
Constructive Negation and Constraints

Roman Barták*

Department of Theoretical Computer Science, Charles University
Malostranské nám. 2/25, Praha 1, Czech Republic

e-mail: bartak@kti.mff.cuni.cz
URL: http://kti.ms.mff.cuni.cz/~bartak/

phone: +420-2 2191 4242
fax: +420-2 2191 4323

Abstract: Inclusion of negation into logic programs is considered
traditionally to be painful as the incorporation of full logic negation tends
to super-exponential time complexity of the prover. Therefore the
alternative approaches to negation in logic programs are studied and among
them, the procedural negation as failure sounds to be the most successful
and the most widely used. However, Constraint Logic Programming (CLP)
is offering a different approach called constructive negation, that is
becoming more popular.
In this paper we present a constructive approach to negation in logic
programs. We concentrate on implementation aspects of constructive
negation here, i.e., on the design of CLP(H) system, where H is the
Herbrand Universe.

Keywords: constructive negation, logic programming, constraints, CLP

1 Introduction

Logic programming, i.e., programming using definite clauses, does not allow negated
goals in the bodies of clauses. Also, it is known that incorporation of full logic
negation tends to super-exponential complexity of the prover. However, the inclusion
of some form of negation is required from the programming point of view and, thus,
the alternative approaches, mostly based on Reiter's Closed World Assumption
originated in databases, have been proposed.

Currently the most successful approach to negation in logic programming is
procedural negation as failure which is also a part of ISO standard of Prolog. The
operational behaviour of this form of negation can be easily described by the
following Prolog program:

not P:-P,!,fail.
not P.

The advantages of the negation as failure, or more precisely, the negation as finite
failure, make it attractive especially from the programming point of view. It uses sub-
derivations to determine negative goals, thus exploiting the efficiency of the
underlying logic programming system, and handling “special” features of the

* Partially supported by the Grant Agency of Czech Republic under the contract No
201/96/0197.

�

language, e.g., cut. However, the procedural negation as failure is known to have two
important drawbacks: it can be used safely on ground subgoals, and on some particular
types of non-ground goals, and it cannot generate any new bindings for query
variables.

To overcome the above mentioned drawbacks of negation as failure Chan [4]
introduced a new concept of constructive negation that extends the negation as failure
to handle non-ground negative subgoals in a constructive manner. Its name stresses
the fact that this form of negation is capable of constructing new bindings for query
variables.The constructive negation scheme inherits many of the advantages of
negation as failure, in particular it exploits the efficiency of the underlying logic
programming system, and it handles special features of the language as well. At the
same time, it removes the main drawbacks of negation as failure because constructive
negation can handle non-ground negative subgoals and generates new bindings for
query variables.

In [12] Stuckey proposed Constraint Logic Programming (CLP) as a much more
natural framework for describing constructive negation. The CLP framework was
developed in [5,7] and it is counted to be the lifesaver of logic programming for real-
life applications. In CLP(A) scheme, the Herbrand Universe is displaced by a
particular structure A which determines the meaning of the functions and (constraint)
relation symbols of the language. The constraint viewpoint of constraint logic
programming is well matched with constructive negation. Not only is constructive
negation easier to understand from this point view, but it gives the clean approach to
negation in constraint logic programming as well. More information on CLP can be
found in [3,6,7,13].

In this paper we concentrate on the implementation aspects of constructive
negation. In fact, we are interested in efficient implementation of the CLP(H) scheme
where H is the Herbrand Universe with equality and disequality constraints. We design
the constraint solver for solving equalities and disequalities over the Herbrand
Universe and we propose a filtering system to obtain relevant solutions. The
combination of the constraint solver with the filtering system enables us to
implement efficiently the constructive negation. The resulting system handles
negation in a more natural way which was the primary goal of this work. To justify
our approach, we have implemented the ideas from this paper in two software
prototypes.

The paper is organized as follows. In Section 2 we give motivation of this work.
In Section 3 we discuss briefly the constraint solving over the Herbrand Universe, in
particular solving equalities and disequalities and filtering the acquired solution. We
devote Section 4 to the practical aspects of implementation of the constructive
negation. In Section 5 we give some examples to compare the negation as failure
with the concept of constructive negation. We argue for constructive negation here as
it returns more natural solutions and preserves the declarative character of logic
programs. In Section 7 we briefly describe two software prototypes implementing
constructive negation. We conclude with some final remarks and description of future
research.

�

2 Motivation

The procedural negation as finite failure serves very well if applied to ground goals
but as soon as non-ground goals appear the results are disappointing. A rather
extensive literature related to this topic documents that the drawbacks of the negation
as failure tend to behaviour that corrupts the declarative character of logic programs as
the following example shows.

Example:
Let P be the following program:

u(a).
v(a).
v(c).

Now, if we solve the goal ?-not u(X),v(X) using the program P and the
ordinary negation as failure, we get the answer no . However, if the goal
?-v(X),not u(X) is solved, the solution is X=c . Note, that the only
difference between above two goals is the order of atomic goals so the
declarative character, and thus the solution, of the goals should be the same.

The above example shows that if the negation as failure is used with non-ground
goals, it could return non-intuitive solutions (for other examples see Section 5). To
avoid such non-intuitive behaviour and to keep the declarative character of logic
programs we shift our attention to the constructive negation which promises to handle
even the non-ground negative goals correctly. However, neither the pioneering works
on constructive negation [11,12] nor the recent works on CLP [3,6] provide enough
details to a successful implementation of the concept of constructive negation.

3 Constraint Solving over the Herbrand Universe

The traditional drawback of logic programms and Prolog is that they cannot handle
negative information in a constructive way, i.e., the disequality X≠Y can be used as a
test only. Because presence of disequalities is strongly desirable in the constructive
negation approach we choose the CLP(H), where H is the Herbrand Universe with
equality and disequality constraints, as a natural framework for understanding and
implementing constructive negation. Solving equalities displaces naturally unification
there, while disequalities can appear as a result of negating the solution of the goal.
Of course, there are no difficulties to allow presence of equalities and disequalities in
goals and in bodies of clauses as well.

The nature of equalities and disequalities in the Herbrand Universe enables us to
implement two relatively independent components of the constraint solver, the
component processing equalities and the other component processing disequalities.
The cooperation between these two components is following: if the component
responsible for equality solving resolves successfully the set of equalities then the
result, i.e., the valuation of variables, is applied to the set of disequalities and the
resulting disequalities are solved in the other component of the solver. It can be
shown that if any of the components fails then the system of equalities and

�

disequalities is inconsistent. Just note, that there is no need to iterate this process as
the solution of disequalities does not further influence the solution of equalities.

The easier part of the constraint solver is processing equalities as it corresponds
directly to the unification which is well understood [8]. To grasp formally the process
of equality solving, in [2] we introduce a normal form for system of equalities that is
a conjuction of equalities in the form x=t, where x is a variable and t is a term. Then,
each system of equalities can be solved by transforming to the normal form or it is
found to be inconsistent.

Similarly, in [2] we define the normal form for disequality that is [xi]≠[ti] where
[x i] is a list of variables and [ti] is a list of terms. Note, that the normal form
corresponds to the disjunction of simple disequalities xi≠ti. Again, each system of
disequalities can be solved by transforming to the normal form or it is found to be
inconsistent. To simplify the system of disequalities, in [2] we define the
subsumption relation between diseaqualities whose application removes some
unneeded disequalities in the conjunction of disequalities, e.g., X≠a subsumes
f(X,b)≠f(a,X).

Example:
initial system of disequalities: X≠a & f(X,Y,a)≠f(a,b,X) & h(Y,k(X))≠h(b,g(X))
the normal form: [X]≠[a]

(because f(X,Y,a)≠f(a,b,X) is subsumed by X≠a and h(Y,k(X))≠h(b,g(X)) is
a valid disequality)

In [2], we describe the algorithms for solving equalities and disequalities by
transforming them into normal form. These algorithms makes the basic constraint
solver in the CLP(H) system.

To complete the construction of the CLP(H) system, there remains to answer the
following question:

What should be presented to the user of the system as the result of computation?

The obvious extreme answers to the above question, i.e. nothing (yes/no answer) or
everything (all equalities and disequalities), are not suitable from the point of view of
constructive negation [2]. Also, the approach of most Prolog systems, which return
relevant (to the goal) equalities only, is not appropriate for constructive negation
because the negative information is lost (see examples in Section 5).

The result of above discussion is that relevant equalities and disequalities should
be returned as the solution of the goal. We call the process of selecting the relevant
equalities and disequalities filtering solution. First, the equalities relevant to the
variables in the goal are selected and, then, the disequalities relevant to the variables in
both the goal and the relevant equalities are selected. This is a novel approach to the
definition of relevance which approved to return intutive answers as the following
example shows.

�

Example:
Let P be the following CLP(H) program:

p(a).
p(f(Y,Z)):-q(Y),Z ≠c,U ≠d.
q(b).

The following schema captures the course of computation of the goal
?-X ≠a,p(X) using the program P. During the computation, the satisfiable
but not valid disequalities are collected to prune the further computation as you
can see at the left part of the schema which shows the course of computation.
We also label this part by equalities solved and by clauses used to reduce the
goal. To simplify the figure, we encapsulate the standardization apart. The
right part of the scheme represents the subsequent filtering of the computed
solution which is displayed bellow the schema.

X=f(b,Z),Z ≠c

Z≠c,U ≠d

U≠d

yes

X=f(Y,Z) p(f(Y,Z)):-q(Y),Z≠c,U≠d.

[Z ≠c]-U ≠d

[Z ≠c,U ≠d]-true

Y=b q(b).

Y=b,Z ≠c,U ≠d

[]-X ≠a,p(X)

[X ≠a]-p(X)

[]-g(Y),Z ≠c,U ≠d

[]-Z ≠c,U ≠d

X=f(b,Z),Z ≠c

X=f(b,Z),Y=b,Z≠c,U≠d

4 How to Negate the Solution?

By implementing CLP(H), where H is the Herbrand Universe with equality and
disequality constraints, we get the ideal framework for constructive negation. What
remains is to implement the concept of constructive negation itself.

The constructive negation is based on the following procedure:

1. take a negative subgoal,
2. run the positive version of this subgoal,
3. collect all solutions of this possibly non-ground subgoal as a disjunction,
4. negate the disjunction giving a formula equivalent to the negative subgoal.

Steps 1, 2 and 3 are handled naturally by the underlying inference machine, so we
have to describe only how the collected solution of the positive version of the goal is
negated. Remind that the solution of the goal is a conjunction of equalities and
disequalities in normal form relevant to the goal. We call such solution a single
solution. For the constructive negation one needs to collect all single solutions of the
positive version of the goal (step 3 above), so the disjunction of single solutions is
constructed. We call such solution a complete solution. This is different from the

�

negation as finite failure, where the existence of a single solution for the positive
version of the goal implies immediately the failure of negative goal. We will discuss
the efficiency of finding the complete solution later in this section.

Now, the question is how to negate the complete solution? We rely on the
following formula [12] which is a property of the Herbrand Universe:

(¬∃Y,Z (x=t & Q)) ⇔ (∀Y (x≠t) ∨ ∃Y (x=t & ¬∃Z Q)) (1)

where x is a variable that does not appear neither in t nor in Q, Y is the set of
variables in t (i.e., Y=vars(t)) and Z is the set of variables which appear in Q but not
in t (i.e., Z=vars(Q)—Y).

The semantic meaning of the formula (1) is the following: if one uses some
clause H:-B to solve the positive goal ?-G and then negates the obtained solution to
get a solution of the goal ?-not G then there are two alternatives:

(i) the clause H:-B is prevented to be used for reduction of G by disabling
unification of G and H (i.e., G≠H), or

(ii) the clause H:-B is used for reduction of the goal G, i.e., G=H, but the
solution of B is negated.

These two cases correspond roughly to two elements of the disjunction in formula (1).

The following example explains the process of finding the solution of negative
goal (for simplification we omit the quantifiers).

Example:
Let P be the program:

p(a).
p(f(Y)):-Y ≠b.

and the goal to solve be: ?-not p(X).

1) Run positive version of the goal:?-p(X).

2) Collect complete solution: X=a ∨ (X=f(Y) & Y ≠b)

3) Negate the complete solution: X≠a & (X≠f(Y) ∨ (X=f(Y) & Y=b))

4) Convert to DNF and simplify: (X≠a & X≠f(Y)) ∨ X=f(b)

i.e. ∀Y (X≠a & X≠f(Y)) ∨ ∃Y (X=f(b) & Y=b)

Note, that if we negate the acquired complete solution “mechanically”, i.e.,
without application of the above formula (1), we get the wrong solution
(X≠a & X≠f(Y)) ∨ (X≠a & Y=b).

At the beginning of this section, we mentioned that finding a complete solution of
the positive version of the goal can be the source of some inefficiency comparing to
the negation as failure. In general, this is true but the additional information in
disequalities can be exploited to prune the computational tree which subsequently
speeds up the interpreter.

When a negated goal is solved, all equalities and disequalities currently collected
are “frozen” and passed to the interpreter which is finding the complete solution of the
positive version of the goal. This “frozen information” is used to prune the

�

computational tree but, as the equalities and disequalities are frozen, they are not
returned in the solution (and thus negated) as the following example shows.

Example:
Let procedure p be defined by the following two clauses:

p(a):-… % arbitrary body here
p(b).

If one solves the goal ?-X ≠a,not p(X) , the frozen disequality X≠a is passed
to the solver when the complete solution of the goal ?-p(X) is being
computed. This prunes the computational tree, i.e., the clause p(a):-… is not
used to reduce the goal ?-p(X) , and the complete solution X=b is returned.
After negation and joining with the frozen disequality X≠a the solution
X≠a,X ≠b of the original goal is found.

5 Examples

The original goal of this work was to implement a negation in logic programs in
such a way that more intuitive solutions are produced and the declarative character of
the program is preserved. The following table shows a bundle of examples and a
comparison of solutions produced by the standard negation as finite failure (NF) and
by our implementation of constructive negation respectively. In the “constructive
negation column”, the alternative solutions of the goal are depicted as individual rows.

SOLUTION

PROGRAM GOAL NF CONSTRUCTIVE
NEGATION

?-p(X). no X=f(Y) & Y ≠a

p(f(Y)):-not q(Y). ?-not p(X). yes X≠f(Y)

q(a). X=f(a)

?-not not p(X). no X=f(Y) & Y ≠a

s(f(Y)):-not r(Y). ?-s(X). no no

r(Z). ?-not s(X). yes yes

p(a,f(Z)):-t(Z). ?-not p(X,Y). no X≠a & X ≠f(c)

p(f(Z),b):-t(Z). X≠f(c) & Y ≠f(c)

t(c). X≠a & Y ≠b

Y≠f(c) & Y ≠b

u(a). ?-not(u(X),v(X)). no X≠a

u(b). ?-not u(X), not v(X). no X≠a & X ≠b & X ≠c

v(a). ?-not u(X), v(X). no X=c

v(c). ?-v(X), not u(X). X=c X=c

Comparison - Negation as Failure vs. Constructive Negation

�

6 Implementation

To test ideas described in this paper we have implemented two software prototypes in
Prolog based on concepts of meta-interpretation and meta-variables respectively.

Because the implementation of CLP(H) requires changes of the inference machine
of Prolog, we use a standard technique called meta-interpretation first. We utilize the
concept of extendible meta-interpreter which we proposed in our previous papers [1].
Extendible meta-interpreter is a meta-interpreter whose functionality can be extended
via plug-in modules. We have implemented the constraint solver and the solution
filter as such plug-in modules. The advantage of using meta-intepreters to change the
standard behaviour of Prolog is that the original program and goal need not be
changed. The main disadvantage of meta-intepreters is the slow down of the
computation.

The second implementation utilizes the concept of meta-variables [10] and open
architecture of Prolog [9]. Meta-variables are a way to extend Prolog’s built-in
unification by user definitions. First, we implemented a library that can be attached to
arbitrary Prolog program to add functionality of meta-variables. Then, we redefined
standard unification using the meta-variable concept, we implemented a disequality
solver and we added a constructive negation construct cnot . The advantage of this
approach is that the underlying Prolog interpreter is exploited as much as possible and
thus the efficiency is preserved. The little drawback of this approach is that the
original program and the goal have to be rewritten to use the “changed” unification
and cnot construct.

The Prolog source code of both implementations is available on-line at URL:
http://kti.ms.mff.cuni.cz/~bartak/html/negation.html .

7 Conclusions

In this paper we present a complete implementation of the constructive negation
within the CLP(H) framework, where H is the Herbrand Universe with equality and
disequality constraints. We design the constraint solver for solving equalities and
disequalities over the Herbrand Universe and we also propose a filtering system to
obtain relevant solutions. Finally, we exploit the foundation of CLP(H) to implement
naturally the constructive negation. We also highlight some problems which appear
during the implementation and we propose the solution of these problems.

We strongly argue for using constructive negation here as it provides more
natural results than the widely used negation as failure. Also, we show that the
constructive negation preserves better the declarative character of logic programs. By
implementing the proposed CLP(H) system we prove that it is possible to incorporate
constructive negation efficiently.

There is still a lot of opportunities for further research. Very interesting area is
incorporation of constructive negation into CLP(A) over arbitrary domain A or into
Hierarchical CLP (HCLP). Both CLP and HCLP are important from the point of
view of real-life applications.

�

The main contribution of this work is that it shows a real implementation of
constructive negation supported by the underlying theory.

Acknowledgments

I would like to thank professor Petr � 	
 � �
 � � for his continuous support, useful
discussions and comments on prerelease version of the paper.

References

[1] Barták, R. and � 	
 � �
 � � , P., Extendible Meta-Interpreters, KYBERNETIKA,
Volume 33(1997), Number 3, pp. 291-310

[2] Barták, R., Constructive Negation in CLP(H), submitted to CP'98 conference
[3] Benhamou, F. and Colmerauer, A. (eds.), Constraint Logic Programming-

Selected Research, The MIT Press, Cambridge, Massachusetts, 1993
[4] Chan, D., Constructive Negation Based on Completed Database, in:

Proceedings of 5th International Conference on Logic Programming, Seattle,
1988, pp. 111-125

[5] Gallaire, H., Logic programming: Further developments, in: IEEE Symposium
on Logic Programming, pp. 88-99, IEEE, Boston, July 1985

[6] Jaffar, J., Maher, M.J., Constraint Logic Programming: A Survey, in: Journal
of Logic Programming 19, pp. 503-581, 1994

[7] Jaffar, J., Lassez, J.-L., Constraint Logic Programming, in: Proceedings of the
14th ACM Symposium on Principles of Programming Languages, pp. 111-
119, Munich, Germany, January 1987

[8] Lloyd, J.W., Foundations of Logic Programming, Springer-Verlag, Berlin,
1984

[9] Meier, M., Schimpf, J., An Architecture for Prolog Extensions, TR ECRC-95-
6, ECRC, 1995

[10] Neumerkel, U., Extensible Unification by Metastructures, in: Proceedings of
META`90, 1990

[11] Przymusinsky, T. C., On Constructive Negation in Logic Programming,
Extended Abstract, 1991

[12] Stuckey, P. J., Constructive Negation for Constraint Logic Programming, in:
Proceedings of Logic in Computer Science Conference, 1991, pp. 328-339

[13] Van Hentenryck, P., Constraint Satisfaction in Logic Programming, Logic
Programming Series, The MIT Press, 1989

