

An XML-based Forward-Compatible Framework for Planning System

Extensions and Domain Problem Specification

Eric Cesar E. Vidal, Jr. and Alexander Nareyek

NUS Games Lab

Interactive and Digital Media Institute, National University of Singapore

21 Heng Mui Keng Terrace, Level 2, Singapore 119613

ericvidal@nus.edu.sg, elean@nus.edu.sg

Abstract

Real-world planning problems, e.g., planning for virtual
characters in computer games, typically come with a set of
very specific domain constraints that may require
specialized processing, like symbolic path planning,
numerical attributes, etc. These specific application
requirements make it necessary for planning systems to
have an extensible design. We present a framework for a
planning system that recognizes planning extensions (such
as new data types or structures, sensing/acting functionality,
and others). The framework is designed to be forward-
compatible, exposing an XML-based domain language that
allows current and future problems that use such planning
extensions to be properly specified.

Introduction

In artificial intelligence, planning is a problem where,
given a set of goals and possible actions, the necessary
actions are to be determined (along with their proper
temporal arrangement) to attain the given goals. A
logistics problem, for example, can define a set of possible
actions, such as ―move a vehicle V from location A to
location B‖ or ―load/unload package P in vehicle V‖, and a
set of goals such as ―deliver n packages, labeled P1..n from
locations A1..n to locations B1..n‖. A solution is called a
plan; in this case, the plan would involve multiple ―move‖
and ―load/unload‖ actions on a correctly-ordered, non-
conflicting schedule. A plan is considered valid when it
reaches the goal state without inconsistencies such as
violations of action preconditions (e.g., moving a package
requires the package to be loaded first) or forbidden
overlapping of actions (e.g., a package cannot be unloaded
while the vehicle is moving). A planning system or
planner is a program that automatically creates such plans.

 Many planning problems are simple enough such that a
general (i.e., domain-independent) planning system is not

This work was supported by the Singapore National Research Foundation

Interactive Digital Media R&D Program under research grant
NRF2007IDM-IDM002-051.

needed, e.g., path planning in most computer games is
usually implemented as a simple A* search. On the other
hand, more complex problems (e.g., planning a
dynamically-generated story for a computer game) can
benefit from the solving capabilities of a general planning
system. In order to do this, the properties of the problem
must be formalized into a domain definition, using a
specification language that can be understood by a planner.

 To solve real-world problems, however, a general
planning system usually needs to be extended to handle
specific application requirements. A computer game, for
example, will require extensions such as online planning
(i.e., feeding the planner-selected actions into the game,
and then sensing in real time the current state of the game
world, updating the plan accordingly), numerical resources
such as player health or money, and specialized solving
heuristics to let the planner more efficiently handle specific
sub-problems like symbolic path planning (where symbols
are mapped to actual positions in the world, for faster
planner reasoning about connectivity and distances
compared to regular path planning). A planner written
without such extensibility in mind will invariably need
continuous re-design to handle these and future extensions.
A better solution, from a software engineering point of
view, is to adhere to a framework that readily integrates
such extensions, making a planner forward-compatible
with current and future planning problems.

 Many such extensions may expose new planning
constructs—for example, online planning introduces the
concept of actuators and sensors into the domain
ontology—thus making it necessary for the extensible
planner architecture to tie in seamlessly with its domain
specification language.

Background

In this section, we introduce the issues that accompany the
design of an extensible planning architecture, and issues
related to the domain specification of planning extensions.

Monolithic versus General-Search-based Planning

We first discuss existing planning approaches to establish
the context of our planner extensibility problem. Different
planning approaches vary in the degree they can be
extended.

 Systems such as STRIPS (Fikes and Nilsson 1971) and
Graphplan (Blum and Furst 1997) are monolithic systems.
Although these systems are extensible to a certain degree,
these systems use relatively rigid planning frameworks that
are often optimized to exploit a particular problem
representation and are not specifically designed with
extensions in mind. Thus, the possibility of extending such
systems ranges from impractical to impossible.

 Planners that map to general search frameworks like
propositional satisfiability (SAT), integer linear
programming (ILP) or constraint programming (CP) can
usually handle planning extensions much more easily,
although they are often not as expressive as monolithic
approaches for specific domains. SAT-based systems,
such as Blackbox (Kautz and Selman 1998) and SatPlan-
2006 (Kautz, Selman, and Hoffman 2006), can handle
Boolean propositions, which somewhat limits the types of
problems that can be expressed. ILP-based planners, such
as LPSAT (Wolfman and Weld 1999), take into account
numerical resources but are restricted to linear inequality
constraints. CP-based planners, such as CPLAN (van Beek
and Chen 1999) and the EXCALIBUR agent’s planning
system (Nareyek 2001), can theoretically handle more
general constraints. See Nareyek et al. (2005) for a more
detailed discussion.

 A fully-extensible planning architecture should be able
to handle flexible planning problem constructions such as
the general search frameworks described above (including
future refinements to these frameworks), while retaining
the domain-specific expressiveness found in monolithic
systems.

PDDL and Planner Extensibility

There are many available planning systems, often using
very different internal representations of planning domains.
The Planning Domain Definition Language (McDermott et
al. 1998) was conceived to enable standardized
comparisons and competitions between planning engines.
PDDL solves a critical problem by exposing an extensible
language to introduce new features to a planning system’s
model—by default, it recognizes STRIPS-style actions, but
it also recognizes feature extensions such as conditional
effects, hierarchical actions, durative actions and numerical
reasoning (Fox and Long 2003), and as of version 3.0,
preferences and soft constraints intended for CP planners
(Gerevini and Long 2005). The requirements tag of
PDDL invokes these extensions, which, in turn, change
parts of the language’s definition.

 However, since PDDL is designed as a common
language intended for academic planning competitions, it
has distinct disadvantages in real-world applications.

PDDL was conceived during a time when monolithic
planners with STRIPS-like constructions were the norm,
and the extensions were added stepwise as new planning
paradigms were introduced. Consequently, these extension
constructs, including but not limited to the simplified
treatment of resource properties, durative actions,
nonlinear numerical projections and unknown information,
have been subject to criticism (Boddy 2003). Additionally,
there is no direct way to expose sensing and actuating
interfaces to the outside world, which is a requirement for
specifying online planning problems. While a planner can
add new or improved constructs in its private
implementation of PDDL, this would result in the
proliferation of non-standard extensions that are
incompatible across planning systems. It may be possible
to standardize certain extensions (PDDL versions 2.1 and
above are indeed targeted towards providing standard
extensions); however, as PDDL’s intent is to provide a
common interface that is not necessarily efficient nor
sufficiently expressive (for example, continuous numerical
effects in PDDL are assumed to be linear, making non-
linear continuous functions hard to express), strict
adherence to the language will impose an artificial
restriction on a planning system’s capabilities and will
limit extensibility.

 Furthermore, PDDL’s requirements–based
extensibility is not a solution to support real-world
applications. As mentioned earlier in the Introduction,
real-world applications using a planning system need to
extend that planning system according to their special
requirements by providing their own custom modules (e.g.,
new data types, new heuristics, or custom sensors and
actuators). Ideally, external users (application developers
or even third-party vendors) should be able to add new
constructs to the planning problem definition without the
domain modeler needing to recompile the planning system
or its problem definition parser. This functionality is
inherently absent from PDDL as it was intended to be an
academic tool, with little consideration for a professional
or industrial environment.

 This paper proposes a solution to these problems by
presenting a general planning system framework based on
the Extensible Markup Language (XML), allowing a
simple, modular way to extend the planning system and its
model. The goal is to create a pluggable system of
planning extensions that neatly tie into the representation
language. Efficiency is not the main focus (although a
clean problem representation that directly corresponds to
the planning system’s internal structure will naturally be
more efficient than a poorly-fitting PDDL representation);
rather, a planning system implementing our framework
will be ―future-proof‖, with a vast potential for new
planning extensions to extend the capabilities of planning
beyond what is currently being explored in academic
circles.

 The next section introduces an example scenario where
extensions are needed, followed by a discussion of the
framework itself, and the extension possibilities it allows.

An Example Scenario for Extensible Planning

The Crackpot planning system will be used throughout this
paper as an example to show how our proposed framework
can be implemented by a typical planning system. This
section contains a brief introduction to Crackpot, along
with a sample problem to be tackled by this planner.

The Example Planner

Crackpot
1
 is the successor of the EXCALIBUR agent’s

planning system (Nareyek 2001). As such, it uses the same
principle of local search based on iterative repair to make
and improve plans—a plan with inconsistencies or costs
(e.g., unmet goals, mutually-exclusive actions that overlap,
unmet preconditions for an existing action, etc.) is
iteratively improved by using one of several repair
heuristics (e.g., add a new action, move an action’s
start/end times, etc.). Crackpot is intended to be an online
planner, where agents other than itself might change the
state of the world as time passes, and actions can only be
added to the plan at positions at or beyond the current time.

 Crackpot, as with most planners, separates the notion of
a general domain from a specific problem of the domain,
allowing modelers to create separate specifications of each.
Crackpot internally models a domain/problem using an
object-oriented design amenable to implementation in
C++. Figure 1 depicts the relationships between
Crackpot’s domain specification constructs using a UML
(OMG 2010) class diagram.

Figure 1. Crackpot’s domain specification class structure.

(This specification is a work-in-progress.)

 In general, a distinction is made between the type and
instance of a particular construct (e.g., ObjectType vs.
ObjectInstance): the abstract types (e.g., the ―person‖ type)
appear in the domain specification, while the grounded
instances (e.g., a ―person‖ named ―Joe‖) appear in the
problem specification. (It is the planning system’s task to
create action instances and their components; hence the
related classes are not shown in the above diagram.)

 A domain object (e.g., a person) contains state resource
variables called attributes (e.g., walking speed) whose
projections over time can consist of one or more attribute

1 Crackpot is a work-in-progress planner available at the following URL:
http://sourceforge.net/projects/crackpot

values (e.g., 0.0 m/s at the start, 1.0 m/s at the end). An
object also contains action resource variables called
actuators (e.g., legs).

 An action (e.g., walking from one place to another) is
made up of object parameters (technically, ―parameter
object instances‖) specifying which objects are related to
the action (e.g., which person is doing the walking),
conditions on the object parameters’ attributes that must be
met for the action to execute (e.g., the person must be at
the start location), contributions of the action to the
attributes (e.g., the person ends up in the target location),
and action tasks indicating how actuators are used
throughout an action (e.g., a person uses his legs to walk).

 Note that this design roughly maps to the EXCALIBUR
planning system’s model. In particular, actuators,
attributes, and conditions/contributions directly map to
action resource constraints, state resource constraints, and
task constraints. (Nareyek 1998)

 Because of efficiency reasons, Crackpot is not a
completely-modular system, taking a middle ground
between monolithic and fully-modular planning systems.
Its design currently assumes a fixed flow of the planner’s
execution cycle (find a repairable cost in the plan, repair
the cost, repeat). Third-party extensibility of the planner
itself is currently restricted to introducing specialized
attribute value types (e.g., a SymbolicLocation type
extended from the provided Symbolic type to allow for
path planning, or perhaps a collection-oriented Set type).

 However, the next version of Crackpot that is currently
being worked on will increase the expressiveness of
domains, by introducing a control flow actuator (Nareyek
2003) to allow changes in the planning execution cycle
(e.g., temporarily focusing on specific plan repairs), a cost
management system to allow domain-influenced selection
of the repair heuristic by specifying modifiers for each
available cost (e.g., to cause the planner to prefer adding
certain actions over others), action-component relations
that specify additional constraints between an action’s
object parameters and other action-related parameters (e.g.,
to set the duration of the action according to the value of a
resource), and read-ins that take in attribute values and
feed them into action-component relations. These
extension possibilities must be taken into account when
designing a representation language for Crackpot.

A Sample Problem with Extension Possibilities

Consider a very simple planning problem: A person is
currently in his living room, and he is hungry. Given the
following scenario, what must he do to satiate his hunger?

 There is an apple in the kitchen. Conveniently, he
can travel from one place to another by walking.

 The way to the kitchen is separated by a closed
door. The only way to overcome this formidable
obstacle is to open it with his hands.

 To model the domain of this problem, a modeler may
use Crackpot’s constructs in the following manner. (The

 class Domain specification

ObjectType ObjectInstance

ActuatorType

AttributeType

AttributeValueType

AttributeInstance

ActuatorInstance

AttributeValueInstance

ActionType

ConditionType

AbstractActionTaskType

ContributionType

1..*

1..*

1..*

1..*1..*

problem specification is omitted to save space, but the
initial state and goals may be inferred from the above
description.)

ObjectType: Person

 AttributeType: Hungry { true, false }

 AttributeType: Location { livingroom, door, kitchen }

 ActuatorType: Legs

 ActuatorType: Hands

ObjectType: Apple

 AttributeType: Existing { true, false }

ObjectType: Door

 AttributeType: Open { true, false }

ActionType: EatApple

 Parameters: { p : Person, a : Apple }

 Conditions: { p.Hungry = true, p.Location = kitchen,

 a.Existing = true }

 Contributions: { p.Hungry = false, a.Existing = false }

 ActionTask: uses p.Hands

ActionType: WalkFromLivingRoomToDoor

 Parameter: { p : Person }

 Condition: { p.Location = livingroom }

 Contribution: { p.Location = door }

 ActionTask: uses p.Legs

ActionType: WalkFromDoorToKitchen

 Parameters: { p : Person, d : Door }

 Conditions: { p.Location = door, d.Open = true }

 Contribution: { p.Location = kitchen }

 ActionTask: uses p.Legs

ActionType: OpenDoor

 Parameters: { p : Person, d : Door }

 Conditions: { d.Open = false, p.Location = door }

 Contribution: { d.Open = true }

 ActionTask: uses p.Hands

 The above representation is adequate for a planning
domain with relatively simplistic assumptions. True
enough, it is also possible to create a PDDL description out
of this domain with predicates and actions (each with
parameters, preconditions and effects), all but with a slight
loss of fidelity to the modeler’s intent; for example, the
concept of actuators are lost in the translation. (The PDDL
version is not shown here, again due to space constraints.)
However, suppose that this is part of a more sophisticated
computer game world, where a non-player character (NPC)
agent has a relatively simple behavioral AI such as that
described above (in order to tell a simple story, for
example). Some problems with the above domain
representation immediately become clear:

1. Game worlds, more often than not, have a running
game clock, so actions don’t occur instantaneously
but are executed over certain durations.

2. Agent attributes such as hunger (or generally,
health) in computer games are, more often than not,

modeled as numerical resources that rise and fall
over time, not just Boolean values as assumed here.

3. It is inadequate to specify game world locations as
plain symbols. Without information about each
location’s actual Cartesian coordinates and its
connectivity with other locations, this representation
does not scale well to a real path-planning problem
(as the current form requires many ―walk‖ actions to
be defined between each connected location).

4. The door’s actual state may change irrespective of
the agent’s interactions—if a player closed the door
immediately after our simplistic agent opened it, the
agent will suddenly not be able to pass the ―real‖
door in the game (although the agent thinks it has),
nor would it know that it needs to re-open the door,
unless the planner is notified of the change.

 All these problems stem from a lack of expressiveness in
the domain. What we need in this case are mechanisms to
specify action durations, numerical attributes, symbolic
path-planning, and some form of sensing functionality.
These features will require extensions in the planning
system. Perhaps just as importantly, these extensions must
be properly exposed in the corresponding representation
language. Note that if we had used a PDDL representation,
we will be able to solve the first two representation
problems (as PDDL 2.1 and above already support durative
actions and numerical attributes), but we cannot solve the
last two without extending PDDL’s language specification.

Key Guidelines of the Proposed Framework

Having introduced our example planning system and
problem, this section now presents the key guidelines of
our planning extension/representation framework,
explained via examples using the Crackpot system.

Correspondence between Language and Planning

System Elements

The concept of an extensible planning language,
introduced by PDDL, is quite essential for our proposed
framework. However, PDDL is not able to handle nuances
unique to a specific planning system, limiting its real-
world use. In Crackpot, for example, it is non-trivial
(although possible) to map PDDL predicates to
ObjectTypes and AttributeTypes; worse, there is no direct
PDDL analogue for ActuatorTypes.

This problem can be alleviated by designing the
language around the planner, not the other way around.
More succinctly, form follows function; this idea has been
pointed out in critiques of PDDL (Boddy 2003). It must be
noted that PDDL’s ―one-size-fits-all‖ representation
stemmed from the need to provide common language
elements across planning systems. Since our main focus is
to extend planning systems into real-world applications
such as games, with little to no use for inter-planner
compatibility, we extend the basic idea into this

philosophy: Develop a language that closely corresponds
to the target planning system’s internal representation.

 For example, since Crackpot recognizes ObjectTypes
and AttributeTypes as first- and second-class constructs,
respectively, they should be represented as-is in the
language with their relative hierarchy unchanged (as
opposed to representing their relationship as a predicate in
PDDL). This has the advantage of easier extensibility
system-wise, because new classes of constructs can be
introduced to a domain language using the same class
hierarchy of the planning system; for example, it is now
trivial to add ActuatorTypes to the new language.

 Planners conforming to the said philosophy will, of
course, not be able to read each other’s languages. Also, in
the worst case, future planning problems and systems
might require restructuring of the ontology: For example,
Crackpot improves over EXCALIBUR (Nareyek 2001) by
requiring resources to be grouped into objects for more
expression possibilities (e.g., attributes can be references to
objects), at the expense of incompatibility. However,
language translation tools exist, such as proposed by Clark
(1999), that allow wide-scale restructuring of a language,
removing unnecessary data or even adding missing data,
making it possible to import problems between planners.

Distributed Parsing of the Planning Language

A system that may be extended by external modules needs
to have some form of registration system, which registers
the cases when a planner needs to dispatch tasks to an
external module rather than its internal constructs; for
example, calling the constructor of an externally-created
attribute instead of the system’s built-in attributes.

 The Observer design pattern (Gamma et al. 1995) is
used as the basis of the registration system. This pattern is
developed mainly for distributing events to observers or
listeners, and it works well with our scenario—this allows
modules to independently handle their own constructs.
The Observer pattern effectively distributes the parsing of
the representation language to the specific modules that are
interested in smaller parts of the language.

 For example, a SymbolicLocationAttribute external
module can register as a listener on the same parts of the
planning system that other attributes (SymbolicAttribute,
NumericAttribute, etc.) also listen into. This way,
whenever the language parser encounters the use of an
attribute, a general ―event‖ is fired, and the registered
listener (in this case, SymbolicLocationAttribute) does the
actual task, e.g., construction of the attribute, production of
value instances, and managing of relations such as
equality, comparison, etc. that are valid for the attribute.

XML as a Language Base

Theoretically, this planning framework can use a PDDL-
like syntax as the language base. However, a much better
option exists, in the form of the Extensible Markup
Language or XML (Bray, Paoli, and Sperberg-McQueen

1998). Using XML as the language base has several
advantages over maintaining a separate language:

 Since XML is widely considered as a standard, it
enjoys vast third-party library support. Extension-
aware planners will invariably have languages that
change frequently. Existing XML libraries already
allow users to change an XML-based language
without needing to recompile the parser itself,
which is perfect for a rapidly-evolving language.

 The XML SAX API (Megginson 2004) allows
exactly the kind of distributed parsing that we need.
SAX is a lightweight, event-driven API where each
well-formed XML element (or ―tag‖) fires an event;
the target system’s internal parser looks at an
incoming XML ―event‖ and distributes the event to
the appropriate listener. The parser only needs to
maintain a lookup table to find out which listener
should be activated for which XML element.

 Using XSLT (Clark 1999), it is possible to do
automatic translation between different languages
(as recommended earlier). In fact, it is possible to
transform the language into a version of PDDL with
XML-style tokens, on which a simple token
substitution can be performed to obtain pure PDDL.

 XML is only used for planning system features where
very high performance is not required. Generally, planning
domains and problems are only loaded at the start of the
planning process, so performance is not normally an issue,
especially when taking into account the benefits that XML
provides in terms of flexibility.

Example Implementation: Crackpot SLAP

A new domain specification language, dubbed ―Scalable
Language for Action Planning‖ or SLAP, is developed
specifically for Crackpot. Two XML document schemas
are created: The <domain> schema handles the formal
definition of a domain (i.e., all xxxType constructs), while
the <problem> schema specifies a problem instance of
that domain (i.e., all xxxInstance constructs).

 The example domain presented earlier roughly translates
to this form in SLAP, which corresponds with how
Crackpot models the domain internally (for illustrative
purposes only; details are left out due to space constraints):

<domain name="Apple Domain">

 <!-- definition for the location type -->

 <attribute_value_type name="LocType"

 data_type="symbolic">

 <value name="livingroom" />

 <value name="door" />

 <value name="kitchen" />

 </attribute_value_type>

 <!-- object definitions -->

 <object_type name="Person">

 <attribute_type name="Hungry"

 attribute_value_type="boolean" />

 <attribute_type name="Location"

 attribute_value_type="LocType" />

 <actuator_type name="Legs" capacity="1" />

 <actuator_type name="Hands" capacity="1" />

 </object_type>

 <object_type name="Apple">

 <attribute_type name="Existing"

 attribute_value_type="boolean" />

 </object_type>

 <object_type name="Door">

 <attribute_type name="Open"

 attribute_value_type="boolean" />

 </object_type>

 <!-- action definitions -->

 <action_type name="EatApple">

 <parameter name="p" object_type="Person" />

 <parameter name="a" object_type="Apple" />

 <condition_type parameter="p"

 attribute_type="Hungry"

 relation="equals" value="true" />

 <condition_type parameter="p"

 attribute_type="Location"

 relation="equals" value="kitchen" />

 <condition_type parameter="a"

 attribute_type="Existing"

 relation="equals" value="true" />

 <contribution_type parameter="p"

 attribute_type="Hungry"

 value="false" />

 <contribution_type parameter="a"

 attribute_type="Existing"

 value="false" />

 <action_task_type parameter="p"

 actuator_type="Hands" />

 </action_type>

 <action_type name="WalkFromLivingRoomToDoor">

 <parameter name="p" object_type="Person" />

 <condition_type parameter="p"

 attribute_type="Location"

 relation="equals"

 value="livingroom" />

 <contribution_type parameter="p"

 attribute_type="Location"

 value="door" />

 <action_task_type parameter="p"

 actuator_type="Legs" />

 </action_type>

 <action_type name="WalkFromDoorToKitchen">

 <parameter name="p" object_type="Person" />

 <parameter name="d" object_type="Door" />

 <condition_type parameter="p"

 attribute_type="Location"

 relation="equals" value="door" />

 <condition_type parameter="d"

 attribute_type="Open"

 relation="equals" value="true" />

 <contribution_type parameter="p"

 attribute_type="Location"

 value="kitchen" />

 <action_task_type parameter="p"

 actuator_type="Legs" />

 </action_type>

 <action_type name="OpenDoor">

 <parameter name="p" object_type="Person" />

 <parameter name="d" object_type="Door" />

 <condition_type parameter="p"

 attribute_type="Location"

 relation="equals" value="door" />

 <condition_type parameter="d"

 attribute_type="Open"

 relation="equals" value="false" />

 <contribution_type parameter="d"

 attribute_type="Open"

 value="true" />

 <action_task_type parameter="p"

 actuator_type="Hands" />

 </action_type>

</domain>

 To implement the extensible framework itself, there
were minimal changes to Crackpot’s class structure. See
Figure 2 for an overview. The Xerces-C++ parser (Apache
Xerces Project 2010) was used for XML parsing, wrapping

the library in the class XMLFactory using the Façade
pattern (Gamma et al. 1995).

Figure 2. Crackpot’s XML parser class structure.

 For a custom module to register with the extensible
framework, the interface XMLTagListener is provided.
Since Crackpot also allows for third-party-supplied
attributes, AttributeXMLTagListener is provided to further
expand the XMLTagListener interface with helper methods
that are relevant for attribute modules.

 Registered listeners are stored in a lookup table on the
tags that they listen to, e.g., all AttributeXMLTagListeners
listen to the <attribute_value_type> tag. To
resolve simple conflicts between multiple extension
modules that listen to the same XML tags, Crackpot
utilizes a last-registered-first-called rule, where the last
listener to register is the first listener to be invoked by the
parser. This rule makes sense because custom modules
typically register with the system after the base modules.
Future versions of the system may incorporate more
sophisticated conflict resolution (more on this in the next
section), but as it stands, the current system already allows
for many interesting extension possibilities.

Possibilities for Planner Extensions

The advantages of our framework become apparent once
the example problem is extended with new functionality.

Introduction of New Features

In our architecture, it is possible to add a new XML
element for each new feature added to the system. For
example, in Crackpot, a timing module

2
 can be introduced

to the system to handle action durations, which registers
with our framework by listening to a new XML element,
<timing>. This new element can be placed as a child
under <action_type>. This allows many ways of
implementing durative actions, such as a fixed duration:

2 Crackpot currently implements durations in a different way; action-
component relations will handle durative actions even more generally.

 class XML parser

XMLFactoryXMLObject

XMLTagListener DefaultXMLTagListener

AttributeXMLTagListener

SymbolicAttributeXMLTagListener

BooleanAttributeXMLTagListener

(other attribute listeners...)

ObjectType

ObjectInstance

(other classes...)

1..*

<action_type name="WalkFromLivingRoomToDoor">

 <timing duration="10" />

 ...

 Or a condition- or contribution-related sub-duration (the
overall duration is computed from all sub-durations):

<contribution_type parameter="p"

 attribute_type="Hungry" value="false">

 <timing effect_time="30" />

 ...

 Using this framework, any planning system can decide
how to model durations without being tied to a particular
representation like that of PDDL, where durative actions
needed a completely new construct (:durative-

action) to support a single way of specifying durations.

 Custom modules to add sensors to the outside world (in
order to support online planning) are likewise easy to add
in. An application can create hooks to attributes by adding
a tag under the <attribute_type> tag:

<object_type name="Door">

 <attribute_type name="Open"

 attribute_value_type="boolean">

 <sensor_stream id="doorState" resolution="5" />

 </attribute_type>

</object_type>

In this example, the <sensor_stream> element is
provided by a custom module, and specifies that a refresh
of the door state is triggered every 5 time units. The actual
sensor values may be transmitted to the planner via low-
level means (i.e., not XML, for higher performance).

Overloading of Existing Features

It is also possible to extend the behavior of an XML
element via element overloading, i.e., letting multiple
modules listen-in on the same XML element. For
example, custom modules to support new attribute value
types like NumericRange and SymbolicLocation can
provide listeners to the <attribute_value_type>
tag, overloading its use when it encounters a data_type
string that corresponds to what this module handles. They
can make their own XML tags further down the hierarchy:

<attribute_value_type name="HungerType"

 data_type="numeric_range">

 <range begin="0" end="100" />

</attribute_value_type>

<attribute_value_type name="LocType"

 data_type="symbolic_location">

 <value name="livingroom">

 <coordinates x="0.0" y="0.0" />

 <connection to="door" />

 </value>

 <value name="door">

 <coordinates x="0.0" y="10.0" />

 <connection to="kitchen" />

 <connection to="livingroom" />

 </value>

 <value name="kitchen">

 <coordinates x="10.0" y="10.0" />

 <connection to="door" />

 </value>

</attribute_value_type>

 These modules can then also override the
<condition> and <contribution> tags to specify
their own relations and operations:

<!-- a more natural model of hunger satiation -->

<condition_type parameter="p"

 attribute_type="Hunger"

 relation="greater_than" value="50">

 <timing check_time="0" />

</condition_type>

<contribution_type parameter="p"

 attribute_type="Hunger"

 operation="linear_decr" value="25">

 <timing effect_time="20" duration="30" />

</contribution_type>

 These XML elements are handled directly by their
respective modules, giving these modules the freedom to
specify an entirely new XML hierarchy for their own data;
for example, custom Set or Matrix attributes may include
sizable amounts of formatted numeric data (potentially
with the base functionality inherited from NumericRange).

 Feature overloading may introduce problems when
conflicting modules listen-in on the same XML elements
(necessitating conflict resolution, mentioned in the
previous section), but these issues are not unlike those
encountered with OOP languages like C++; in future
implementations, these problems may be solved using the
same software engineering principles commonly used in
these languages (such as disallowing multiple inheritance,
adding support for public/private visibility, and so on).

Planner-Specific Exposure of the Solution Process

So far the preceding extensions simply modify existing
planning constructs to support better expressiveness of a
problem domain. However, internal planner extensions
can also expose or even introduce changes to the solution
process itself. Such extensions are not meant to be written
by third-parties but by internal developers of the planning
system. For example, Crackpot’s forthcoming cost
management system, an improved version of what is found
in EXCALIBUR (Nareyek 2001), will allow cost modifiers
to influence the selection of repair heuristics in a specific
domain. These costs are specified in the form of domain
hints. First, cost collections are specified by the domain:

<cost_collection name="satisfaction">

 <cost_type name="goal" cost_mapping="3x" />

 <cost_type name="aux" cost_mapping="2x" />

</cost_collection>

<cost_collection name="optimization">

 <cost_type name="optional" cost_mapping="default" />

</cost_collection>

Then, cost types may be registered for the different cost
centers in the domain, i.e., attributes, actuators and
(forthcoming) action-component relations:

<attribute_type name="Hungry"

 attribute_value_type="boolean">

 <cost_registration cost_name="unsatisfied"

 cost_type="goal" />

</attribute_type>

<attribute_type name="Location"

 attribute_value_type="LocType">

 <cost_registration cost_name="distance"

 cost_type="optional" />

</attribute_type>

<actuator_type name="Legs" capacity="1">

 <cost_registration cost_name="usage_overlap"

 cost_type="aux" />

</actuator_type>

 This allows for an expressive model of plan preferences

that more closely mirrors Crackpot’s internal planning

architecture (which is based on cost repair via local search)

than that of strong and soft constraints in PDDL 3.0

(Gerevini and Long 2005).

Conclusion

Our proposed framework solves two important problems:
how to make a planning system support a level of
extensibility to facilitate its use for real-world problems,
and how to model and support an evolving domain
representation language that allows problems to take
advantage of such planner extensibility. The framework
uses three key guidelines: maintaining correspondence
between domain ontology and the planner’s internal
architecture, distributing language parsing to external
modules through the use of the Observer design pattern,
and using XML as a language base to facilitate language
design, parsing and translation to other languages.

 Possible future work include the development of more
sophisticated forms of conflict resolution between planning
extension modules, a common XSLT stylesheet library to
allow translation of domain problems between planning
systems (or to/from PDDL), and extensions to the
Crackpot planning system itself, such as the
aforementioned cost manager, control flow actuator,
action-component relations, and a complete sensing/acting
system to fully support real-world online planning.

References

Apache Xerces Project. 2010. Xerces-C++ XML Parser,
Project documentation, available at
http://xerces.apache.org/xerces-c, Apache Software
Foundation.

Blum, A., and Furst, M. 1997. Fast Planning Through
Planning Graph Analysis. Artificial Intelligence 90(1-2):
281-300.

Boddy, M. 2003. Imperfect Match: PDDL 2.1 and Real
Applications. Journal of Artificial Intelligence Research
20: 123-137.

Bray, T.; Paoli, J.; and Sperberg-McQueen, C. M. 1998.
Extensible Markup Language (XML) 1.0. Technical
Report, W3C recommendation, W3C.

Clark, J. 1999. XSL Transformations (XSLT) Version 1.0.
Technical Report, W3C recommendation, W3C.

Fikes, R. E., and Nilsson, N. 1971. STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence 5(2): 189-208.

Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains.
Journal of Artificial Intelligence Research 20: 61-124.

Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA; Menlo Park, CA: Addison-
Wesley Publishing Co.

Gerevini, A., and Long, D. 2005. Plan Constraints and
Preferences in PDDL3, Technical Report, R. T. 2005-08-
47, Università degli Studi di Brescia, Dipartimento di
Elettronica per l'Automazione.

Kautz, H., and Selman, B. 1998. BLACKBOX: A New
Approach to the Application of Theorem Proving to
Problem Solving. In Working Notes of the Workshop on
Planning as Combinatorial Search, held in conjunction
with AIPS-98, 58-60. Pittsburgh, PA.

Kautz, H.; Selman, B.; and Hoffman, J. 2006. SatPlan:
Planning as Satisfiability. In Abstracts of the 5th
International Planning Competition, available at
http://www.cs.rochester.edu/~kautz/satplan/index.htm.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL--The Planning Domain Definition Language--
Version 1.2, Technical Report, CVC TR-98-003, Yale
Center for Computational Vision and Control.

Megginson, D. 2004. SAX - Simple API for XML, Project
documentation, available at http://www.saxproject.org/,
Megginson Technologies, Ltd.

Nareyek, A. 1998. A Planning Model for Agents in
Dynamic and Uncertain Real-Time Environments. In
Proceedings of the Workshop on Integrating Planning,
Scheduling and Execution in Dynamic and Uncertain
Environments at the Fourth International Conference on
Artificial Intelligence Planning Systems (AIPS-98), 7-14.
Menlo Park, California: AAAI Press.

Nareyek, A. 2001. Constraint-Based Agents: An
Architecture for Constraint-Based Modeling and Local-
Search-Based Reasoning for Planning and Scheduling in
Open and Dynamic Worlds (LNAI 2062). Springer.

Nareyek, A. 2003. Planning to Plan - Integrating Control
Flow. In Proceedings of the International Workshop on
Heuristics (IWH'02), 79-84.

Nareyek, A.; Fourer, R.; Freuder, E. C.; Giunchiglia, E.;
Goldman, R. P.; Kautz, H.; Rintanen, J.; and Tate, A. 2005.
Constraints and AI Planning. IEEE Intelligent Systems
20(2): 62-72.

OMG. 2010. Unified Modeling Language (UML), Version
2.2, Formal specification, available at
http://www.omg.org/spec/UML/2.2/, Object Management
Group.

van Beek, P., and Chen, X. 1999. CPlan: A Constraint
Programming Approach to Planning. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence
(AAAI-99), 585-590.

Wolfman, S. A., and Weld, D. S. 1999. The LPSAT system
and its Application to Resource Planning. In Proceedings
of the Sixteenth International Joint Conference on
Artificial Intelligence, 310-316. Stockholm, Sweden.

