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Abstract
Constraint hierarchies have been proposed to overcome over-constrained

systems of constraints by specifying constraints with hierarchical preferences.
They are widely used in HCLP (Hierarchical Constraint Logic Programming) – an
extension of CLP (Constraint Logic Programming) to include constraint
hierarchies, CIP (Constraint Imperative Programming) – an integration of
declarative constraint programming and imperative object-oriented programming,
and graphical user interfaces. The advantages of constraint hierarchies are a
declarative expression of preferred constraints and the existence of efficient
satisfaction algorithms. At present, there exist a lot of relatively independent
constraint hierarchy solvers/satisfaction algorithms that could be classified into two
categories: refining and local propagation algorithms. While the local propagation
algorithms are fast but limited the more general refining algorithms are not
incremental.

In this paper we propose a general plug-in architecture of constraint hierarchy
solvers. It is a modular architecture based on the notion of mega-interpreter. The
proposed structure divides a system embracing constraint hierarchies into four
independent parts: a meta-interpreter, a general hierarchy solver, a comparator part
and, finally, a flat constraint solver. These parts communicate through exactly
defined interface or, more precisely, each part provides a set of services to other
components. Although the paper describes the plug-in architecture for the HCLP
solver using refining method and predicate comparators, we expect it to be
applicable to other constraint hierarchy solvers too.

Keywords: constraint hierarchies, constraint solver, mega-interpreter, plug-in
architecture.

1 The research was partially supported by the Grant Agency of Czech Republic under the contract No
201/96/0197.
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1. I NTRODUCTION

Constraint hierarchy is a method for describing over-constrained systems of constraints
by specifying constraints with hierarchical strengths or preferences2. Constraint
hierarchies are widely used in areas like HCLP (Hierarchical Constraint Logic
Programming) [5, 22], CIP (Constraint Imperative Programming) [9] and graphical user
interfaces construction [6]. The major advantage of constraint hierarchies is their
declarative expression of preferences or strengths of constraints rather than encoding
them in the procedural parts of the language.

In a constraint hierarchy, the stronger a constraint is, the more it influences the
solution of the hierarchy. Additionally, constraint hierarchy allows “relaxing” of
constraints with the same strength via weighted-sum, least-squares or similar methods.

Another important aspect of constraint hierarchies is also the existence of efficient
satisfaction algorithms. Satisfaction algorithms, in other words constraint hierarchy
solvers, can be classified into two groups: algorithms based on refining method and local
propagation algorithms. Each group has its advantages and disadvantages but what they
have in common is the ad-hoc method used for their construction. Almost all current
constraint hierarchy solvers are designed for a specific comparator or for a certain type of
constraints.

In this paper we propose a general plug-in architecture of constraint hierarchy
solvers. The proposed architecture has a modular structure that allows programmers to
design various constraint hierarchy solvers from standardized modules. It means, e.g.,
that an advanced but flat constraint solver can be easily extended to a constraint hierarchy
solver by pushing it into the proposed structure. It is also easy to get constraint hierarchy
solvers with miscellaneous comparators by exchanging the comparator module only.
However, it should be noted that it is not possible to combine arbitrary modules, i.e.,
some modules (e.g., modules for metric comparators) need extended support from other
modules (e.g., flat constraint solver).

The paper is organized as follows. In Sections 2 and 3, we present a short preview
of the theory of constraint hierarchies followed by a brief catalogue of well-known
constraint hierarchy solvers. In Section 4, we describe a proposed general plug-in
architecture of constraint hierarchy solvers. There are examples of a PROLOG source code
of both kernel modules (meta-interpreter, general hierarchy solver) and extension
modules (flat constraint solver, comparator code) in two subsections of the Section 4.
The presented code makes an HCLP solver over the Herbrand Universe using locally-
predicate-better comparator. The paper is concluded with some remarks on the proposed
architecture and with an appendix containing a PROLOG source code of another plug-in
module that implements a weighted-sum-predicate-better comparator.

2. CONSTRAINT HIERARCHIES

A theory of constraint hierarchies originated in [4]. It allows the user to specify
declaratively not only constraints that must hold, but also weaker, so called soft
constraints at an arbitrary number of strengths. Weakening the strength of constraints
helps to find a solution of previously over-constrained system of constraints. This

2 Another method for describing over-constrained systems is PCSP (Partial Constraint Satisfaction
Problems).
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constraint hierarchy scheme is parameterized by a comparator C that allows us to compare
different possible solutions to a single hierarchy and to select the best ones.

Intuitively, the stronger a constraint is, the more it influences the solution of the
hierarchy. Consider, e.g., an over-constrained system of two constraints: x=0  and x=1 .
The user can attach a preference or strength to both constraints: x=0@strong  and
x=1@weak, and the arising constraint hierarchy yields the solution {x/0 }. This
property also enables programmers to specify preferential or default constraints those
may be used in case the set of required, so called hard constraints is under-constrained
(has more solutions). Moreover, constraint hierarchies allow “relaxing” of constraints
with the same strength by applying, e.g., weighted-sum, least-squares or similar
methods.

For purposes of the introduction to constraint hierarchies we prefer the earlier
definition of constraint hierarchies [5] which is simpler but also a bit different to more
recent definition [22].

A constraint is a relation over some domain D. The domain D determines the
constraint predicate symbols ΠD of the language, which must include “=” (in case of
HCLP). A constraint is thus an expression of the form p(t1,…tn) where p is an n-ary
symbol in ΠD and each ti is a term. A labeled constraint is a constraint labeled with a
strength, written c@l where c is a constraint and l is a strength. The set of strengths is
finite and totally ordered and it is usually given by the user.

A constraint hierarchy is a finite set of labeled constraints. Given a constraint
hierarchy H, H0 is a vector of required constraints in H, in some arbitrary order, with
their labels removed. Similarly, H1 is a vector of strongest non-required constraints in H
up to the weakest level Hn, where n is a number of non-required levels in the hierarchy
H. We also define Hk=∅  for k>n. Note, that constraints in Hi are stronger (more
preferred) than those in Hj for i<j .

A valuation for a set of constraints is a function that maps free variables in the
constraints to elements in domain D over which the constraints are defined. A solution to
a constraint hierarchy is such a set of valuations for the free variables in the hierarchy that
any valuation in the solution set satisfies at least the required constraints, i.e., the
constraints in H0, and, in addition, it satisfies the non-required constraints, i.e., the
constraints in Hi for i>0 , at least as well as any other valuation that also satisfies the
required constraints. In other words, there is no valuation satisfying the required
constraints that is “better” than any valuation in the solution set. Formally:

S0 = { θ | ∀ c∈ H0  cθ holds }

S = { θ | θ∈ S0 & ∀σ∈ S0 ¬  better(σ,θ,H) },

where S0 is a set of valuations satisfying required constraints and S is a solution set.

There is a number of reasonable candidates for the predicate better which is called a
comparator. We insist that better is irreflexive and transitive, however, in general, better
will not provide a total ordering on the set of valuations. We also insist that better
respects the hierarchy, i.e., if there is some valuation in S0 that completely satisfies all the
constraints through level k, then all valuations in S must satisfy all the constraints
through level k:

if ∃θ∈ S0 ∃ k>0  such that ∀ i∈ {1,..,k} ∀ c∈ Hi  cθ holds

then ∀σ∈ S ∀ i∈ {1,..,k} ∀ c∈ Hi  cσ holds.
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To define various comparators we first need an error function e(c,θ) that returns a non-

negative real number indicating how nearly a constraint c is satisfied for a valuation θ.
The error function must have the following property:

e(c,θ)=0 ⇔ cθ holds.

For any domain D, we can use the trivial error function that returns 0 if the constraint is
satisfied and 1 if it is not.

Currently, there are two different groups3 of comparators: locally-better and
globally-better comparators. The locally-better comparators consider each constraint
individually. They are defined by the following way:

locally-better(θ,σ,H) ≡def

∃ k>0 ∀ i∈ {1,…,k-1} ∀ c∈ Hi  e(c,θ)=e(c,σ) &

∃ c'∈ Hk e(c',θ)<e(c',σ) & ∀ c∈ Hk e(c,θ)≤e(c,σ).

We can define a special type of locally-better comparator, locally-predicate-better (LPB)
comparator to be locally-better using the trivial error function.

 The globally-better comparators combine errors of all the constraints at a given level
Hi using a combining function g, and then compare the combined errors. They are
defined as follows:

globally-better(θ,σ,H,g) ≡def

∃ k>0 ∀ i∈ {1,…,k-1} g(θ,Hi)=g(σ,Hi)  &

g(θ,Hk)<g(σ,Hk).

Using globally-better schema, we can define three global comparators, using different
combining function g. This comparator triple enables the user to add a positive real
number, called weight, to each constraint. Weights allow relaxing of constraints with the
same strength then. The weight for constraint c is denoted by wc.

weighted-sum-better(θ,σ,H) ≡def  globally-better(θ,σ,H,g),

where g(τ, Hi ) = wc∗e(c,τ)
c∈Hi

∑
worst-case-better(θ,σ,H) ≡def  globally-better(θ,σ,H,g),

where g(τ, Hi ) = max
c∈Hi

wc∗e(c,τ){ }
least-squares-better(θ,σ,H) ≡def  globally-better(θ,σ,H,g),

where g(τ, Hi ) = wc∗e2 (c,τ)
c∈Hi

∑ .

3. CONSTRAINT HIERARCHY SOLVERS

An important aspect of constraint hierarchies is that there are efficient satisfaction
algorithms proposed. We can categorize them into the following two approaches:

The refining algorithms first satisfy the strongest level, and then weaker levels
successively.

The local propagation algorithms gradually solve constraint hierarchies by repeatedly
selecting uniquely satisfiable constraints.

3 Recent definition of constraint hierarchies [21] also supports another type of comparator called
regionally-better.
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To illustrate both approaches consider, e.g., the following constraint hierarchy:

x=y@required, x=z+1@strong, z=1@medium, x=1@weak .

The refining algorithm first solves the required constraint x=y  with the result
{ x / V , y / V }, followed by the strong constraint x = z + 1  leading to
{x/Z+1,y/Z+1,z/Z }. Then, it evaluates the medium constraint z=1  and gets solution
{ x/2,y/2,z/1 }. Finally, it attempts to solve the weak constraint x=1  but as it
conflicts with the assignment generated by the stronger constraints, it remains
unsatisfied.

By contrast, the local propagation algorithm first solves the medium constraint z=1 ,
then propagates the value {z/1 } through the strong constraint x=z+1 , i.e., computes
{ x/2,z/1 }, and, finally, through the required constraint x=y , i.e., {y/2,x/2,z/1 }.
Note, that the weak constraint x=1  remains unsatisfied as it was rejected by the stronger
constraints.

The refining method is a straightforward algorithm for solving constraint hierarchies
as it follows the definition of solution, in particular the property of respecting the
hierarchy. It means that the refining method can be used for solving all constraint
hierarchies using arbitrary comparator. Its disadvantage is recomputing the solution from
scratch everytime a constraint is added or retracted. The refining method was first used in
a simple interpreter for HCLP programs [5] and it is also employed in the DeltaStar
algorithm [22] and in a hierarchical constraint logic programming language CHAL. We
choose the refining method for our general hierarchy solver (Section 4.1) to demonstrate
practicability and generality of the proposed plug-in architecture.

Local propagation takes advantage of the potential locality of typical constraint
networks, e.g., in graphical user interfaces. Basically, it is efficient because it uniquely
solves a single constraint in each step. In addition, when a variable is repeatedly updated,
e.g., by user operation, it can easily evaluate only the necessary constraints to get a new
solution. However, local propagation is restricted in some ways. Most local propagation
algorithms (DeltaBlue [16], SkyBlue [17], QuickPlan [19], DETAIL [10], Houria [8]) can
solve only equality constraints, e.g., linear equations over reals. The exception is the
Indigo [7] algorithm for solving inequalities that combines local propagation and refining
method. The local propagation algorithms also usually use locally-predicate comparator
or its variant respectively. Only Houria III and DETAIL can use globally comparators and
Indigo uses metric comparator. Finally, local propagation cannot find multiple solutions
for a given constraint hierarchy due to the uniqueness.

4. A PLUG- I N ARCHITECTURE OF HCLP  SOLVER

Almost all current constraint hierarchy solvers have at least one common property. They
are constructed ad-hoc for a limited class of constraints and using only one particular
comparator or a small group of similar comparators respectively. The common reason for
doing it is the (mis)belief that a more specialized solver is also a more efficient one.
Although we do not concentrate on efficiency issues of constraint hierarchy solvers in
this paper, we suppose it is possible to use a more general architecture of constraint
hierarchy solver without loss of efficiency. Our recent research [1] of generalized
algorithms for solving constraint hierarchies confirms this suggestion. Our ideas of
general architecture of constraint hierarchy solvers are embodied in the plug-in
architecture described hereinafter.
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The structure of the proposed plug-in architecture follows directly from the
definition of a constraint hierarchy solution. It extends and generalizes the architecture of
the simple HCLP interpreter [5] for support of various comparators and flat constraint
solvers. To express the ideas of proposed plug-in architecture we utilize the concept of a
mega-interpreter [2, 3]. The mega-interpreter is a generalized meta-interpreter that is
divided into two parts – the kernel and its extension. While the kernel codes the functions
that are common to most interpreters, the extension specifies the domain-specific
functions of a particular interpreter.

The kernel of the architecture includes a meta-interpreter or, more generally, a core
system exploiting constraint hierarchies. The second part of the kernel is a general
hierarchy solver which defines a universal method for solving constraint hierarchies. The
general hierarchy solver should be independent of a chosen comparator and of a chosen
set of constraints which depends on the domain D. It reflects the method used for solving
constraint hierarchies, i.e., currently the refining method or the local propagation
respectively.

The extension part of the architecture forms a pair of plug-in modules. There is a
plug-in module which implements a particular comparator and which closely cooperates
with the second module, a flat constraint solver. The services provided by the flat
constraint solver depend on demands of the comparator module. Consider, e.g., an
arbitrary predicate comparator. Then, a flat constraint solver should be able to solve a
constraint according to the previously found solution or inform that the added constraint
is not compatible with the current solution respectively (Section 4.2).

The following picture shows the proposed plug-in architecture of a constraint
hierarchy system.

meta-interpreter
general hierarchy 
solver

comparator
code

flat constraint 
solver

plug-in 
modules

kernel

The arrangement of elements in the above picture is not self-involved. It expresses
the binds and data-flow between individual components. Thus, the meta-interpreter asks
for services the general hierarchy solver. The typical services provided by the general
hierarchy solver are adding a labeled constraint to a constraint hierarchy and solving a
constraint hierarchy. However, the meta-interpreter can also directly communicate with
the flat constraint solver. This hand-to-hand cooperation is useful in case of solving
required constraints and it speeds up the whole system so. We can also say that the meta-
interpreter and the flat constraint solver form a non-hierarchical constraint system. If we
omit the direct communication between the meta-interpreter and the flat constraint solver,
we get a well-known scaled structure with the meta-interpreter at the top and the flat
constraint solver at the bottom.
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The general hierarchy solver uses services provided by the comparator component
to pursue its tasks. The nature of these services will vary depending on used method.
There will be a different set of required services for the refining method (Section 4.1) and
the local propagation respectively. Note also, that the general hierarchy solver
communicates with the flat constraint solver only through the comparator. Hence, the
programmer of the general hierarchy solver does not use any information about the
constraints and their domains, and by this way, he keeps the universality of the general
hierarchy solver.

The data-flow between the comparator module and the flat constraint solver was
discussed above.

Although, we will present a PROLOG code for an HCLP interpreter in the following
sections, we realize that our plug-in architecture is usable for other constraint hierarchy
systems as well. Only the core system embracing constraint hierarchies displace the meta-
interpreter. The same applies to used method for a general hierarchy solver. We present
the general hierarchy solver based on refining method there, however, the hierarchy
solver using generalized local propagation [11] is also finished [1].

4.1 THE K ERNEL

To illustrate applicability of the plug-in architecture of constraint hierarchy solvers we
implemented an HCLP interpreter using the proposed architecture. The kernel of the
HCLP interpreter consists of:

• a meta-interpreter, much like traditional PROLOG meta-interpreters, and
• a general hierarchy solver based on refining method.

The meta-interpreter accepts a goal in form of the list of atomic goals and constraints and
either satisfies it immediately, or looks up the goal in the rule base, reduces it to subgoals
(reduce ), and recursively solves the subgoals. Required constraints, possibly arising
during unification4, are passed on to the flat constraint solver immediately
(solve_constr ), while non-required constraints are passed on to the general hierarchy
solver which simply push them onto a stack (constr_to_hier ). When the goal is
reduced, the collected constraint hierarchy is passed on to the general hierarchy solver
(solve_constr_hier ) along with the solution of required constraints, that has been
found.

Labeled constraints are expressed in the form C@L, where C is a constraint and L is
its strength. The set of strengths/labels is defined by the user using the fact
lab(OrderedListOfLabels) , e.g., lab([required,strong,medium,weak]) .

solve([C@L|T],CurrAnsw,Hier,Answ):-!,
add_constr(C,L,CurrAnsw,Hier,NewAnsw,NewHier),
solve(T,NewAnsw,NewHier,Answ).

solve([G|T],CurrAnsw,Hier,Answ):-
reduce(G,CurrAnsw,NewG,NewAnsw),
add_subgoal(NewG,T,NewT),
solve(NewT,NewAnsw,Hier,Answ).

solve([],CurrAnsw,ConstrHier,Answ):-
solve_constr_hier(ConstrHier,[CurrAnsw],Answ).

4 To simplify the code for presentation, we displace the unification of atoms p(t1,…tn) and p(u1,…,un) by
equality p(t1,…tn)=p(u1,…,un) instead of the list of equalities t1=u1,…,tn=un in reduce  procedure.
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reduce(SG,OldAnsw,true,NewAnsw):-
system(SG),!,
copy_term(SG,CopySG),
call(CopySG),
solve_constr(SG=CopySG,OldAnsw,NewAnsw).

reduce(G,OldAnsw,NewG,NewAnsw):-
copy_term(G,CopyG),
clause(CopyG,NewG),
solve_constr(G=CopyG,OldAnsw,NewAnsw).

add_constr(Const,Lab,OldAnsw,OldHier,NewAnsw,NewHier):-
lab(Labs),
(Labs=[Lab|_]

-> solve_constr(Const,OldAnsw,NewAnsw),
NewHier=OldHier
% required constraints are solved immediately

 ; constr_to_hier(Const,Lab,OldHier,NewHier),
NewAnsw=OldAnsw).
% soft constraints are collected

The next PROLOG code represents the implementation of the general hierarchy
solver which provides two (relatively) independent services to the meta-interpreter:

• adding a non-required constraint to a constraint hierarchy (constr_to_hier ) and
• solving a collected constraint hierarchy (solve_constr_hier ).

The constraint hierarchy is kept as an ordered list of constraint levels during the goal
reduction. The stacked constraint hierarchy is then solved using refining method, first
satisfying the strongest level, and then weaker levels successively. Note, that there are
two ways of finding a solution set:

• solutions are found one by one by the comparator module (solve_level ) by means
of backtracking mechanism (LPB comparator–Section 4.2)

• all solutions are found at once and then a particular solution/valuation is selected
with the use of select_answer  (WSPB comparator–Appendix)5.

As the code is self-explaining, we hold off close comments.

constr_to_hier(Const,Lab,[C@L|T],[C@L|NewT]):-
stronger(L,Lab),!,  % L is stronger than Lab
constr_to_hier(Const,Lab,T,NewT).

constr_to_hier(Const,L,[Cs@L|T],[[Const|Cs]@L|T]):-!.
constr_to_hier(Const,Lab,T,[[Const]@Lab|T]).

solve_constr_hier([TopLevel@L|WeakerLs],PartAnsws,Answ):-
solve_level(TopLevel,PartAnsws,SubAnsws),
solve_constr_hier(WeakerLs,SubAnsws,Answ).

solve_constr_hier([],AnswList,Answ):-
select_answer(Answ,AnswList).

The presented general hierarchy solver is really universal as it is absolutely independent
of a chosen comparator. The next section is dedicated to implementation of a particular
comparator and a flat constraint solver.

5 Also note that we do not include code for some auxiliary procedures like add_subgoal  and stronger .
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4.2 PLUG- I N M ODULES

Thanks to the general structure of above defined kernel modules, it is possible to define
various  HCLP(D,C) interpreters now. To get a complete HCLP(D,C) interpreter that
solves constraint hierarchies over the domain D using the comparator C, we need to
append to the kernel a pair of following extension modules:

• a flat constraint solver for solving constraints over the domain D and
• an implementation of selected comparator C.

For purposes of this paper we choose the widely used comparator, locally-predicate-
better (LPB), which is easy and straightforward to implement. Example of
implementation of another comparator, weighted-sum-predicate-better (WSPB), is given
in the Appendix.

Note, that the solution of the constraint hierarchy found by the LPB comparator is
the same as the solution of a maximal subset of satisfiable constraints on that level. The
proposed algorithm (solve_level_constr ) uses backtracking to find all maximal
subsets of satisfiable constraints, i.e., to find all possible solutions of the constraint
hierarchy level. As we use the predicate type of comparator (i.e., the trivial error
function), the only service the comparator module asks for the flat constraint solver is
solving a constraint according to the currently found solution (solve_constr ).

solve_level(Cs,[PartA|_],[LevelAnsw]):-
solve_level_constr(Cs,PartA,LevelAnsw).

solve_level(Cs,[_|PartAs],LevelAnsws):-
solve_level(Cs,PartAs,LevelAnsws).

solve_level_constr([C|R],PartAnsw,Answ):-
solve_constr(C,PartAnsw,SubAnsw),
solve_level_constr(R,SubAnsw,Answ).

solve_level_constr([C|R],PartAnsw,Answ):-
solve_level_constr(R,PartAnsw,Answ),
not solve_constr(C,Answ,_).

% solution can't be extended to cover C
solve_level_constr([],Answ,Answ).

select_answer(Answ,AnswList):-
member(Answ,AnswList).

Note, that we have not decided yet the particular form of constraints and we have not
specified the domain. So, the comparator module is (relatively) independent of a chosen
domain and a chosen type of constraints. Therefore, it is possible to use other comparator
module with the same flat constraint solver (see Appendix) as well as other flat constraint
solver, e.g., over reals, with the same comparator.

Because of using the predicate type of comparators, the flat constraint solver
provides just one service to other modules, i.e., solving a constraint according to the
currently found solution. As we use PROLOG to implement the HCLP interpreter, we
choose a natural domain for constraints in PROLOG, i.e., the Herbrand Universe. The
Herbrand Universe enables two basic types of constraints, equalities and inequalities. We
use an underlying PROLOG system to solve equalities, so, the valuation of free variables
is implicit. As we also use inequalities, we add an explicit list of satisfiable but not
satisfied, so called indeterminate, inequalities to solution. These inequalities are re-tested
everytime a new variable is bound.
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solve_constr(L=R,OldA,NewA):-
L=R, % equality test
solve_constr_list(OldA,[],NewA).

% re-test indeterminate inequalities
solve_constr(L\=R,OldA,NewA):-

L\=R -> NewA=OldA % inequality is satisfied
 ; (L==R -> fail % inequality fails

 ; NewA=[L\=R|OldA]).
% indeterminate inequality

solve_constr_list([H|T],OldA,NewA):-
solve_constr(H,OldA,SubA),
solve_constr_list(T,SubA,NewA).

solve_constr_list([],Answ,Answ).

Note again, that it is possible to use other flat constraint solver over arbitrary domain,
e.g., reals, without changing the other modules of the architecture (with one exception,
see footnote 4 above). The easiest way to do it is to use an underlying flat CLP(D)
system.

CONCLUSIONS

In this paper we presented a general plug-in architecture of constraint hierarchy solvers.
The main advantage of this approach is its modular structure that enables the programmer
to develop various constraint hierarchy systems from standardized components. For this
purpose we utilize the concept of mega-interpreter [2, 3].

The proposed architecture contains four modules which implement independent
parts of the system embracing constraint hierarchies. The kernel of the architecture
consists of the meta-interpreter and the general hierarchy solver. These components are
independent of a particular comparator and of a particular domain for constraints which
enables us to construct various constraint hierarchy systems by adding the following two
plug-in modules: the comparator component and the flat constraint solver. The proposed
architecture enables one to change various modules, e.g., the comparator component or
the flat constraint solver, without affecting other parts of the architecture. Moreover, it
enables to preserve the effectiveness of non-hierarchical constraint systems through the
direct bind between the meta-interpreter and the flat constraint solver.

Although, we presented a plug-in architecture for an HCLP interpreter only, we
realize that our architecture can be used for other constraint hierarchy systems as well.
Similarly, the presented general hierarchy solver is based on the refining method and the
presented flat constraint solver does not support other than predicate comparators.
However, we have recently finished implementation of a generalized algorithm for
solving constraint hierarchies [1] that is at least partially incremental, thus, more effective
than the refining method. We also expect that this generalized local propagation module
enables us to develop an effective constraint hierarchy system with inter-hierarchy
comparison [21].

The complete PROLOG source code of all above mentioned modules as well as the
code for modules implementing other predicate comparators is available on-line at URL:
http://kti.ms.mff.cuni.cz/~bartak/prolog.html .
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APPENDIX

To show the versatility of the proposed plug-in architecture we implemented various
comparator modules including weighted-sum-predicate-better (WSPB) comparator which
is presented here. Note, that the weighted-sum-predicate-better comparator is a weighted-
sum-better comparator using the trivial error function.

The module, that solves the given constraint hierarchy level using WSPB, finds a
maximal set of satisfiable constraints with the maximum sum of weights of these
constraints. The labeled constraints are expressed in the form (C,W)@L where C is a
constraint, W is its weight (a positive real number) and L is a strength6.

Contrary to the LPB module, this module collects all solutions without using
backtracking. Another difference from the LPB module is in collecting the solution in
implicit form, i.e., the list of satisfiable equalities and inequalities, that is re-solved at the
end (select_answer ).

The WSPB module is based on the procedure differ_answs  which differentiates
the set of currently found partial valuations/answers into two sets, one set containing the
valuations satisfying the added constraint C and the other set containing rest valuations.

solve_level(Cs,PartAnsws,NewAnsws):-
pre_solve_level(Cs,PartAnsws,[],NewAnsws,0,0,_).

pre_solve_level(_,[],OldAnsws,OldAnsws,_,OldMax,OldMax):-!.
pre_solve_level([(C,W)|Cs],PartAs,OldAs,NewAs,

CurrMax,OldMax,NewMax):-
differ_answs(C,PartAs,PartSatAs,_),
NewWeight is CurrMax+W,
pre_solve_level(Cs,PartSatAs,OldAs,PreAs,

NewWeight,OldMax,PreMax),
pre_solve_level(Cs,PartAs,PreAs,

NewAs,CurrMax,PreMax,NewMax).
pre_solve_level([],CurrAs,OldAs,NewAs,CurrMax,OldMax,CurrMax):-

CurrMax=OldMax,
append(CurrAs,OldAs,NewAs),!.

pre_solve_level([],CurrAs,_,CurrAs,CurrMax,OldMax,CurrMax):-
CurrMax>OldMax.

pre_solve_level([],_,OldAnsws,OldAnsws,CurrMax,OldMax,OldMax):-
CurrMax<OldMax.

differ_answs(C,[A|As],RAs,[A|NAs]):-
not solve_constr_list([C|A],[],_),!,
differ_answs(C,As,RAs,NAs).

differ_answs(C,[A|As],[[C|A]|RAs],NAs):-
differ_answs(C,As,RAs,NAs).

differ_answs(_,[],[],[]).

select_answer(A,As):-
member(SelA,As),
solve_constr_list(SelA,[],A).

The presented module was developed ad-hoc to test our ideas. Actually, we have not
concerned ourselves yet with efficiency and this module is slow.

6 Required constraints are expressed in obvious form C@L since the weight has no sense there.


