its main
features(WorkflowManagementCoalition 2010): first, these
processes respond to very complex, interacting sets of pro-
cedures and doctrine which reside either in an unstructured
form in experts’ mind or in partially structured documents,
what makes difficult to generate and execute tasks in confor-
mance with those constraints; second, they are unpredictable
in the sense that both their composing tasks and order rela-
tions cannot be easily devised prior to their execution, since

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

they strongly depend on the context of the organization and
do not respond to a fixed pattern.

Hence they need to be somehow modeled and dynami-
cally generated, their generation must be adaptable to the
context of the organization and, finally, smart processes have
to be flexibly and interactively executed by humans. In
summary, they require some kind of intelligent management
since they are very difficult to foresee and need to be adap-
tively generated depending on the context (current state) of
an organization.

AI P&S has showed to be very suitable in many appli-
cations ((Fdez-Olivares et al. 2006; Castillo et al. 2007;
Bresina et al. 2005; Fdez-Olivares et al. 2010)) as a tech-
nology that fulfills the above requirements. The role of
AI P&S in this area, fundamentally HTN-based paradigms
(Sacerdoti 1975; Castillo et al. 2006), is well known: start-
ing from a planning domain where expert knowledge (in
the form of actuation protocols or operating procedures) is
modeled as a hierarchy of tasks networks, a plan (repre-
senting a course of actions to be accomplished at a given
time) is adaptively generated as the result of a planning
process. Then, the plan is executed by humans who, de-
pending on the application may be ground operators, mili-
tary personnel, experts in forest fire fighting, clinicians, etc.,
and this execution is supported by ad-hoc task visualization
and execution models and tools (Fdez-Olivares et al. 2006;
2010).

On the other hand, a leading industrial area that has
showed to be successful in the management and execution of
Human-Centric processes is BPM (Business Process Man-
agement)(wfm ), devoted to the modeling, deployment, exe-
cution and monitoring of business processes. From the con-
crete point of view of process execution, BPM technology
provides: (1) runtime engines that support the execution of
tasks based on robust task execution models, and (2) visual
consoles (at present based on web portals) that support user
interaction for the control of human-centric tasks. However,
at the time being, BPM technology is mainly focused on
static, repetitive, even perfectly predictable tasks/processes,
mostly devoted to low qualification operators(Workflow-
ManagementCoalition 2010).

This is a widely known weakness in the BPM commu-
nity (either industrial or academic) and, because of this,
it is also recognized that new techniques must be devel-



Oncology
Protocol

HTN
Domain

Problem

Planner
Plan  
(XML) Translation

to XPDL

Process
(XPDL)

BPM Console

Process and
User actions Tasks

states

Clinical
Data BPM engine

Figure 1: Integrating oncology treatment plans into both, a BPM console and a BPM engine

oped at the process modeling/generation step in order to
fully cover the needs of knowledge workers on Smart Pro-
cesses. With respect to AI P&S weak points, it is necessary
to recognize that since most of the planning applications
in Human-Centric processes are based on ad-hoc develop-
ments for task interactive execution (Bresina et al. 2005;
Fdez-Olivares et al. 2006; Tate, Drabble, and Kirby 1994;
Wilkins 1990), these developments are still far from being
so stable, mature and usable like in BPM.

In summary, while AI P&S (concretely HTN paradigm)
has proven to be successful on supporting the knowledge
workers’ effort (by modeling their expertise and helping
them to adaptively produce plans to support their decisions),
it can be seen that BPM is much more appropriate to sup-
port the result of this effort (by providing technological in-
frastructures in order to interactively execute and monitor
processes). As a conclusion, it becomes relevant to analyze
in what extent AI P&S technology might cover the lack of
capability of BPM regarding the modeling and adaptive gen-
eration of plans. In addition, AI P&S may take advantage of
an already tested, developed technology in order to enhance
the user experience of a planning application at the execu-
tion and monitoring stage.

Consequently, this work faces the problem of integrat-
ing the capability of adaptive, dynamic generation of plans
that we can find in AIP&S with the high-performance of
BPM with respect to interactive execution of Human-centric
processes. Concretely, we have interpreted the solution to
this problem as the development of Knowledge Engineering
techniques, focused on plan representation and postprocess-
ing, in order to make the output of an AI planner under-
standable by a BPM runtime engine. The convergence of
both technologies leads into an integrated environment for
Smart Process Management, providing support for modeling
(based on the representation of Hierarchical Task Networks),
adaptive generation (based on Planning and Scheduling pro-
cess) and execution (based on BPM runtime engines and
consoles) of Smart Processes.

The adoption of this approach has many advantages for
AIP&S in practical applications: the integration of a plan
previously generated by a planning engine into an already

developed, BPM standard environment for interactive exe-
cution of processes might support a rapid prototyping de-
velopment life-cycle, saving development time at the first
stages in the development of a AI P&S application. This
also would allow to carry out a reliable acquisition of user
requirements based on a rapid-prototyping methodology. In
addition, user experience may be improved, helping to re-
duce/eliminate a constant bottle-neck in the adoption of
AIP&S as a widely spread technology. From the BPM point
of view, integrating a planner into its functional life-cycle,
will leverage any BPM system allowing to fulfill all the re-
quirements imposed by needs of knowledge workers.

In the following sections, in order to bring this arguments
into reality, we will introduce a Knowledge Engineering ap-
proach based on the postprocessing and translation of plans
into a BPM standard representations of processes. The result
of this translation will be considered as the input of a BPM
runtime engine that, highly coupled with a web console, will
support the interactive execution of smart processes. In or-
der to demonstrate the suitability of this approach, we have
performed some experiments in the medical domain. Con-
cretely we have achieved to execute, by using a commer-
cial BPM runtime engine, pediatrics oncology therapy plans
previously generated by a hierarchical planner. The therapy
plans obtained by our planner are a clear example of what
human-centric smart processes are, since they are primarily
useful to support clinical decision making and need to be
interactively executed by oncologists. Technical aspects of
the plan representation and the translation process are de-
tailed in last sections. Previously, the case study on therapy
planning and some necessary background concepts on BPM
are introduced.

Therapy planning case study
The work presented in this paper is being carried out in the
framework of a research project aimed at developing a Clin-
ical Decision Support System (called OncoTheraper), based
on planning and scheduling techniques, in the pediatrics on-
cology area. OncoTheraper is intended to support oncolo-
gists’s effort (they are the knowledge workers in this case
study) when they deal with the problem of planning an on-



cology treatment for a given patient. These experts make
their decisions following oncology treatment protocols, a set
of evidence-based operating procedure and policies that are
gathered in partially structured documents. The system is
based on a temporally extended HTN paradigm (see (Fdez-
Olivares et al. 2010) for more details) that, on the one
hand, supports to model treatment protocols on the basis of
an HTN temporal planning language. On the other hand,
it allows to dynamically generate user-acceptable treatment
plans, adapted to a context defined by a concrete patient pro-
file, by following a planning process driven by the expert
knowledge modeled in the planning domain.

In a previous experimentation, reported in (Fdez-Olivares
et al. 2010; Fdez-Olivares, Czar, and Castillo 2009), a model
of a concrete oncology clinical trial protocol (the one fol-
lowed at present for planning the treatment of Hodgkin’s
disease and elaborated by the Spanish Society on Pediatrics
Oncology) has been encoded in the temporally extended
HTN planning language, following a knowledge elicitation
process based on interviews with experts. This model con-
tains knowledge about wokflow control structures included
in the treatment protocol, temporal constraints to be ob-
served between chemotherapy cycles, periodic patterns to
administrate drugs as well as the representation of oncolo-
gists’ working shifts.

In the experiments performed, the planner received the
following inputs: a planning domain, representing this pro-
tocol; an initial state representing some basic information
to describe a patient profile (age, sex, body surface, etc.)
as well as other information needed to apply administra-
tion rules about drugs (dosage, frequency, etc.); and a high-
level task representing the goal (apply the protocol to the
patient) with temporal constraints representing the start date
of the treatment plan. The output of the planner are plans
that contain collections of (partially) ordered tasks repre-
senting drug administration actions to be accomplished on a
patient. Since temporal information is crucial for oncology
treatments, all the actions in a plan are temporally annotated
with constraints on start and end dates which specify dead-
lines either for the estimated beginning and finalization of
tasks. These plans are represented in a standard XML repre-
sentation that allows to display them as Gantt charts in stan-
dard tools devoted to project management (like MS Project,
see Figure 2)

Furthermore, OncoTheraper is also intended to support
the execution of the treatment plan, that is, the result of the
process followed by oncologists (now supported by the AI
planning system) when planning a treatment. In the work
here presented, we are exploring how the treatment plans,
dynamically generated on the basis of medical knowledge,
can be made executable in order to support the deployment
and supervision, step by step, of all the planned treatment
tasks. Clearly, the treatment plan generated by AI P&S tech-
niques becomes a human-centric process and oncologists
need a platform to visualize and interact with the plan gen-
erated, controlling the execution of the tasks defined in the
treatment plan. Figure 1 illustrates this idea: since BPM
consoles and runtime engines have shown to be success-
ful in the execution of human-centric processes, it seems

Figure 2: A temporally annotated and automatically gener-
ated therapy plan represented as a gantt chart. The plan rep-
resents the treatment for a patient following the Hodgkin’s
Disease Protocol. Start and end dates of every action are
shown in the left-hand side. Drugs and their dosage are
shown in the bars of the chart.

that a plan (in our example a treatment plan) adequately
transformed into a standard business process representation,
might be interactively executed by a standard/commercial
runtime engine together with a BPM web console. In or-
der to test this hypothesis we have considered the following
steps:

1. The structure and content of plans generated by the hier-
archical planner are postprocessed into an XML represen-
tation for plans.

2. The XML representation of plans has been translated into
XPDL, a widely known standard representation of busi-
ness processes. The result of this translation is the input
to a BPM runtime engine.

3. The XPDL process is deployed into the BPM console in
order to display its tasks and provide appropriate visual
”gadgets” to support the interactive control of the execu-
tion of tasks.

4. The execution of tasks is fully accomplished by a BPM
runtime engine,following a task execution model based
on a state-based automaton. The engine is also in charge
of capturing user actions, sent by the console, an changing
accordingly the states of the tasks. New states of tasks are
sent back and visualized into the BPM console.
From a Knowledge Engineering for Planning point of

view, the translation of a plan into a different model raises
the question of which categories of information a plan
should contain in order to be executable by a standard BPM
engine. Next section is devoted to clarify this question, since
an important part of the answer comes from the analysis of
the information model of the target language of the transla-
tion process, as well as from the analysis of the execution
model carried out by the runtime engine and from the re-
quirements about visualization and interaction of the BPM
console.



Technological Environment
A great part of the ideas developed in this work need to know
in some extent the terminology, standard languages and con-
cepts involved in the area of BPM. A business process is a
collection of activities with order relations and control struc-
tures that define their execution flow. Processes are defined
using a standard BPMN notation, through a Business Mod-
eling tool. The result of such definition takes the form of
a XPDL file. XPDL (XML Process Definition Language)
is a standard language (wfm ) , based on XML, devoted to
promote process exchange between BPM engines. A BPM
runtime engine is in charge of executing a process, usually
represented in XPDL, by following the execution flow de-
scribed. Since human-centric processes require the interac-
tion of human users during its execution, most commercial
runtime engines have also coupled a web console that sup-
port user interaction. The most relevant XPDL entities and
attributes considered in our work are:

Activities. They comprise a logical, self-contained unit
of work, which will be carried out by participants and/or
computer applications. Activities are related to one another
via transitions. Transitions. They result in the sequential
or parallel operation of individual activities. Participants.
They are used to define the organizational model over which
a process is deployed and can be allocated to one or more ac-
tivities.Parameters and DataFields. These entities are used
to define the process data model. Information that is internal
to the process is represented as Data Fields and information
required outside the process is represented by Parameters.

In addition the information model of any XPDL entity
may be extended by using Extended Attributes.

BPM runtime engines

Figure 3: A typical BPM console showing a collection of
tasks. For each one temporal information, execution state
and execution controls are shown.

Most BPM systems include three main components: a
Business Process Modeler (a tool oriented to IT profession-
als who visually design a business process), a BPM Runtime
Engine (in charge of executing the activities represented in
a XPDL process that, as said above, is a serialization of
the business process visually designed) and a BPM console.
From the user point of view, the BPM console is the most
important component and it is closely related with the run-
time engine, being responsible of (1) providing user inter-

action in order to deploy a business process previously de-
fined by the Business process Modeler, (2) visualizing the
process activities to be carried out, and (3) providing visual
”gadgets” to interactively control the execution of process
activities. Figure 3 shows a snapshot of the console used in
the experiments of this work.1

 

Figure 4: A BPM runtime execution model for Human-
Centric tasks.

Regarding process execution, BPM engines are com-
monly endowed with the necessary machinery in order to ex-
ecute every task in a process following an execution model
based on state-based automata. Fig 4 illustrates the states
and transitions of the automaton underlying task execution
for the engine that we have chosen to test our concepts. It
follows a standard life-cycle for task execution, and simi-
lar ones can be found in the literature for BPM engines as
well as for clinical plans execution. Thus, there is not lost
of generality on the concepts here explained and they can be
applied to another different BPM engine. As shown int the
figure, the engine allows to start, finish, suspend or abort any
task, always upon user request. A task may be in a READY
state if all its previously ordered tasks have been finished.
Then, it can be started by the user and the engine changes
its state to EXECUTING. At this point a task may change

1The console chosen for experimental purposes is Nova Bonita
console that also includes the Nova Bonita runtime engine
(http://www.bonitasoft.com/). Besides that both are Open Source
projects and accept XPDL as input, the main reason for selecting
these tools is that they support the interactive execution of tasks
based on a configurable, simple yet expressive execution model.



either to SUSPENDED, ABORTED or FINISHED, depend-
ing on user actions. Every change of state has associated a
trigger (a java method) that can be customized by the devel-
oper. This provides support to define the behaviour of the
engine as required by users. Furthermore, triggers opens the
possibility of communicating the engine with external sys-
tems like a plan monitoring service: the monitor may receive
information on critical changes in the execution of a process
and respond to them accordingly, for example raising a re-
planning process.

Finally, on the basis on this execution model, the basic
principles of an acceptable execution of plans can be ob-
tained, with the following considerations:

1. Though most BPM engines support the execution of pro-
cesses with conditional and repetitive control structures,
due to the nature of clinical treatment plans, only sequen-
tial and parallel control structures are addressed.

2. BPM engines do not provide full support for the exe-
cution of processes with tasks incorporating time con-
straints(Gagné and Trudel 2009). Indeed, the engine used
in this work is only capable of directly manage deadlines
for the termination of tasks. This is a really weak point
that forces to develop special monitoring services to pro-
vide full temporal information management like, for ex-
ample rescheduling of dates upon user request. Therefore,
the full treatment of temporal constraints falls out of the
scope of this paper.
Next the XML plan representation used in this approach

is explained.

Plan representation
The plans generated by the planner are represented in XML
as collection of Task nodes (see Figure 5) where every Task
node contains information about:
• Activities (id and name) and their parameters (type, name

and the value assigned at planning time), its preconditions
and effects.

• Temporal information of activities (earliest Start and ear-
liest End), representing the estimated time (obtained at
planning time) for the start and end of every task in
the plan (start, end, duration). Indeed, the plan ob-
tained includes richer temporal information, since it is
deployed over a temporal constraint network that as-
signs to every task a start and end time points rep-
resented as time intervals with the earliest and lat-
est start and end dates at which an action is al-
lowed to be executed ([aearlieststart, alateststart] and
[aearliestend, alatestend]). However, the information rep-
resented in the xml plan is enough, given the above ex-
plained execution model.

• Order dependencies. Every action a contains a collec-
tion of order dependencies, one for each action b ordered
before a, which allow to establish sequential an parallel
runtime control structures. This is a crucial item since its
analysis will lead to inform the runtime engine about the
set of actions that are immediately ordered after a given
one.

• Metadata, which allow to represent additional knowl-
edge required by either the user, the console or the
runtime execution engine. They are syntactic structures
that are managed (created, assigned, etc.) at planning
time, and are intended to be interpreted by external
systems. Indeed, they are the keystone to enrich a
plan in order to facilitate plan postprocessing steps and
integration with other systems. For a given action,
the meta-data field is a collection of items of the form:
<metadata <name> <valuetype> <value> >.

The plan representation used in this approach embodies
the following metadata:
Description, a string containing user-friendly informa-
tion about the task.

Type, used to represent whether the execution of an ac-
tion necessarily requires human intervention to be ini-
tiated (Type = Manual) or might be initiated by the
engine (Type = Auto). This is a very common cate-
gorization of actions in Human-Centric processes.

Actor, considering that we are focused on human-centric
processes, it is mandatory that one of the parameters be
considered as the resource (either a person or a system)
that accomplishses the action.

Performer, its value is the participant in the process in
charge of executing the action from the BPM console.

Meta-data are a very convenient way to encode informa-
tion that is not directly related with the reasoning process,
but which is strongly required in practical applications. Fur-
thermore, they can also be used to extend the knowledge
model of actions with additional items requires for a given
domain. Indeed, meta-data are encoded in the planning do-
main, as special tags associated to actions. It is important to
note that they can be encoded independently from the BPM
processes intended to be executed, as it will be shown in next
sections.

Translating plans into XPDL
The translation process is focused mainly in transforming
the following pieces of knowledge from a XML plan: activ-
ities and its parameters, temporal information, order depen-
dencies and metadata. This knowledge is enough to generate
a human-centric process that can be fully executed by a user
through a standard BPM engine, since with this knowledge it
is possible to generate information in order for the execution
model to manage order relations, either sequential or paral-
lel, of tasks as well as execution deadlines. The translation
process has three main steps:

1. Generation of XPDL DataFields/Participants.The goal
of this step is to generate the data model used by the run-
time engine. Basically, consists on translating the objects
hierarchy, their properties and initial values (defined in
the initial state) into XPDL DataFields. This step is at
present subject to further analysis, in the experiments this
has been done semi-automatically.

2. Generation of XPDL Activities. For each action aplan

in the XML representation of plan, a XPDL activity axpdl

is generated with the following information items:



XML Plan representation XPDL process representation

Figure 5: An XML structure of a plan and the XPDL schema of the relevant information for activities and transitions used in
this work.

• axpdl.name = aplan.name

• axpdl.performer = aplan.metadata.Performer

• axpdl.participant = aplan.metadata.Actor

• axpdl.description = aplan.metadata.Description

• axpdl.startmode = aplan.metadata.Type

• axpdl.deadline = aplan.duration

• Start and end dates of aplan are translated as XPDL
extended attributes and added to the properties of axpdl

<ExtendedAttribute name=start value=startaplan>
<ExtendedAttribute name=end value=endaplan>

• Every paramenter pi of aplan is translated
as a XPDL extended attribute of the form
<ExtendedAttribute name=pi.name value=pi.value>

3. Generation of XPDL Transitions. This step contains
two stages:

(a) For each aplan generate SUCC(aplan) as the set of
immediate succesors of aplan. A task j is an immediate
succesor of another task i when a dependence i < j
exists and there is no task k such that i < k and k < j.

(b) For every aplan and for each b in
SUCC(aplan), generate an XPDL transition
<Transition From=aplan To=b>

As said before, the XPDL so generated is given as input
to the BPM console that deploys it upon user request. The
information contained in the XPDL file is used by both, the
console in order to show task items required by the user, and
the runtime engine in order to execute tasks according to the
information stored in the XPDL process. Thus, an XPDL
file contains informative-only fields which are the following:

name, participant, description, parameters, and estimated
start and end times. These fields are usually showed in
the console for user information purposes. Operative fields
needed by the execution model are: startmode (used to de-
termine whether a tasks starts automatically or upon user
request), deadline (used to manage whether a task has fin-
ished correctly on time), performer (used to determine if the
user is allowed to execute a given actions) and the transitions
(used to determine the execution order of tasks).

The life-cycle of Smart Process Management
The translation process above introduced is the keystone of
a process that allows to achieve a full connection between
the output of an AI Planning system and the input of a BPM
runtime engine. The convergence of both technologies leads
into an integrated environment for Smart Process Manage-
ment, providing support for modeling (based on the repre-
sentation of Hierarchical Task Networks), adaptive genera-
tion (based on Planning and Scheduling process) and execu-
tion (based on BPM runtime engines and consoles) of Smart
Processes.

Authors argue that this can be considered a contribution
in the field of Knowledge Engineering for Planning due to
the following reasons: first, it is a non-trivial transformation
between a plan representation and a widely spread, stan-
dard language for business processes. Second, it also an-
swers some questions about new information requirements
that must be covered by domains and plans representations
when they have to deal with plans that must be executed
by using standard BPM technologies. The new pieces of
knowledge like type of actions, actors and performers, are



not usually considered as part of a planning model, but it has
been shown that they necessarily have to be incorporated in
domain and plan representations.

Furthermore, the field of Knowledge Engineering for
Planning also deals with the study and development of tech-
niques and methodologies that might advance the life-cycle
for engineering planning systems. In this sense, the trans-
formation process above described bridges a common, im-
portant gap that prevented to adequately carry out a fast
prototyping strategy for developing practical planning ap-
plications since, in order to develop a first prototype, it was
mandatory to develop also ad-hoc execution monitoring pro-
cesses and underlying preliminary interfaces, in order to
convince users about the advantages of the system. There-
fore, under this circumstances, building a first prototype of
planning application is very costly in time and human re-
sources.

As opposite, we have carried out a proof of concept based
on the translation of a treatment plan previously generated
by the planner and its execution based on the console. The
plans obtained are then transformed into XPDL processes,
following the translation process above described and inter-
actively executed by oncologists on a BPM console. There-
fore, the development effort in building a first prototype for
oncologists has been reduced. Instead of fully developing
both a specific interface for user interaction and a execution
monitoring system to support the execution, we have studied
and used the configuration techniques provided in the user
manuals of both the console and runtime engine. The result,
from the oncologist point of view, is a web application, ob-
tained in few weeks, that provides both information about
the treatment tasks to be performed, their time constraints
and interaction to start/finish/suspend/abort tasks.

Figure 3 shows the configured interface which has as de-
fault behaviour to show information about the pending treat-
ment tasks to be executed. The information in the console is
structured as a table where each row shows task information
that may be divided into three blocks:

1. Information about its name, its parameters and its esti-
mated start and end dates (recall that XPDL does not pro-
vide specific fields to represent task parameters, nor start
and end dates, but this information is extracted from ex-
tended attributes as detailed above).

2. Information about its state, shown in the form of flags.

3. Active buttons to control the execution of tasks. These
controls are easily configurable, and include buttons to
start, finish and suspend a task.

As the execution of the process progress, new pending
task are added to the console. In addition, a basic time man-
agement at execution can be achieved, based on the capabil-
ity of representing deadlines for tasks, as explained above.

Oncologists are highly skilled knowledge workers, but
it is understandable the they have not a clear idea about
what are their real usability needs with respect to a challeng-
ing and novel Clinical Decision Support System. Therefore
the basic functionality above described is enough to capture
user requirements, on the basis of this prototype, that would

be almost impossible to detect on interviews-based knowl-
edge/requirements acquisition.

Apart from Knowledge Engineering for Planning, the
connection between a planner and a BPM runtime engine
through the translation process introduced has advantages
in the field of BPM. Mainly, it contributes to leverage the
BPM life cycle incorporating capabilities for dynamic gen-
eration of emergent processes. As said in the introduction of
this paper, BPM engines are oriented to execute processes
the execution flow of which is completely defined a priori,
and there is no place to the management of adaptive, context
dependent process generation. The experimental proof of
concept carried out shows that, starting from a ”smart pro-
cess model” represented by an HTN planning domain, it is
possible generate processes (originally plans and then trans-
lated into business processes) that vary on its execution flow
depending on a variable context, defined by a patient pro-
file. Then, these processes can be executed on the basis of
standard BPM execution models.

Related work
The relationships between workflows (or business pro-
cesses) and AI planning have been studied from different
perspectives, but it is relevant for this work when consid-
ered as a technique to directly generate workflows executed
by ad-hoc, application specific systems devoted to the in-
teractive execution and monitoring of plans considered as
workflows. For this last case, some works are oriented to
autonomic computing (Srivastava, Vanhatalo, and Koehler
2005), others oriented to grid computing(Deelman et al.
2004), and we can also find works devoted to support knowl-
edge workers in their daily work, in the form of intelligent
task management assistants(Myers et al. 2007). Again,
these approaches do not face the execution of plans, seen
as smart processes, by using standard BPM technologies.
AI P&S techniques have also been applied in the field of
worflow generation for semantic web services. In this ap-
plication area, AI planning techniques are mainly focused
on the automated generation of sequences of semantic web
services calls (that may be seen as semantic business pro-
cesses)(S.A., T.C., and H. 2001). Some approaches in this
field (P. and M. 2004) address the generation of BPEL code
from plans representing web services processes. These ap-
proaches are focused on the management of System-Centric
processes and, due to the nature of these processes, do not
address the interactive execution of processes.

Regarding the concrete BPM field, the concepts described
in this work are subject of study under the denomina-
tion of Adaptive Case Management(WorkflowManagement-
Coalition 2010). Nowadays this is an emergent concept in
BPM. It tries to analyze and explore either already devel-
oped or new promising techniques, susceptible to be inte-
grated into present BPM systems, in order to fulfill the re-
quirements imposed by knowledge worker processes.

Conclusions
This work should be considered as a step forward in the pur-
suit of a methodology for rapid prototyping in Knowledge



Engineering for Planning. The main contribution consists
on the integration of AIP&S techniques and BPM technolo-
gies through a process that translates plans into executable
business processes, thus allowing to directly execute those
plans into BPM standard runtime engines. From the point
of view of a BPM runtime engine, the information model of
plans, represented in XML, contains enough information to
be directly executed what allows a fully automated transla-
tion process.

With respect to the flexibility of this approach, it is impor-
tant to note that, although most of the knowledge embodied
by plans obtained by any state-of-art planner can be reused
by BPM runtime engines, without the transformation pro-
cess presented, the plans obtained could not be directly exe-
cuted in BPM engines. Therefore, for any planning system,
it is mandatory to transform both, the structure of the plans
and their content, as already explained. In this sense, when-
ever the plans obtained by another state-of-art planner fits
to the plan representation here presented, it will always be
possible to use our translation process in order to transform
the plans into XPDL and then execute them on a BPM run-
time engine. However, it is necessary to say that the domain
model must be able to represent ”special tags” for actions,
in order to finally obtain plans containing all the informa-
tion required for execution. This technique is not new in
planning, and many planners, specially HTN planners (My-
ers et al. 2007), allow to introduce additional knowledge
in the model of actions for postprocessing purposes. Under
these considerations, authors argue that it is possible obtain
a fully automated process that leads from domain modeling
to human-centric business processes execution.

However the approach here introduced presents some
weak points that need to be deeply studied. The translation
of the planning domain object model is not completely ad-
dressed, and it must be faced in order to achieve a fully auto-
mated translation process. Precondition and effects manage-
ment is neither addressed. Although it is possible to achieve
a user acceptable execution of plans, this functionality is
only permitted for prototype-level versions. The develop-
ment of a full application requires to develop a complete
execution monitoring based on the causal rationale of plans.
Finally, a full treatment of temporal constraints at execution
time is needed. All these issues are being faced at present
and will be incrementally added to the current approach, ac-
cording to the user requirements analyzed on the basis of
this first prototype.

Acknowledgements
This work has been partially supported by the Andalusian
Regional Ministry of Innovation under project P08-TIC-
3572.

References
Bresina, J. L.; Jonsson, A. K.; Morris, P.; and Rajan, K.
2005. Activity planning for the mars exploration rovers. In
Proceedings of the ICAPS05, 40–49.
Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, O.; and Palao,

F. 2006. Efficiently handling temporal knowledge in an
HTN planner. In Proceeding of ICAPS06, 63–72.
Castillo, L.; Fdez-Olivares, J.; Garca-Prez, O.; Garzón, T.;
and Palao, F. 2007. Reducing the impact of ai planning on
end users. In ICAPS 2007, Workshop on Moving Planning
and Scheduling Systems into the Real World, 40–49.
Dayal, U.; Hsu, M.; and Ladin, R. 2001. Business process
coordination: State of the art, trends, and open issues. In
Proceedings of the 27th VLDB Conference.
Deelman, E.; Blythe, J.; Gil, Y.; Kesselman, C.; Mehta,
G.; Vahi, K.; Blackburn, K.; Lazzarini, A.; Arbree, A.; Ca-
vanaugh, R.; and Koranda, S. 2004. Mapping abstract com-
plex workflows onto grid environments. Journal of Grid
Computing 1:25–39.
Fdez-Olivares, J.; Castillo, L.; Garcı́a-Pérez, O.; and Palao,
F. 2006. Bringing users and planning technology together.
Experiences in SIADEX. In Proceedings ICAPS06, 11–20.
Fdez-Olivares, J.; Castillo, L.; Cozar, J.; and Garcia-Perez,
O. 2010. Supporting clinical processes and decisions by
hierarchical planning and scheduling. Computational In-
telligence To Appear.
Fdez-Olivares, J.; Czar, J.; and Castillo, L. 2009. Knowl-
edge Management for Health Care Procedures, volume
5626 of Lecture Notes on Computer Science. Springer.
chapter OncoTheraper: Clinical Decision Support for On-
cology Therapy Planning Based on Temporal Hierarchical
Tasks Networks, 25–41.
Gagné, D., and Trudel, A. 2009. ”Time-BPMN”. In Pro-
ceedings of 1st International Workshop on BPMN.
Myers, K.; Berry, P.; Blythe, J.; Conley, K.; Gervasio, M.;
McGuinness, D.; Morley, D.; Pfeffer, A.; Pollack, M.; and
Tambe, M. 2007. An intelligent personal assistant for task
and time management. AI Magazine 28(2).
P., T., and M., P. 2004. Automated composition of semantic
web services into executable processes. In International
Semantic Web Conference.
S.A., M.; T.C., S.; and H., Z. 2001. Semantic web services.
IEEE Intelligent Systems 2(16):46–53.
Sacerdoti, E. D. 1975. The nonlinear nature of plans. In
Proceedings of IJCAI 1975, 206–214.
Srivastava, B.; Vanhatalo, J.; and Koehler, J. 2005. ”Man-
aging the Life Cycle of Plans”. In 17th Innovative Appli-
cations of Artificial Intelligence Conference, 1569–1575.
AAAI Press.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-PLAN2:
An open architecture for command, planning and control.
In Zweben, M., and Fox, M., eds., Intelligent scheduling.
Morgan Kaufmann.
Workflow management coalition. http://www.wfmc.org/.
Wilkins, D. E. 1990. Can AI planners solve practical prob-
lems? Computational intelligence 6:232–246.
WorkflowManagementCoalition. 2010.
http://www.xpdl.org/nugen/p/adaptive-case-
management/public.htm. Group on Adaptive Case
Management.


