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Abstract Users of automated scheduling systems frequently require an interactive approach to 
scheduling where they can manually modify the schedules. Because of complexity and 
cohesion of scheduling relations, it may happen that manual modification introduces flaws to 
the schedule, namely the altered schedule violates some constraints such as precedence 
relations or limited capacity of resources. It is useful to automatically correct these flaws while 
minimizing other required changes of the schedule. In this paper we suggest a fully automated 
approach to correcting violated precedence and unary resource constraints. The presented 
techniques attempt to alter minimally the existing schedule by doing the changes only locally 
in the area of the flaw.  

1 Introduction 

Fully automated scheduling seems like the Holy Grail of scheduling community, but most 
practitioners frequently require the freedom of manually altering the generated schedules, for 
example, to introduce some aspects of the particular area that were hard to formalize and hence 
are not reflected in the automatically generated schedule. Despite the high experience of 
human schedulers, there is a high probability that after a manual modification some flaws are 
introduced to the schedule. This probability is higher if the density of scheduling constraints is 
large and the constraints are highly coupled. For example, delaying one activity may delay 
other dependent activities due to precedence constraints between them or due to limited 
capacity of resources. It might be enough just to detect such violations and report them to the 
user who will be responsible for manual correction. Nevertheless, such manual corrections 
may be boring and sometimes very hard because of interconnectivity of the constraints 
(correction of one flaw introduces other flaws etc.).  Hence we suggest a fully automated 
(“push button”) approach to correcting schedules after manual modification. Namely, we 
address the problem of correcting precedence constraints and unary resource constraints by 
shifting locally the affected activities in time. 
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This paper studies the problem of correcting general schedules consisting of a set of non-
interruptible activities with fixed durations; each activity is allocated to one or several unary 
resources (at most one activity can be processed at any time by a unary resource, but the 
activity may require more resources at the same time) and the activities are connected via 
precedence constraints (activity can start only after all its predecessors finished). The primary 
motivation for the research is providing an automated tool for correcting manually altered 
schedules in interactive Gantt chart environments (a “push button” approach). Nevertheless, 
the proposed repair techniques can also be used for example in the intensification stage of 
scheduling algorithms based on genetic algorithms or meta-heuristics. From another 
perspective, the proposed techniques belong to the group of re-scheduling algorithms. 

We assume that the initial allocation of all activities to time (an initial schedule) is 
known. This time allocation may violate some precedence constraints (activity starts before 
some of its predecessors finishes) or some resource constraints (two or more activities are 
processed at the same time by the same resource). The goal is to correct the schedule (re-
schedule) by shifting the activities in time, that is, to find a feasible schedule that does not 
violate any constraint. Moreover, the new schedule should not differ a lot from the initial time 
allocation of activities. Note that finding a feasible schedule is always possible unless there is a 
loop in the precedence constraints – activities can always be shifted to future as there are no 
deadlines. To minimize the number of changes between the initial and final schedule we apply 
a local approach, where particular flaws are repaired by local changes of affected activities 
rather than generating a completely new schedule from scratch. A local repair may introduce 
other flaws in the neighborhood which spread like a wave until all flaws are resolved. We use a 
three-step approach to repair a schedule. In the first step, loops of precedence constraints are 
detected and the user is asked to break each loop by removing at least one precedence 
constraint from it. In the second step, we repair all precedence constraints; two methods are 
suggested for this repair. Finally in the third step we repair violation of resource capacity 
constraints while keeping the precedence constraints valid. Each repair is realized by shifting 
affected activities locally in time. 

The paper is organized as follows. First, a formal definition of the scheduling problem is 
given. Then we discuss some existing techniques that can be applied to schedule repair. After 
that, our three-stage approach to schedule repair is described in detail and proof of soundness 
is given. In conclusion we briefly discuss possible future steps. 

2 Problem formulation 

We use a fairy general description of the scheduling problem that fits especially fields such as 
construction and production scheduling. The Resource-Constrained Project Scheduling 
Problem (RCPSP) [3] is probably the closest classical scheduling problem though there are 
some differences as described below. 

We assume a finite set of activities Act, each activity A ∈ Act has a fixed duration dA and 
it is non-interruptible (activity must run from its start till its end without interruption). Let sA 
be the start time of activity A – the minimum start time of any activity is zero (schedule start), 
but there is no deadline. There is a set Prec of precedence constraints between the activities in 
the form (A→B); A is called a predecessor of B and B is called a successor of A. Formally for 
each precedence relation (A→B) ∈ Prec the following constraint must hold: 
 sA + dA ≤ sB (1) 

Let Res be a finite set of unary resources, that is, each resource can process at most one 
activity at any time. For each activity A ∈ Act there is a set of required resources r(A) ⊆ Res. 
Activity A requires all resources from the set r(A) for processing, that is, A occupies each 
resource R ∈ r(A) for the time period 〈 sA, sA + dA 〉. The resource constraints can be formally 
expressed in the following way: 
 ∀A,B∈ Act s.t. r(A) ∩ r(B) ≠ ∅: sA + dA ≤ sB ∨ sB + dB ≤ sA (2) 
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The above resource constraint says that two activities A and B sharing the same resource 
cannot overlap in time (either A precedes B or B precedes A). 

A schedule is a particular allocation of activities to time, formally it is a mapping of all 
variables sA to natural numbers N0 (including zero). A feasible schedule is a schedule that 
satisfies constraints (1) and (2). Notice that resource allocation is not part of the problem 
(activities are already allocated to resources). It is easy to prove that a feasible schedule always 
exists provided that there is no loop in the precedence constraints (for example A→B→C→A). 
It is possible to topologically order all activities respecting the precedence constraints 
(precedence constraints define the partial ordering of activities) and then to allocate activities 
in this order to earliest possible times while respecting the precedence (1) and resource (2) 
constraints (activity can always be shifted to future if resource is not available at some time). 

We do not assume any particular objective function in our scheduling problem. Makespan 
is a typical objective for RCPSP and other scheduling problems and our techniques for 
schedule repair try not to extend the makespan a lot beyond the makespan of the initial 
schedule. Though keeping the schedule compact (with small makespan) we are not really 
optimizing makespan or any other objective function. One of the reasons is that real-life 
objectives are frequently different from makespan (for example on-time-in-full is required) and 
it is hard or even impossible to formally express the real objective. Hence, we use the 
assumption that the initial schedule has a good quality from the user point of view and so the 
repaired schedule should not differ a lot from the initial schedule. Nevertheless, minimizing 
the difference between the schedules is more the nature of the presented repair techniques 
(repairing flaws locally) than formal minimization of the difference between the schedules as 
for example studied in [5,2]. 

The problem that we are solving in this paper can be stated as follows: given some 
schedule S, find a feasible schedule S’ that does not differ a lot from S. The difference between 
schedules S and S’ can be formalized in the following way: 

 difference(S,S’) = ΣA∈ Act | sA – s’A | (3) 

where sA is the start time of activity A in S and s’A is the start time of A in S’. Notice that the 
only way to modify the schedule is via changing values of variables sA. As mentioned above, 
we are not strictly minimizing the objective (3), we are trying to achieve a good value of 
difference(S,S’) by changing the values of sA as little as possible (locally) to repair a violated 
constraint. 

3 Related works 

Dynamic scheduling is not a new area and though most scheduling research still focuses on 
static problems that do not change over time, there is an enlarging interest in studying dynamic 
aspects of scheduling [6]. This is mainly due to real-life scheduling problems that are primarily 
dynamic – machines break down, deliveries are delayed, workers become ill etc. As mentioned 
in the introduction, our motivation is slightly different and it goes from the area of interactive 
scheduling, where we need to repair manually modified schedules to satisfy all constraints. 
Nevertheless, the used technology is very similar. 

The simplest approach to re-scheduling is generating a new schedule from scratch, also 
called total re-scheduling. This is the best technique when there are many disruptions in the 
schedule, but it has the disadvantage of generating a schedule completely different from the 
original schedule. We focus more on local repairs of the schedule with the motivation to keep 
the schedule similar to the original schedule. The method of generating a new schedule from 
scratch can be “localized” by removing some elements from the schedule and then adding 
them back without violation of constraints. Iterative Flattening Search [8] is an example of 
such a method where in the relaxation step all violated (and some other) constraints are 
removed from the problem (typically decisions about the ordering of activities) and then in the 
flattening stage the possible conflicts in the schedule are resolved by adding the constraints 
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back. Naturally, the question is how to relax the schedule to be able to resolve all possible 
conflicts (in the extreme case, all decision constraints are removed). Iterative Forward Search 
[7] uses a similar approach but it removes activities participating in violated constraints and 
then schedules these activities again. It has been proposed originally for timetabling problems 
with limited temporal constraints but for scheduling problems with temporally connected 
activities it may require re-scheduling many activities as it works with partial consistent 
schedules. Nevertheless, thanks to iterative improvements of schedules, this approach has been 
successfully applied to minimal perturbation problems (MPP) introduced in [5] and redefined 
in [2]. MPP focuses on finding a solution to a modified problem with minimal differences 
(perturbations) from the solution of the original problem. Hence, it is a primarily optimization 
problem with a specific objective function defined by the original solution. MPP can be solved 
from scratch like other optimization problems, for example using search techniques [2]. 

The approach studied in this paper belongs to heuristic-based repair algorithms where 
right shift rescheduling and affected operation rescheduling are the most frequently used 
techniques. Right shift rescheduling [4] repair is performed by globally shifting all remaining 
activities forward in time by the amount of disruption time. This introduces a gap in the 
schedule and it is not really appropriate for our type of problem. Affected operations 
rescheduling [1] reschedules only the activities that are directly or indirectly affected by the 
disruption. This heuristic was proposed to repair machine breakdowns but its generalization 
called modified Affected Operations Rescheduling [9] has been proposed to repair other 
typical disruptions seen in a job shop. We follow the idea of affected operations rescheduling 
but rather that assuming specific repair rules and repair operations such as insertion or deletion 
of activity, we allow only shifting the existing activity in time both forward and backward. 
Moreover, our techniques are designed to repair any number of constraint violations in the 
schedule. Recall that we are repairing manually modified schedules with flaws rather than 
reacting to instant disruptions from the job shop. Hence there might be more flaws spread in 
the schedule and we need to repair all of them while keeping the schedule as similar as 
possible to the original schedule. 

4 Re-scheduling (repair) algorithm 

As we already mentioned, we assume a typical scenario, where the human scheduler modifies 
an automatically generated schedule to reflect better the peculiarities of particular 
environment. The modification can affect any part of the scheduling problem introduced above 
– it is possible to change duration of activities, their position in time and required resources, to 
add or delete precedence constraints or even to add or delete activities and resources (in case of 
changing the set of activities, it is necessary to introduce a different measure of schedule 
difference, see for example [2]). By these modifications, it is quite easy to obtain an infeasible 
schedule where some of precedence or resource constraints are violated (we call the violated 
constraint a flaw). Though it is easy to detect and visualize the violated constraints (see Figure 
1), it is frequently more complicated to repair them without introducing other flaws. 
 

        

Fig. 1. Gantt charts visualization of violated precedence (left) and resource (right) constraint. 
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 We suggest a schedule-repair method that mimics the behavior of a human scheduler by 

repairing flaws via local changes of time allocation of activities participating in the flaw. 
Naturally, this may introduce other flaws which need to be repaired and hence a systematic 
approach is necessary to prevent an infinite number of repairs (repairing one flaw introduces 
another flaw whose repair brings back the original flaw etc.). While such a systematic 
approach may be boring for a human, it is easy for a computer. The suggested method consists 
of three stages: 

- detecting and breaking loops of precedence constraints, 
- repairing violated precedence constraints, 
- repairing violated resource constraints. 

By modifying the set of precedence constraints, the user may unwittingly introduce a cycle 
between activities which prevents existence of the feasible schedule. Hence the first stage is 
detecting such loops and asking the user to remove some precedence constraint from each such 
loop. This is the only stage where user intervention is necessary1; the other two repair stages 
are fully automated. Recall that if there are no loops of precedence constraints then a feasible 
schedule always exists. In the following sections we will describe each stage in more details. 

4.1 Loop detection 

We represent the scheduling problem as a directed graph G = (E,V), where the set V of nodes 
equals the set Act of activities and there is edge (A,B) in E if and only if (A→B) ∈ Prec. There 
exist standard methods for finding cycles in graphs and we adopted one of them. The method 
is based on repeating the following three steps until an empty graph is obtained: 

1. repeatedly delete all nodes N from the graph such that there is either no incoming 
edge (X,N) ∈ E or no outgoing edge  (N,X) ∈ E; after this step, each remaining node 
in the graph has at least one predecessor and one successor 

2. select any node from the graph (we use the node with the largest number of 
successors) and find a loop by depth-first search going in the direction of edges 

3. present the loop to the user (in terms of activities) and remove the edge(s) suggested 
by the user (the particular precedence is also removed from Prec). 

It is easy to prove that the above method removes all loops from the precedence constraints. In 
particular, by DFS in step 2 we must find a loop because each node has a successor (after step 
1) and there is a finite number of nodes so at some time some node must be visited for the 
second time so the path between the first and second visit forms a loop. As we stop with an 
empty graph, no loops remain in the graph. 

4.2 Precedence repair techniques 

The goal of the second stage of the repair algorithm is to remove violation of all precedence 
constraints (1). This is possible for any schedule that does not contain loops in precedence 
relations which is exactly the schedule resulting from the first stage described in the previous 
section. We ignore violation of resource capacity constraints (2) at this stage. 

The precedence (A→B) ∈ Prec is violated if sA + dA > sB. The size of violation can be 
described by the following variable: 

diff(A,B) = sA + dA – sB. 

                                                            
1
 It is possible to randomly remove some precedence constraint from each loop or even to minimize the number of 
removed precedence constraints to break all loops, but in our opinion, the human decision is more appropriate. 
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Cleary, diff(A,B) is positive if and only if precedence (A→B) is violated. To locally repair the 
violated precedence (A→B) we can shift A backward in time (decrease sA) or shift B forward 
in time (increase sB) or shift together A backward and B forward. Naturally, if we do not want 
to stretch the schedule (increase makespan) then decreasing sA as much as possible (but no 
more than constraint (1) requires) is the preferred way of repair. To find out how much time is 
available for shifting A backward we introduce the following variable: 

freeOnLeft(A) = sA if A has no predecessors 
 sA – ( slp(A) + dlp(A) ) if A has some predecessor and lp(A) denotes 

the latest predecessor of A in the schedule; 
lp(A) = argmax C: (C→A) ∈ Prec (sC + dC). 

The straightforward technique of repairing a violated precedence constraint (A→B) is shifting 
A backward as much as possible and then shifting B forward if necessary. This can be formally 
described by the following assignments: 
 sA ← sA – min( freeOnLeft(A), diff(A,B) ) 
 sB ← sA + dA 
Clearly, after making the suggested modification of start times sA and sB, the precedence 
relation (A→B) is satisfied (sB = sA + dA). However, does it always realize the idea of shifting 
A backward? If all precedence constraints (C→A) are satisfied then freeOnLeft(A) ≥ 0 because 
sA ≥ 0 (definition of sA) and ∀C∈ Act s.t. (C→A) ∈ Pre:  sA ≥ sC + dC (according to (1)). 
However, if some (C→A) is violated then freeOnLeft(A) < 0 which actually means that A is 
shifted forward (sA is increased) when repairing precedence (A→B). To prevent this unwanted 
behavior, it is enough to ensure that all precedence constraints (C→A) are satisfied before 
repairing the precedence constraint (A→B). Moreover, in such a case all precedence 
constraints (C→A) still remain valid after repairing (A→B). Hence, if we repair the violated 
precedence constraints in the right order, namely from left to right, then it is enough to repair 
each violation exactly once. Let us assign a unique index i to each precedence (A→B), denoted 
(A→B)i, in such a way that if we have two indexed precedence relations (A→B)i and (B→C)j 
then i < j. This can be easily realized by sorting first the activities according to the topological 
order satisfying the partial order defined by the precedence relations (this is always possible as 
there are no cycles) and then indexing the precedence relations according to this order (see 
Figure 2). 

2  4 5

1  3  6

 
Fig. 2. Possible topological ordering of precedence constraints. 

 
After defining the order of precedence relations the following pseudo-code PrecRep describes 
the repair algorithm: 
 
 algorithm PrecRep 
1  while any precedence is violated do 
2   select violated precedence (A→B)i such that i is minimal  
3   sA ← sA – min( freeOnLeft(A), diff(A,B) ) 
4   s  ← s  + dA B A

  end while 5
 end PrecRep 
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Proposition 1: Algorithm PrecRep is sound and complete with respect to producing a schedule 
without violation of precedence constraints. 

Proof: Clearly, if the algorithm stops then there are no violated precedence constraints in the 
schedule (because of the condition in the while loop). Hence it is enough to show that the 
algorithm stops after a finite number of steps. In each iteration the algorithm repairs (at least) 
one precedence constraint. The precedence relations are repaired in the order of their indexes 
so when (A→B)i is being repaired then all (X→Y)j such that j < i are satisfied (have already 
been repaired). Moreover, no such relation (X→Y)j where j < i is violated by the repair of 
(A→B)i. Note that only relations  (C→A) and  (B→D) are influenced by the repair of (A→B) 
because we can only shift A backward and B forward. Satisfaction of other precedence 
relations involving A or B, namely (A→C) and (D→B), is not influenced by the repair. As we 
already discussed, relations (C→A) are not violated by the repair. According to the ordering of 
precedence relations, relations (B→D)k have larger index than (A→B)i (k > i). In summary, 
after each iteration of the while loop we increase index k such that ∀j ≤ k (X→Y)j is satisfied 
by at least one. Hence, after at most m iterations, where m is the number of precedence 
constraints in the schedule (the largest index), we repair all precedence relations.  
 
Algorithm PrecRep represents a straightforward way of repairing precedence constraints. 
Unfortunately, it can shift activities forward more than necessary and hence it can increase 
makespan and make the schedule less compact. Though the algorithm can shift activity A 
backward when repairing (A→B), it can shift A at most as the latest predecessor lp(A) of A 
allows (see the definition of FreeOnLeft). Hence lp(A) may block shifting A backward even if 
there is time. In particular, it might be possible to shift lp(A) backward as well and hence to 
increase the time available for A (see Figure 3). To improve this behavior, we suggest a 
modification of the repair algorithm called PrecRep-2 that exploits better available time on the 
left of activity A by shifting it beyond the horizon defined by lp(A). 

 
Fig. 3. Algorithm PrecRep does not exploit fully available time on left of D. 

 
The idea of PrecRep-2 algorithm is to shift A backward similarly to PrecRep, but if this is not 
enough to satisfy the constraint (A→B) (diff(A,B) is still positive) then we shift A backward 
slightly more, in particular by truncate(diff(A,B)/2), where truncate(X) is the closest integer 
between X and 0, for example truncate(3.7) = 3. This way, we violate the constraint 
(lp(A)→A) which can be repaired later by shifting lp(A) backward  and so on. By this process, 
we can exploit better available time by shrinking the schedule. We only ensure that we do not 
violate the constraint 0 ≤ sA so the schedule does not stretch beyond the schedule start. 
 
 algorithm PrecRep-2 
1  while any precedence is violated do 
2   select violated precedence (A→B)i such that i is minimal  
3   sA ← sA – min( freeOnLeft(A), diff(A,B) ) 
4   sA ← max( 0, sA – truncate(diff(A,B)/2) ) 
5   s  ← s  + dA B A

6  end while 
 end PrecRep-2 

 

D 

B 

C 

D 

A 

C

A

unexploited 
time

B
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Lemma 1: If algorithm PrecRep-2 repairs precedence (A→B)i then after a finite number of 
iterations, the algorithm reaches a situation when all (X→Y)j such that j ≤ i are satisfied. 
Moreover, the final start time sA is not greater than the start time of A before repair of (A→B). 

Proof: We shall prove the lemma by induction on the index of the repaired precedence. For 
i = 1 the lemma trivially holds, because the precedence (A→B)1 is repaired by the algorithm 
and sA is not increased. When the algorithm started the repair of precedence (A→B)i, i > 1, all 
(X→Y)j such that j < i were satisfied. If these precedence relations are still satisfied after the 
repair then the lemma holds. 

Assume that some precedence (C→A) has been violated by the backward shift of A. This 
may happen only after the assignment at line 4 so let old_sA be the value of sA before 
processing line 4 and new_sA be the value of sA after processing line 4. Note that if A starts at 
old_sA then no precedence constraint (C→A) is violated. Let us take the violated precedence 
constraint (C→A)i with the smallest index i that will be repaired next. According to the 
induction assumption, it is possible to repair this constraint and the value of sC does not 
increase. Hence the new value of sA is not greater than old_sA because old_sA satisfied the 
constraint (C→A) and sC did not increase above its original value. In the same way, we can 
repair all violated precedence constraints (C→A) to reach the situation when all (X→Y)j such 
that j < i are satisfied again. The final value of sA will not be greater than old_sA. 

Unfortunately, the constraint (A→B)i may be violated again (when sA increases) and we 
need to repair it. Nevertheless, one should realize that diff(A,B) is now strictly smaller than it 
was before we repaired the constraint (A→B) for the first time. Note that when A starts at 
new_sA then the constraint (A→B) is satisfied – we repaired it this way. However, after 
repairing all (C→A), the value of sA might increase as much as to old_sA (new_sA < old_sA) so 
the new diff(A,B) ≤ old_sA – new_sA. From line 4 of the algorithm, we can see that new 
diff(A,B) is at most half of the original diff(A,B). Anyway, we need to repeat the above 
process again and next time diff(A,B) will be even smaller. In the worst case, we stop when 
diff(A,B) = 1 because then the assignment at line 4 does not change sA and hence no constraint 
(C→A) is violated so we reached the situation when all (X→Y)j such that j ≤ i are satisfied. 
Moreover, we can see that sA never went above old_sA, which is not larger than the original 
value of sA (old_sA may be smaller than sA because sA might be decreased at line 3).  
 
Proposition 2: Algorithm PrecRep-2 is sound and complete with respect to producing a 
schedule without violation of precedence constraints. 

Proof: If the algorithm stops then there are no violated precedence constraints in the schedule 
(because of the condition in the while loop) so the algorithm is sound. To prove completeness, 
it is necessary to show that the algorithm stops after a finite number of iterations (recall that a 
feasible schedule always exists). The precedence relations are repaired in the order of their 
indexes. According to lemma 1 after (A→B)i is repaired then in a finite number of iterations 
the algorithm reaches a situation when all (X→Y)j such that j ≤ i are satisfied.  Hence, in the 
next step we will be repairing some precedence (C→D)k where k > i (if any such violated 
precedence still exists). Again, according to lemma 1 we can reach the situation when all 
(X→Y)j such that j ≤ k are satisfied. We can continue this way until we reach the last index m. 
In summary, after a finite number of iterations the algorithm repairs all precedence constraints 
– the algorithm reaches a situation when all (X→Y)j such that j ≤ m are satisfied.  
 
Algorithm PrecRep-2 exploits better available time (see Figure 4) but it is slower than PrecRep 
due to repeated “shrink-and-stretch” stages after violating the already repaired constraints. The 
open question is if the time complexity of PrecRep-2 can be improved for example by 
memorizing how much time is actually available for backward shifts (to prevent the stretch 
stage). 
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Fig. 4. Algorithm PrecRep-2 exploits better available time on left of D. 

4.3 Resource capacity repair technique 

The final stage of the proposed repair algorithm consists of repairing resource conflicts. Recall 
that activities require for their processing unary resources; it is possible that an activity 
requires more than one resource (for example machine, tool, and worker). There is a resource 
conflict if two (or more) activities require the same resource at the same time. 

From the previous stage we have a schedule that does not violate precedence constraints 
so it is either feasible or some resource constraints are violated. We now present a technique 
that repairs resource conflicts while keeping the precedence constraints satisfied. This 
technique resolves the conflict by shifting one of the activities forward in time. The algorithm 
ResRep iteratively repairs resource conflicts and each time a new precedence conflict is 
introduced then all precedence conflicts are repaired before continuing to the next resource 
conflict. By sweeping the schedule from past to future we remove all violated constraints 
(recall that there are no deadlines so any activity can be shifted forward).  
 
 algorithm ResRep 
1  while any constraint is violated do 
2   if precedence is violated then 
3    select violated precedence (A→B) with smallest sA 
3   else 
4    let A,B be activities violating resource constraint (2) 
5    such that sA ≤ sB and sA is smallest among such pairs 
6   end if 
7   s  ← s  + dA B A

8  end while 
 end ResRep 

 
Proposition 3: Algorithm ResRep is sound and complete (produces a feasible schedule). 

Proof: If the algorithm stops then there are no violated constraints in the schedule (because of 
the condition in the while loop) so the final schedule is feasible and the algorithm is sound. To 
prove completeness, it is necessary to show that the algorithm stops after a finite number of 
iterations (recall that a feasible schedule always exists). We prove the proposition by showing 
that the number of possible conflicts decreases as we sweep the schedule from past to future. 
At the beginning, no precedence constraints were violated so some resource constraint must be 
violated. Let t be the smallest time such that for some activity A with sA = t there is a violated 
resource constraint (2) between A and B. The constraint is repaired by shifting B forward to 
start after activity A (line 7 of the algorithm), which may violate some precedence constraints 
(B→C). These violated precedence constraints will be repaired in next iterations of the 
algorithm (repairing precedence constraints is preferred to repairing resource conflicts) by 
shifting C forward etc. It may happen that during these repairs some new resource conflicts are 
introduced. However, all these new resource conflicts “start” after time t; formally, for any 
new resource conflict between activities C and D, t < sC and t < sD hold. The reason is that the 
conflicting activity, say C, that was shifted forward by the precedence repair steps now starts 
after sA + dA. The other activity D must start after t as well because otherwise there was 
already a resource conflict between C and D. 

B 

C 

D

C

B

AA 
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In summary, after repairing the resource conflict between A and B starting at time t and 
“propagating” it to all precedence constraints, no other resource conflict starting at or before t 
was added. As there is a limited number of resource conflicts, after a finite number of 
iterations, all resource conflicts starting at t are repaired and one of the former conflicting 
activities still starts at t. Now we can move to the next resource conflict which starts at time 
t’ > t. Because the number of activities starting at or after t‘ is strictly smaller than the number 
of activities starting at or after t, the maximal number of possible conflicts is also smaller. This 
upper bound can be simply the number of all pairs of activities starting at or after t. Hence by 
shifting forward in time, the upper bound on the number of possible conflicts decreases and 
therefore the algorithm repairs all conflicts after a finite number of iterations.  

5 Conclusions 

The paper proposes a novel local repair technique for correcting violated precedence and 
resource constraints in RCPSP-like scheduling problems. By doing local repair steps, the 
schedule changes only locally in the area of the flaw, which is the main advantage over re-
scheduling from scratch. Moreover, the proposed techniques are fully automated and problem 
independent so it is not necessary to describe specific repair rules for the problem as for 
example in modified Affected Operations Rescheduling [9]. To repair violated precedence 
constraints, we can shift activities to left (past) which keeps the schedule more compact in 
comparison with Right shift rescheduling [4]. Last but not least, the proposed method can 
repair any number of precedence and resources conflicts while traditional schedule repair 
algorithms work with a single disruption. Hence our method is appropriate for repairing 
schedules where several disruptions are scattered in time and on resources, which is typical for 
manually modified/constructed schedules. 

We implemented the proposed techniques within an interactive Gantt viewer (Figure 1). 
Thought that exist many interactive Gantt viewers we are not aware about anyone providing 
automated schedule repair. Hence the main focus of the paper is on the formal description of 
the repair techniques and on theoretical justification of their soundness and completeness. 

All presented techniques exploit the feature of the problem that there are no deadlines so 
it is always possible to shift activity forward in time. Nevertheless, when repairing the 
precedence constraints we tried to exploit also free time before the activity, that is, to shift 
activities backward. The main motivation was to keep the schedule as compact as possible (not 
to increase makespan a lot). We proposed two alternative repair techniques with the tradeoff 
between the compactness of the schedule and the speed of the technique. The technique 
producing more compact schedules can probably be speeded-up by using additional 
information during computation. This is a topic of future work. The current technique for 
repairing resource conflicts shifts activities only forward so another open question is whether 
the ideas from precedence repairs (backward shifts) can be used there. 

Acknowledgements The research is supported by the Czech Science Foundation under the 
contract no. 201/07/0205. 

BA

D 

B 

C 

A 

DC
tt 

old resource 
conflict 

new resource 
conflict 

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

516



References 

1. Abumaizar RJ, Svestka JA, Rescheduling job shops under random disruptions. 
International Journal of Production Research 35(7):2065–2082 (1997) 

2. Barták R, Müller T, Rudová H, Minimal Perturbation Problem – A Formal View. Neural 
Network World 13(5): 501–511 (2003) 

3. Błazewicz J, Lenstra JK, and Rinnooy Kan AHG. Scheduling projects to resource 
constraints: Classification and complexity. Discrete Applied Mathematics, 5:11–24 
(1983) 

4. Brandimarte P, Rigodanza M, Roero L, Conceptual modeling of an object oriented 
scheduling architecture based on the shifting bottleneck procedure. IIE Transactions 
32(10):921–929 (2000) 

5. El Sakkout H, Richards T, Wallace M, Minimal Perturbation in dynamic scheduling. 
Proceedings of the 13th European Conference on Artificial Intelligence (ECAI98). John 
Wiley & Sons (1998) 

6. Kocjan W, Dynamic Scheduling – State of the Art Report. SICS Technical Report 
T2002:28. SICS (2002) 

7. Müller T, Barták R, Rudová H, Iterative Forward Search Algorithm: Combining Local 
Search with Maintaining Arc Consistency and a Conflict-Based Statistics. LSCS'04 - 
International Workshop on Local Search Techniques in Constraint Satisfaction (2004) 

8. Oddi A, Policella N, Cesta A, Smith SF, Boosting the Performance of Iterative Flattening 
Search. AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, LNCS 
4733, pp. 447–458, Springer Verlag (2007) 

9. Subramaniam V, Raheja AS, mAOR: A heuristic-based reactive repair mechanism for job 
shop schedules. The International Journal of Advanced Manufacturing Technology 22: 
669–680 (2003) 

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

517




