
Roman Barták
Charles University in Prague, Faculty of Mathematics and Physics
E-mail: bartak@ktiml.mff.cuni.cz

Tomáš Skalický
Charles University in Prague, Faculty of Mathematics and Physics
E-mail: skalicky.tomas@gmail.com

MISTA 2009

A local approach to automated correction of violated precedence and
resource constraints in manually altered schedules

Roman Barták • Tomáš Skalický

Abstract Users of automated scheduling systems frequently require an interactive approach to
scheduling where they can manually modify the schedules. Because of complexity and
cohesion of scheduling relations, it may happen that manual modification introduces flaws to
the schedule, namely the altered schedule violates some constraints such as precedence
relations or limited capacity of resources. It is useful to automatically correct these flaws while
minimizing other required changes of the schedule. In this paper we suggest a fully automated
approach to correcting violated precedence and unary resource constraints. The presented
techniques attempt to alter minimally the existing schedule by doing the changes only locally
in the area of the flaw.

1 Introduction

Fully automated scheduling seems like the Holy Grail of scheduling community, but most
practitioners frequently require the freedom of manually altering the generated schedules, for
example, to introduce some aspects of the particular area that were hard to formalize and hence
are not reflected in the automatically generated schedule. Despite the high experience of
human schedulers, there is a high probability that after a manual modification some flaws are
introduced to the schedule. This probability is higher if the density of scheduling constraints is
large and the constraints are highly coupled. For example, delaying one activity may delay
other dependent activities due to precedence constraints between them or due to limited
capacity of resources. It might be enough just to detect such violations and report them to the
user who will be responsible for manual correction. Nevertheless, such manual corrections
may be boring and sometimes very hard because of interconnectivity of the constraints
(correction of one flaw introduces other flaws etc.). Hence we suggest a fully automated
(“push button”) approach to correcting schedules after manual modification. Namely, we
address the problem of correcting precedence constraints and unary resource constraints by
shifting locally the affected activities in time.

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

507

This paper studies the problem of correcting general schedules consisting of a set of non-
interruptible activities with fixed durations; each activity is allocated to one or several unary
resources (at most one activity can be processed at any time by a unary resource, but the
activity may require more resources at the same time) and the activities are connected via
precedence constraints (activity can start only after all its predecessors finished). The primary
motivation for the research is providing an automated tool for correcting manually altered
schedules in interactive Gantt chart environments (a “push button” approach). Nevertheless,
the proposed repair techniques can also be used for example in the intensification stage of
scheduling algorithms based on genetic algorithms or meta-heuristics. From another
perspective, the proposed techniques belong to the group of re-scheduling algorithms.

We assume that the initial allocation of all activities to time (an initial schedule) is
known. This time allocation may violate some precedence constraints (activity starts before
some of its predecessors finishes) or some resource constraints (two or more activities are
processed at the same time by the same resource). The goal is to correct the schedule (re-
schedule) by shifting the activities in time, that is, to find a feasible schedule that does not
violate any constraint. Moreover, the new schedule should not differ a lot from the initial time
allocation of activities. Note that finding a feasible schedule is always possible unless there is a
loop in the precedence constraints – activities can always be shifted to future as there are no
deadlines. To minimize the number of changes between the initial and final schedule we apply
a local approach, where particular flaws are repaired by local changes of affected activities
rather than generating a completely new schedule from scratch. A local repair may introduce
other flaws in the neighborhood which spread like a wave until all flaws are resolved. We use a
three-step approach to repair a schedule. In the first step, loops of precedence constraints are
detected and the user is asked to break each loop by removing at least one precedence
constraint from it. In the second step, we repair all precedence constraints; two methods are
suggested for this repair. Finally in the third step we repair violation of resource capacity
constraints while keeping the precedence constraints valid. Each repair is realized by shifting
affected activities locally in time.

The paper is organized as follows. First, a formal definition of the scheduling problem is
given. Then we discuss some existing techniques that can be applied to schedule repair. After
that, our three-stage approach to schedule repair is described in detail and proof of soundness
is given. In conclusion we briefly discuss possible future steps.

2 Problem formulation

We use a fairy general description of the scheduling problem that fits especially fields such as
construction and production scheduling. The Resource-Constrained Project Scheduling
Problem (RCPSP) [3] is probably the closest classical scheduling problem though there are
some differences as described below.

We assume a finite set of activities Act, each activity A ∈ Act has a fixed duration dA and
it is non-interruptible (activity must run from its start till its end without interruption). Let sA
be the start time of activity A – the minimum start time of any activity is zero (schedule start),
but there is no deadline. There is a set Prec of precedence constraints between the activities in
the form (A→B); A is called a predecessor of B and B is called a successor of A. Formally for
each precedence relation (A→B) ∈ Prec the following constraint must hold:
 sA + dA ≤ sB (1)

Let Res be a finite set of unary resources, that is, each resource can process at most one
activity at any time. For each activity A ∈ Act there is a set of required resources r(A) ⊆ Res.
Activity A requires all resources from the set r(A) for processing, that is, A occupies each
resource R ∈ r(A) for the time period 〈 sA, sA + dA 〉. The resource constraints can be formally
expressed in the following way:
 ∀A,B∈ Act s.t. r(A) ∩ r(B) ≠ ∅: sA + dA ≤ sB ∨ sB + dB ≤ sA (2)

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

508

The above resource constraint says that two activities A and B sharing the same resource
cannot overlap in time (either A precedes B or B precedes A).

A schedule is a particular allocation of activities to time, formally it is a mapping of all
variables sA to natural numbers N0 (including zero). A feasible schedule is a schedule that
satisfies constraints (1) and (2). Notice that resource allocation is not part of the problem
(activities are already allocated to resources). It is easy to prove that a feasible schedule always
exists provided that there is no loop in the precedence constraints (for example A→B→C→A).
It is possible to topologically order all activities respecting the precedence constraints
(precedence constraints define the partial ordering of activities) and then to allocate activities
in this order to earliest possible times while respecting the precedence (1) and resource (2)
constraints (activity can always be shifted to future if resource is not available at some time).

We do not assume any particular objective function in our scheduling problem. Makespan
is a typical objective for RCPSP and other scheduling problems and our techniques for
schedule repair try not to extend the makespan a lot beyond the makespan of the initial
schedule. Though keeping the schedule compact (with small makespan) we are not really
optimizing makespan or any other objective function. One of the reasons is that real-life
objectives are frequently different from makespan (for example on-time-in-full is required) and
it is hard or even impossible to formally express the real objective. Hence, we use the
assumption that the initial schedule has a good quality from the user point of view and so the
repaired schedule should not differ a lot from the initial schedule. Nevertheless, minimizing
the difference between the schedules is more the nature of the presented repair techniques
(repairing flaws locally) than formal minimization of the difference between the schedules as
for example studied in [5,2].

The problem that we are solving in this paper can be stated as follows: given some
schedule S, find a feasible schedule S’ that does not differ a lot from S. The difference between
schedules S and S’ can be formalized in the following way:

 difference(S,S’) = ΣA∈ Act | sA – s’A | (3)

where sA is the start time of activity A in S and s’A is the start time of A in S’. Notice that the
only way to modify the schedule is via changing values of variables sA. As mentioned above,
we are not strictly minimizing the objective (3), we are trying to achieve a good value of
difference(S,S’) by changing the values of sA as little as possible (locally) to repair a violated
constraint.

3 Related works

Dynamic scheduling is not a new area and though most scheduling research still focuses on
static problems that do not change over time, there is an enlarging interest in studying dynamic
aspects of scheduling [6]. This is mainly due to real-life scheduling problems that are primarily
dynamic – machines break down, deliveries are delayed, workers become ill etc. As mentioned
in the introduction, our motivation is slightly different and it goes from the area of interactive
scheduling, where we need to repair manually modified schedules to satisfy all constraints.
Nevertheless, the used technology is very similar.

The simplest approach to re-scheduling is generating a new schedule from scratch, also
called total re-scheduling. This is the best technique when there are many disruptions in the
schedule, but it has the disadvantage of generating a schedule completely different from the
original schedule. We focus more on local repairs of the schedule with the motivation to keep
the schedule similar to the original schedule. The method of generating a new schedule from
scratch can be “localized” by removing some elements from the schedule and then adding
them back without violation of constraints. Iterative Flattening Search [8] is an example of
such a method where in the relaxation step all violated (and some other) constraints are
removed from the problem (typically decisions about the ordering of activities) and then in the
flattening stage the possible conflicts in the schedule are resolved by adding the constraints

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

509

back. Naturally, the question is how to relax the schedule to be able to resolve all possible
conflicts (in the extreme case, all decision constraints are removed). Iterative Forward Search
[7] uses a similar approach but it removes activities participating in violated constraints and
then schedules these activities again. It has been proposed originally for timetabling problems
with limited temporal constraints but for scheduling problems with temporally connected
activities it may require re-scheduling many activities as it works with partial consistent
schedules. Nevertheless, thanks to iterative improvements of schedules, this approach has been
successfully applied to minimal perturbation problems (MPP) introduced in [5] and redefined
in [2]. MPP focuses on finding a solution to a modified problem with minimal differences
(perturbations) from the solution of the original problem. Hence, it is a primarily optimization
problem with a specific objective function defined by the original solution. MPP can be solved
from scratch like other optimization problems, for example using search techniques [2].

The approach studied in this paper belongs to heuristic-based repair algorithms where
right shift rescheduling and affected operation rescheduling are the most frequently used
techniques. Right shift rescheduling [4] repair is performed by globally shifting all remaining
activities forward in time by the amount of disruption time. This introduces a gap in the
schedule and it is not really appropriate for our type of problem. Affected operations
rescheduling [1] reschedules only the activities that are directly or indirectly affected by the
disruption. This heuristic was proposed to repair machine breakdowns but its generalization
called modified Affected Operations Rescheduling [9] has been proposed to repair other
typical disruptions seen in a job shop. We follow the idea of affected operations rescheduling
but rather that assuming specific repair rules and repair operations such as insertion or deletion
of activity, we allow only shifting the existing activity in time both forward and backward.
Moreover, our techniques are designed to repair any number of constraint violations in the
schedule. Recall that we are repairing manually modified schedules with flaws rather than
reacting to instant disruptions from the job shop. Hence there might be more flaws spread in
the schedule and we need to repair all of them while keeping the schedule as similar as
possible to the original schedule.

4 Re-scheduling (repair) algorithm

As we already mentioned, we assume a typical scenario, where the human scheduler modifies
an automatically generated schedule to reflect better the peculiarities of particular
environment. The modification can affect any part of the scheduling problem introduced above
– it is possible to change duration of activities, their position in time and required resources, to
add or delete precedence constraints or even to add or delete activities and resources (in case of
changing the set of activities, it is necessary to introduce a different measure of schedule
difference, see for example [2]). By these modifications, it is quite easy to obtain an infeasible
schedule where some of precedence or resource constraints are violated (we call the violated
constraint a flaw). Though it is easy to detect and visualize the violated constraints (see Figure
1), it is frequently more complicated to repair them without introducing other flaws.

Fig. 1. Gantt charts visualization of violated precedence (left) and resource (right) constraint.

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

510

 We suggest a schedule-repair method that mimics the behavior of a human scheduler by

repairing flaws via local changes of time allocation of activities participating in the flaw.
Naturally, this may introduce other flaws which need to be repaired and hence a systematic
approach is necessary to prevent an infinite number of repairs (repairing one flaw introduces
another flaw whose repair brings back the original flaw etc.). While such a systematic
approach may be boring for a human, it is easy for a computer. The suggested method consists
of three stages:

- detecting and breaking loops of precedence constraints,
- repairing violated precedence constraints,
- repairing violated resource constraints.

By modifying the set of precedence constraints, the user may unwittingly introduce a cycle
between activities which prevents existence of the feasible schedule. Hence the first stage is
detecting such loops and asking the user to remove some precedence constraint from each such
loop. This is the only stage where user intervention is necessary1; the other two repair stages
are fully automated. Recall that if there are no loops of precedence constraints then a feasible
schedule always exists. In the following sections we will describe each stage in more details.

4.1 Loop detection

We represent the scheduling problem as a directed graph G = (E,V), where the set V of nodes
equals the set Act of activities and there is edge (A,B) in E if and only if (A→B) ∈ Prec. There
exist standard methods for finding cycles in graphs and we adopted one of them. The method
is based on repeating the following three steps until an empty graph is obtained:

1. repeatedly delete all nodes N from the graph such that there is either no incoming
edge (X,N) ∈ E or no outgoing edge (N,X) ∈ E; after this step, each remaining node
in the graph has at least one predecessor and one successor

2. select any node from the graph (we use the node with the largest number of
successors) and find a loop by depth-first search going in the direction of edges

3. present the loop to the user (in terms of activities) and remove the edge(s) suggested
by the user (the particular precedence is also removed from Prec).

It is easy to prove that the above method removes all loops from the precedence constraints. In
particular, by DFS in step 2 we must find a loop because each node has a successor (after step
1) and there is a finite number of nodes so at some time some node must be visited for the
second time so the path between the first and second visit forms a loop. As we stop with an
empty graph, no loops remain in the graph.

4.2 Precedence repair techniques

The goal of the second stage of the repair algorithm is to remove violation of all precedence
constraints (1). This is possible for any schedule that does not contain loops in precedence
relations which is exactly the schedule resulting from the first stage described in the previous
section. We ignore violation of resource capacity constraints (2) at this stage.

The precedence (A→B) ∈ Prec is violated if sA + dA > sB. The size of violation can be
described by the following variable:

diff(A,B) = sA + dA – sB.

1
 It is possible to randomly remove some precedence constraint from each loop or even to minimize the number of
removed precedence constraints to break all loops, but in our opinion, the human decision is more appropriate.

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

511

Cleary, diff(A,B) is positive if and only if precedence (A→B) is violated. To locally repair the
violated precedence (A→B) we can shift A backward in time (decrease sA) or shift B forward
in time (increase sB) or shift together A backward and B forward. Naturally, if we do not want
to stretch the schedule (increase makespan) then decreasing sA as much as possible (but no
more than constraint (1) requires) is the preferred way of repair. To find out how much time is
available for shifting A backward we introduce the following variable:

freeOnLeft(A) = sA if A has no predecessors
 sA – (slp(A) + dlp(A)) if A has some predecessor and lp(A) denotes

the latest predecessor of A in the schedule;
lp(A) = argmax C: (C→A) ∈ Prec (sC + dC).

The straightforward technique of repairing a violated precedence constraint (A→B) is shifting
A backward as much as possible and then shifting B forward if necessary. This can be formally
described by the following assignments:
 sA ← sA – min(freeOnLeft(A), diff(A,B))
 sB ← sA + dA
Clearly, after making the suggested modification of start times sA and sB, the precedence
relation (A→B) is satisfied (sB = sA + dA). However, does it always realize the idea of shifting
A backward? If all precedence constraints (C→A) are satisfied then freeOnLeft(A) ≥ 0 because
sA ≥ 0 (definition of sA) and ∀C∈ Act s.t. (C→A) ∈ Pre: sA ≥ sC + dC (according to (1)).
However, if some (C→A) is violated then freeOnLeft(A) < 0 which actually means that A is
shifted forward (sA is increased) when repairing precedence (A→B). To prevent this unwanted
behavior, it is enough to ensure that all precedence constraints (C→A) are satisfied before
repairing the precedence constraint (A→B). Moreover, in such a case all precedence
constraints (C→A) still remain valid after repairing (A→B). Hence, if we repair the violated
precedence constraints in the right order, namely from left to right, then it is enough to repair
each violation exactly once. Let us assign a unique index i to each precedence (A→B), denoted
(A→B)i, in such a way that if we have two indexed precedence relations (A→B)i and (B→C)j
then i < j. This can be easily realized by sorting first the activities according to the topological
order satisfying the partial order defined by the precedence relations (this is always possible as
there are no cycles) and then indexing the precedence relations according to this order (see
Figure 2).

2 4 5

1 3 6

Fig. 2. Possible topological ordering of precedence constraints.

After defining the order of precedence relations the following pseudo-code PrecRep describes
the repair algorithm:

 algorithm PrecRep
1 while any precedence is violated do
2 select violated precedence (A→B)i such that i is minimal
3 sA ← sA – min(freeOnLeft(A), diff(A,B))
4 s ← s + dA B A

 end while 5
 end PrecRep

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

512

Proposition 1: Algorithm PrecRep is sound and complete with respect to producing a schedule
without violation of precedence constraints.

Proof: Clearly, if the algorithm stops then there are no violated precedence constraints in the
schedule (because of the condition in the while loop). Hence it is enough to show that the
algorithm stops after a finite number of steps. In each iteration the algorithm repairs (at least)
one precedence constraint. The precedence relations are repaired in the order of their indexes
so when (A→B)i is being repaired then all (X→Y)j such that j < i are satisfied (have already
been repaired). Moreover, no such relation (X→Y)j where j < i is violated by the repair of
(A→B)i. Note that only relations (C→A) and (B→D) are influenced by the repair of (A→B)
because we can only shift A backward and B forward. Satisfaction of other precedence
relations involving A or B, namely (A→C) and (D→B), is not influenced by the repair. As we
already discussed, relations (C→A) are not violated by the repair. According to the ordering of
precedence relations, relations (B→D)k have larger index than (A→B)i (k > i). In summary,
after each iteration of the while loop we increase index k such that ∀j ≤ k (X→Y)j is satisfied
by at least one. Hence, after at most m iterations, where m is the number of precedence
constraints in the schedule (the largest index), we repair all precedence relations.

Algorithm PrecRep represents a straightforward way of repairing precedence constraints.
Unfortunately, it can shift activities forward more than necessary and hence it can increase
makespan and make the schedule less compact. Though the algorithm can shift activity A
backward when repairing (A→B), it can shift A at most as the latest predecessor lp(A) of A
allows (see the definition of FreeOnLeft). Hence lp(A) may block shifting A backward even if
there is time. In particular, it might be possible to shift lp(A) backward as well and hence to
increase the time available for A (see Figure 3). To improve this behavior, we suggest a
modification of the repair algorithm called PrecRep-2 that exploits better available time on the
left of activity A by shifting it beyond the horizon defined by lp(A).

Fig. 3. Algorithm PrecRep does not exploit fully available time on left of D.

The idea of PrecRep-2 algorithm is to shift A backward similarly to PrecRep, but if this is not
enough to satisfy the constraint (A→B) (diff(A,B) is still positive) then we shift A backward
slightly more, in particular by truncate(diff(A,B)/2), where truncate(X) is the closest integer
between X and 0, for example truncate(3.7) = 3. This way, we violate the constraint
(lp(A)→A) which can be repaired later by shifting lp(A) backward and so on. By this process,
we can exploit better available time by shrinking the schedule. We only ensure that we do not
violate the constraint 0 ≤ sA so the schedule does not stretch beyond the schedule start.

 algorithm PrecRep-2
1 while any precedence is violated do
2 select violated precedence (A→B)i such that i is minimal
3 sA ← sA – min(freeOnLeft(A), diff(A,B))
4 sA ← max(0, sA – truncate(diff(A,B)/2))
5 s ← s + dA B A

6 end while
 end PrecRep-2

D

B

C

D

A

C

A

unexploited
time

B

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

513

Lemma 1: If algorithm PrecRep-2 repairs precedence (A→B)i then after a finite number of
iterations, the algorithm reaches a situation when all (X→Y)j such that j ≤ i are satisfied.
Moreover, the final start time sA is not greater than the start time of A before repair of (A→B).

Proof: We shall prove the lemma by induction on the index of the repaired precedence. For
i = 1 the lemma trivially holds, because the precedence (A→B)1 is repaired by the algorithm
and sA is not increased. When the algorithm started the repair of precedence (A→B)i, i > 1, all
(X→Y)j such that j < i were satisfied. If these precedence relations are still satisfied after the
repair then the lemma holds.

Assume that some precedence (C→A) has been violated by the backward shift of A. This
may happen only after the assignment at line 4 so let old_sA be the value of sA before
processing line 4 and new_sA be the value of sA after processing line 4. Note that if A starts at
old_sA then no precedence constraint (C→A) is violated. Let us take the violated precedence
constraint (C→A)i with the smallest index i that will be repaired next. According to the
induction assumption, it is possible to repair this constraint and the value of sC does not
increase. Hence the new value of sA is not greater than old_sA because old_sA satisfied the
constraint (C→A) and sC did not increase above its original value. In the same way, we can
repair all violated precedence constraints (C→A) to reach the situation when all (X→Y)j such
that j < i are satisfied again. The final value of sA will not be greater than old_sA.

Unfortunately, the constraint (A→B)i may be violated again (when sA increases) and we
need to repair it. Nevertheless, one should realize that diff(A,B) is now strictly smaller than it
was before we repaired the constraint (A→B) for the first time. Note that when A starts at
new_sA then the constraint (A→B) is satisfied – we repaired it this way. However, after
repairing all (C→A), the value of sA might increase as much as to old_sA (new_sA < old_sA) so
the new diff(A,B) ≤ old_sA – new_sA. From line 4 of the algorithm, we can see that new
diff(A,B) is at most half of the original diff(A,B). Anyway, we need to repeat the above
process again and next time diff(A,B) will be even smaller. In the worst case, we stop when
diff(A,B) = 1 because then the assignment at line 4 does not change sA and hence no constraint
(C→A) is violated so we reached the situation when all (X→Y)j such that j ≤ i are satisfied.
Moreover, we can see that sA never went above old_sA, which is not larger than the original
value of sA (old_sA may be smaller than sA because sA might be decreased at line 3).

Proposition 2: Algorithm PrecRep-2 is sound and complete with respect to producing a
schedule without violation of precedence constraints.

Proof: If the algorithm stops then there are no violated precedence constraints in the schedule
(because of the condition in the while loop) so the algorithm is sound. To prove completeness,
it is necessary to show that the algorithm stops after a finite number of iterations (recall that a
feasible schedule always exists). The precedence relations are repaired in the order of their
indexes. According to lemma 1 after (A→B)i is repaired then in a finite number of iterations
the algorithm reaches a situation when all (X→Y)j such that j ≤ i are satisfied. Hence, in the
next step we will be repairing some precedence (C→D)k where k > i (if any such violated
precedence still exists). Again, according to lemma 1 we can reach the situation when all
(X→Y)j such that j ≤ k are satisfied. We can continue this way until we reach the last index m.
In summary, after a finite number of iterations the algorithm repairs all precedence constraints
– the algorithm reaches a situation when all (X→Y)j such that j ≤ m are satisfied.

Algorithm PrecRep-2 exploits better available time (see Figure 4) but it is slower than PrecRep
due to repeated “shrink-and-stretch” stages after violating the already repaired constraints. The
open question is if the time complexity of PrecRep-2 can be improved for example by
memorizing how much time is actually available for backward shifts (to prevent the stretch
stage).

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

514

D

Fig. 4. Algorithm PrecRep-2 exploits better available time on left of D.

4.3 Resource capacity repair technique

The final stage of the proposed repair algorithm consists of repairing resource conflicts. Recall
that activities require for their processing unary resources; it is possible that an activity
requires more than one resource (for example machine, tool, and worker). There is a resource
conflict if two (or more) activities require the same resource at the same time.

From the previous stage we have a schedule that does not violate precedence constraints
so it is either feasible or some resource constraints are violated. We now present a technique
that repairs resource conflicts while keeping the precedence constraints satisfied. This
technique resolves the conflict by shifting one of the activities forward in time. The algorithm
ResRep iteratively repairs resource conflicts and each time a new precedence conflict is
introduced then all precedence conflicts are repaired before continuing to the next resource
conflict. By sweeping the schedule from past to future we remove all violated constraints
(recall that there are no deadlines so any activity can be shifted forward).

 algorithm ResRep
1 while any constraint is violated do
2 if precedence is violated then
3 select violated precedence (A→B) with smallest sA
3 else
4 let A,B be activities violating resource constraint (2)
5 such that sA ≤ sB and sA is smallest among such pairs
6 end if
7 s ← s + dA B A

8 end while
 end ResRep

Proposition 3: Algorithm ResRep is sound and complete (produces a feasible schedule).

Proof: If the algorithm stops then there are no violated constraints in the schedule (because of
the condition in the while loop) so the final schedule is feasible and the algorithm is sound. To
prove completeness, it is necessary to show that the algorithm stops after a finite number of
iterations (recall that a feasible schedule always exists). We prove the proposition by showing
that the number of possible conflicts decreases as we sweep the schedule from past to future.
At the beginning, no precedence constraints were violated so some resource constraint must be
violated. Let t be the smallest time such that for some activity A with sA = t there is a violated
resource constraint (2) between A and B. The constraint is repaired by shifting B forward to
start after activity A (line 7 of the algorithm), which may violate some precedence constraints
(B→C). These violated precedence constraints will be repaired in next iterations of the
algorithm (repairing precedence constraints is preferred to repairing resource conflicts) by
shifting C forward etc. It may happen that during these repairs some new resource conflicts are
introduced. However, all these new resource conflicts “start” after time t; formally, for any
new resource conflict between activities C and D, t < sC and t < sD hold. The reason is that the
conflicting activity, say C, that was shifted forward by the precedence repair steps now starts
after sA + dA. The other activity D must start after t as well because otherwise there was
already a resource conflict between C and D.

B

C

D

C

B

AA

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

515

In summary, after repairing the resource conflict between A and B starting at time t and
“propagating” it to all precedence constraints, no other resource conflict starting at or before t
was added. As there is a limited number of resource conflicts, after a finite number of
iterations, all resource conflicts starting at t are repaired and one of the former conflicting
activities still starts at t. Now we can move to the next resource conflict which starts at time
t’ > t. Because the number of activities starting at or after t‘ is strictly smaller than the number
of activities starting at or after t, the maximal number of possible conflicts is also smaller. This
upper bound can be simply the number of all pairs of activities starting at or after t. Hence by
shifting forward in time, the upper bound on the number of possible conflicts decreases and
therefore the algorithm repairs all conflicts after a finite number of iterations.

5 Conclusions

The paper proposes a novel local repair technique for correcting violated precedence and
resource constraints in RCPSP-like scheduling problems. By doing local repair steps, the
schedule changes only locally in the area of the flaw, which is the main advantage over re-
scheduling from scratch. Moreover, the proposed techniques are fully automated and problem
independent so it is not necessary to describe specific repair rules for the problem as for
example in modified Affected Operations Rescheduling [9]. To repair violated precedence
constraints, we can shift activities to left (past) which keeps the schedule more compact in
comparison with Right shift rescheduling [4]. Last but not least, the proposed method can
repair any number of precedence and resources conflicts while traditional schedule repair
algorithms work with a single disruption. Hence our method is appropriate for repairing
schedules where several disruptions are scattered in time and on resources, which is typical for
manually modified/constructed schedules.

We implemented the proposed techniques within an interactive Gantt viewer (Figure 1).
Thought that exist many interactive Gantt viewers we are not aware about anyone providing
automated schedule repair. Hence the main focus of the paper is on the formal description of
the repair techniques and on theoretical justification of their soundness and completeness.

All presented techniques exploit the feature of the problem that there are no deadlines so
it is always possible to shift activity forward in time. Nevertheless, when repairing the
precedence constraints we tried to exploit also free time before the activity, that is, to shift
activities backward. The main motivation was to keep the schedule as compact as possible (not
to increase makespan a lot). We proposed two alternative repair techniques with the tradeoff
between the compactness of the schedule and the speed of the technique. The technique
producing more compact schedules can probably be speeded-up by using additional
information during computation. This is a topic of future work. The current technique for
repairing resource conflicts shifts activities only forward so another open question is whether
the ideas from precedence repairs (backward shifts) can be used there.

Acknowledgements The research is supported by the Czech Science Foundation under the
contract no. 201/07/0205.

BA

D

B

C

A

DC
tt

old resource
conflict

new resource
conflict

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

516

References

1. Abumaizar RJ, Svestka JA, Rescheduling job shops under random disruptions.
International Journal of Production Research 35(7):2065–2082 (1997)

2. Barták R, Müller T, Rudová H, Minimal Perturbation Problem – A Formal View. Neural
Network World 13(5): 501–511 (2003)

3. Błazewicz J, Lenstra JK, and Rinnooy Kan AHG. Scheduling projects to resource
constraints: Classification and complexity. Discrete Applied Mathematics, 5:11–24
(1983)

4. Brandimarte P, Rigodanza M, Roero L, Conceptual modeling of an object oriented
scheduling architecture based on the shifting bottleneck procedure. IIE Transactions
32(10):921–929 (2000)

5. El Sakkout H, Richards T, Wallace M, Minimal Perturbation in dynamic scheduling.
Proceedings of the 13th European Conference on Artificial Intelligence (ECAI98). John
Wiley & Sons (1998)

6. Kocjan W, Dynamic Scheduling – State of the Art Report. SICS Technical Report
T2002:28. SICS (2002)

7. Müller T, Barták R, Rudová H, Iterative Forward Search Algorithm: Combining Local
Search with Maintaining Arc Consistency and a Conflict-Based Statistics. LSCS'04 -
International Workshop on Local Search Techniques in Constraint Satisfaction (2004)

8. Oddi A, Policella N, Cesta A, Smith SF, Boosting the Performance of Iterative Flattening
Search. AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, LNCS
4733, pp. 447–458, Springer Verlag (2007)

9. Subramaniam V, Raheja AS, mAOR: A heuristic-based reactive repair mechanism for job
shop schedules. The International Journal of Advanced Manufacturing Technology 22:
669–680 (2003)

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009)
10-12 August 2009, Dublin, Ireland

517

