

 1

CONSTRAINT PROPAGATION AND
BACKTRACKING-BASED SEARCH

A brief introduction to mainstream techniques

of constraint satisfaction

ROMAN BARTÁK

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic

e-mail: roman.bartak@mff.cuni.cz

 1

.

„Were you to ask me which programming paradigm is
likely to gain most in commercial significance over the next
5 years I’d have to pick Constraint Logic Programming
(CLP), even though it’s perhaps currently one of the least
known and understood.”

Dick Pountain, BYTE, February 1995

Introduction
What is a constraint programming, what are its origins and why is it useful?

Constraint programming is an emergent software technology for declarative description and effective
solving of combinatorial optimization problems in areas like planning and scheduling. It represents the
most exciting developments in programming languages of the last decade and, not surprisingly, it has
recently been identified by the ACM (Association for Computing Machinery) as one of the strategic
directions in computer research. Not only it is based on a strong theoretical foundation but it is attracting
widespread commercial interest as well, in particular, in areas of modelling heterogeneous optimisation
and satisfaction problems.

What is a constraint?
A constraint is simply a logical relation among several unknowns (or variables), each taking a value in a
given domain. A constraint thus restricts the possible values that variables can take; it represents some
partial information about the variables of interest. For instance, “the circle is inside the square” relates
two objects without precisely specifying their positions, i.e., their co-ordinates. Now, one may move the
square or the circle and he or she is still able to maintain the relation between these two objects. Also, one
may want to add anther object, say triangle, and to introduce another constraint, say “square is to the left
of the triangle”. From the user (human) point of view, everything remains absolutely transparent.

Constraints arise naturally in most areas of human endeavour. The three angles of a triangle sum to 180
degrees, the sum of the currents floating into a node must equal zero, the position of the scroller in the
window scrollbar must reflect the visible part of the underlying document. These are some examples of
constraints which appear in the real world. Constraints can also be heterogeneous and so they can bind
unknowns from different domains, for example the length (number) with the word (string). Thus,
constraints are a natural medium for people to express problems in many fields.

We all use constraints to guide reasoning as a key part of everyday common sense. “I can be there from
five to six o’clock”, this is a typical constraint we use to plan our time. Naturally, we do not solve one
constraint only but a collection of constraints that are rarely independent. This complicates the problem a
bit, so, usually, we have to give and take.

Constraints naturally enjoy several interesting properties:

• constraints may specify partial information, i.e., the constraint need not uniquely specify the values
of its variables, (constraint X>2 does not specify the exact value of variable X, so X can be equal to
3, 4, 5 etc.)

• constraints are heterogeneous, i.e., they can specify the relation between variables with different
domains (for example X = length(Y))

• constraints are non-directional, typically a constraint on (say) two variables X, Y can be used to
infer a constraint on X given a constraint on Y and vice versa, (X=Y+2 can be used to compute the
variable X using X:=Y+2 as well as the variable Y using Y:=X-2)

• constraints are declarative, i.e., they specify what relationship must hold without specifying a
computational procedure to enforce that relationship,

• constraints are additive, i.e., the order of imposition of constraints does not matter, all that matters
at the end is that the conjunction of constraints is in effect,

• constraints are rarely independent, typically constraints in the constraint store share variables.

 2

A bit of history ...
Constraints have recently emerged as a research area that combines researchers from a number of fields,
including Artificial Intelligence, Programming Languages, Symbolic Computing and Computational
Logic. Constraint networks and constraint satisfaction problems have been studied in Artificial
Intelligence starting from the seventies (Montanary, 1974), (Waltz, 1975). Systematic use of constraints
in programming has started in the eighties (Gallaire, 1985), (Jaffar, Lassez, 1987).

The constraint satisfaction origins from Artificial Intelligence where the problems like scene labelling
was studied (Waltz, 1975). The scene labelling problem is probably the first constraint satisfaction
problem that was formalised. The goal is to recognise the objects in the scene by interpreting lines in the
drawings. First, the lines or edges are labelled, i.e., they are categorised into few types, namely convex
(+), concave (-) and occluding edges (<). In some advanced systems, the shadow border is recognised as
well.

There are a lot ways how to label the scene (exactly 3n, where n is a number of edges) but only few of
them has any 3D meaning. The idea how to solve this combinatorial problem is to find legal labels for
junctions satisfying the constraint that the edge has the same label at both ends. This reduces the problem
a lot because there are only a very limited number of legal labels for junctions.

... and some applications.
Constraint programming has been successfully applied in numerous domains. Recent applications include
computer graphics (to express geometric coherence in the case of scene analysis), natural language
processing (construction of efficient parsers), database systems (to ensure and/or restore consistency of
the data), operations research problems (like optimisation problems), molecular biology (DNA
sequencing), business applications (option trading), electrical engineering (to locate faults), circuit design
(to compute layouts), etc.

Current research in this area deals with various foundational issues, with implementation aspects, and
with new applications of constraint programming.

What does the constraint programming deal with?
Constraint programming is the study of computational systems based on constraints. The idea of
constraint programming is to solve problems by stating constraints (conditions, properties, requirements)
which must be satisfied by the solution.

Work in this area can be tracked back to research in Artificial Intelligence (Montanary, 1974), (Waltz,
1975) and Computer Graphics (Sutherland, 1963), (Borning, 1981) in the sixties and seventies. Only in
the last two decades, however, there has emerged a growing realisation that these ideas provide the basic
for a powerful approach to programming (Gallaire, 1985), (Jaffar, Lassez, 1987), modelling, and problem
solving and that different efforts to exploit these ideas can be unified under a common conceptual and
practical framework, constraint programming.

Currently there can be seen two branches of Constraint Programming research which arise from distinct
bases and, thus, use different approaches to solve constraints. Constraint Programming roofs both of
them.

+

+
+

+
- -

+ +

+

<<

+

- -

 3

• Constraint Satisfaction
Constraint Satisfaction arose from the research in Artificial Intelligence (combinatorial problems, search)
and Computer Graphics (SKETCHPAD system by Sutherland, expressing geometric coherence in the
case of scene analysis). The Constraint Satisfaction Problem (CSP) is defined by:

 a finite set of variables,
 a function which maps every variable to a finite domain,
 a finite set of constraints.

Each constraint restricts the combination of values that a set of variables may take simultaneously. A
solution of a CSP is an assignment to each variable a value from its domain satisfying all the constraints.
The task is to find one solution or all solutions.

Thus, the CSP is a combinatorial problem which can be solved by search. There exists a trivial algorithm
that solves such problems or finds that there is no solution. This algorithm generates all possible
combinations of values and, then, it tests whether the given combination of values satisfies all constraints
or not (consequently, this algorithm is called generate and test). Clearly, this algorithm takes a long time
to run so the research in the area of constraint satisfaction concentrate on finding algorithms which solve
the problem more efficiently, at least for a given subset of problems.

• Constraint Solving
Constraint Solving differs from Constraint Satisfaction by using variables with infinite domains
like real numbers. Also, the individual constraints are more complicated, e.g., non-linear
equalities. Consequently, the constraint solving algorithms uses the algebraic and numeric methods
instead of combinations and search. However, there exists an approach which discretizes the
infinite domain into finite number of components and, then, applies the techniques of constraint
satisfaction. This tutorial does not cover constraint solving techniques.

Give me some examples
There are a lot of toy problems that can be solved using constraint programming naturally. Among them,
the graph (map) colouring, N-queens, and crypto-arithmetic have a privilege position.

N-Queens
The N-queens problem is a well know puzzle among computer scientists. Given any integer N, the
problem is to place N queens on squares in an N*N chessboard satisfying the constraint that no
two queens threaten each other (a queen threatens any other queens on the same row, column and
diagonal).

A typical way how to model this problem is to assume that each queen is in different column and
to assign a variable Ri (with the domain 1...N) to the queen in the i-th column indicating the
position of the queen in the row. Now, its is easy to express "no-threatening" constraints between
each couple Ri and Rj of queens:

i ≠ j ⇒ (Ri ≠ Rj & |i-j| ≠ | Ri - Ri |)

Graph (map) colouring
Another problem which is often used to demonstrate potential of constraint programming and to
explain concepts and algorithms for the CSP is the colouring problem. Given a graph (a map) and
a number of colours, the problem is to assign colours to those nodes (areas in the map) satisfying
the constraint that no adjacent nodes (areas) have the same colour assigned to them.

This problem is modelled naturally by labelling each node of the graph with a variable (with the
domain corresponding to the set of colours) and introducing the non-equality constraint between
each two variables labelling adjacent nodes.

A

B
C

D
A

B
C

D

 4

Crypto-arithmetic
Last but not least example of using constraint techniques is a crypto-arithmetic problem. In fact, it
is a group of similar problems. Given a mathematical expression where letters are used instead of
numbers, the problem is to assign digits to those letters satisfying the constraint that different
letters should have different digits assigned and the mathematical formulae holds. Here is a typical
example of the crypto-arithmetic problem:

SEND + MORE = MONEY

The problem can be modelled by identifying each letter with a variable (with domain 0...9), by
direct rewriting the formulae to an equivalent arithmetic constraint:

 1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
= 10000*M + 1000*O + 100*N + 10*E + Y

and by adding auxiliary constraints S ≠ 0 and M ≠ 0.

There are also other toy problems that can be solved using constraint programming techniques like Zebra
(five houses puzzle), a crossword puzzle, or mastermind.

What about practical applications?
Of course, the constraint programming is not popular because of solving toy problems but because of its
potential to model and solve real-life problems naturally and efficiently. Constraint programming can also
serve as a roof for combination of different approaches, like integer programming and operation research.

The number of companies exploiting constraint technology increases each year. Here is a list of some of
the well-known companies among them:

British Airways, SAS, Swissair, French railway authority SNCF, Hong Kong International
Terminals, Michelin, Dassault, Ericsson etc.

Also, there are a lot of companies providing solutions based on constraints like PeopleSoft, i2
Technologies, InSol, Vine Solutions or companies providing constraint-based tools like ILOG, IF
Computer, Cosytec, SICS, or PrologIA.

The constraint programming techniques can lend a hand to many real-life problems. Among other things:

• time-tabling
• workforce management
• course scheduling
• stuff scheduling

• nurse scheduling
• crew rostering problem (Italian Railway Company)

• planning and scheduling
• transport planning
• on-demand manufacturing

• car sequencing
• resource allocation

• forest treatment scheduling
• well activity scheduling (Saga Petroleum a.s.)
• airport counter allocation (Cathay Pacific Airways Ltd)

• analysis and synthesis of analogue and digital circuits
• option trading analysis
• cutting stock
• DNA sequencing
• chemical hypothetical reasoning
• warehouse location
• network configuration

 5

.

Constraint Satisfaction
How to tackle constraint satisfaction problems?

Constraint Satisfaction Problems (CSPs) have been a subject of research in Artificial Intelligence for
many years. The pioneering works on networks of constraints were motivated mainly by problems arising
in the field of picture processing (Waltz, 1975), (Montanari,1974). AI research, concentrated on difficult
combinatorial problems, is dated back to sixties and seventies and it has contributed to considerable
progress in constraint-based reasoning. Many powerful algorithms were designed that became a basis of
current constraint satisfaction algorithms.

Constraints, an ultimate anti NP-Hard weapon?
Most problems that the constraint programming concerns belong to the group that conventional
programming techniques find hardest. Time needed to solve such problems using unconstrained search
increases exponentially with the problem size.

Consider the simple problem of harbour which needs to schedule the loading and unloading of 10 ships
using only 5 berths. You can solve this problem by trying all permutations of ships in berths, calculating
the cost of each alternative and selecting the optimal schedule. This means exploring 510 (about 10
million) alternatives in the worst case. Assuming that your computer can try an alternative every
millisecond, then the whole problem is solved in around 3 hours. A decade later, the business has been
good and the harbour has expanded to 10 berths and 20 ships. Now, finding the optimal schedule using
the same method means trying 1020 alternatives, which will take more than 3000 million years on the
same computer. Even a thousand times faster accelerator card does not help there. Fortunately, one does
not need to explore all the alternatives. There are many criteria for choosing the berth for a particular
ship, for example some berths are too small for some ships and it is not possible to load or unload two
ships in the same berth at the same time etc. By embracing these constraints, the search space reduces
dramatically and it makes the problem tractable. Also, in many real life problems the optimal solution is
not necessarily required and a near to optimal solution is enough in many cases. For example, it is
possible to break up the harbour into two parts, each with 5 berths and 10 ships, and solve this split
problem in 6 hours using the above "brute force" method.

What is a CSP and its solution?
A Constraint Satisfaction Problem (CSP) consists of:

• a set of variables X={x1,...,xn},
• for each variable xi, a finite set Di of possible values (its domain),
• and a set of constraints restricting the values that the variables can simultaneously take.

Note that values need not be a set of consecutive integers (although often they are). They need not even
be numeric.

A solution to a CSP is an assignment of a value from its domain to every variable, in such a way that
every constraint is satisfied. We may want to find:

• just one solution, with no preference as to which one,
• all solutions,
• an optimal, or at least a good solution, given some objective function defined in terms of some or

all of the variables; in this case we speak about Constraint Optimisation Problem (COP).

Solutions to a CSP can be found by searching systematically through the possible assignments of values
to variable. Search methods divide into two broad classes, those that traverse the space of partial solutions

 6

(or partial value assignments), and those that explore the space of complete value assignments (to all
variables) stochastically.

The reasons for choosing to represent and solve a problem as a CSP rather than, say as a mathematical
programming problem are twofold.

• First, the representation as a CSP is often much closer to the original problem: the variables of
the CSP directly correspond to problem entities, and the constraints can be expressed without
having to be translated into linear inequalities. This makes the formulation simpler, the solution
easier to understand, and the choice of good heuristics to guide the solution strategy more
straightforward.

• Second, although CSP algorithms are essentially very simple, they can sometimes find solution
more quickly than if integer programming methods are used.

What is going on?
This tutorial is intended to give a basic grounding in constraint satisfaction problems and some of the
algorithms used to solve them. In general, the tasks posed in the constraint satisfaction problem paradigm
are computationally intractable (NP-hard).

Systematic search algorithm
A CSP can be solved using generate-and-test paradigm (GT) that systematically generates each
possible value assignment and then it tests to see if it satisfies all the constraints. A more efficient
method uses the backtracking paradigm (BT) that is the most common algorithm for performing
systematic search. Backtracking incrementally attempts to extend a partial solution toward a
complete solution, by repeatedly choosing a value for another variable.

Consistency techniques
The late detection of inconsistency is the disadvantage of GT and BT paradigms. Therefore
various consistency techniques for constraint graphs were introduced to prune the search space.
The consistency-enforcing algorithm makes any partial solution of a small sub-network extensible
to some surrounding network. Thus, the inconsistency is detected as soon as possible. The
consistency techniques range from simple node-consistency and the very popular arc-consistency
to full, but expensive path consistency.

Constraint propagation
By integrating systematic search algorithms with consistency techniques, it is possible to get
more efficient constraint satisfaction algorithms. Improvements of backtracking algorithm have
focused on two phases of the algorithm: moving forward (forward checking and look-ahead
schemes) and backtracking (look-back schemes).

Variable and value ordering
The efficiency of search algorithms which incrementally attempts to extend a partial solution
depends considerably on the order in which variables are considered for instantiations. Having
selected the next variable to assign a value to, a search algorithm has to select a value to assign.
Again, this ordering effects the efficiency of the algorithm. There exist various general heuristics
for dynamic or static ordering of values and variables.

Reducing search
The problem of most systematic search algorithms based on backtracking is the occurrence of
many "backtracks" to alternative choices, which degrades the efficiency of the system. In some
special cases, it is possible to completely eliminate the need for backtracking. Also, there exist
algorithms which reduce the backtracking by choosing a special variable ordering.

Constraint optimisation
A typical real-life problem is not only about finding a solution satisfying all the constraints.
Frequently, some optimisation is involved and the customers are asking for good solutions,
whatever “good” mean. The optimisation nature of the problem can be encoded by an objective
function defined in terms of problem variables. Many constraint satisfaction algorithms can be
then extended to solve optimisation problems. The most widely used technique is called branch-
and-bound.

 7

.

Systematic Search
How to solve constraint satisfaction problems by search?

Many algorithms for solving CSPs search systematically through the possible assignments of values to
variables. Such algorithms are guaranteed to find a solution, if one exists, or to prove that the problem is
insoluble. Thus the systematic search algorithms are sound and complete. The main disadvantage of these
algorithms is that they take a very long time to do so.

There are two main classes of systematic search algorithms:

• algorithms that search the space of complete assignments, i.e., the assignments of all variables, till
they find the complete assignment that satisfies all the constraints, and

• algorithms that extend a partial consistent assignment to a complete assignment that satisfies all the
constraints.

In this section we present basic representatives of both classes. Although these algorithms look simple
and non-efficient they are very important because they make the foundation of other algorithms that
exploit more sophisticated techniques like propagation or local search.

Generate and Test (GT)
Generate-and-test method originates from the mathematical approach to solving combinatorial problems.
It is a typical representative of algorithms that search the space of complete assignments.

First, the GT algorithm generates some complete assignment of variables and, then, it tests whether this
assignment satisfies all the constraints. If the test fails, i.e., there exists any unsatisfied constraint, then the
algorithm tries another complete assignment. The algorithm stops as soon as a complete assignment
satisfying all the constraints is found, this is the solution of the problem, or all complete assignments are
explored, i.e., the solution does not exist

The GT algorithm search systematically the space of complete assignments, i.e., it explores each possible
combination of the variable assignments. The number of combinations considered by this method is equal
to the size of the Cartesian product of all the variable domains.

Algorithm GT:
procedure GT(Variables, Constraints)
 for each Assignment of Variables do % generator
 if consistent(Assignment, Constraints) then
 return Assignment
 end for
 return fail
end GT

procedure consistent(Assignment, Constraints) % test
 for each C in Constraints do
 if C is not satisfied by Assignment then
 return fail
 end for
 return true
end consistent

 8

The above algorithm schema is parameterised by the procedure for generation of complete assignments of
variables. The pure form of GT algorithm uses trivial generator that returns all complete assignments in
some specified order. This generator assumes that the variables and values in domains are ordered in
some sense. The first complete assignment is generated by assigning first value from respective domain to
each variable. The next complete assignment is derived from given assignment by finding such variable X
that all following variables (in given order) are labelled by the last value from their respective domains
(let Vs be the set of these variables). Then, the generator assigns next value from the domain Dx to the
variable X, a first value from respective domains to each variable in Vs and the rest variables hold their
values. If such variable X does not exist, i.e., all variables are labelled by last values in their respective
domains, then the algorithm returns fail indicating that there is no other assignment.

Pure generator of complete assignments for GT:
procedure generate_first(Variables)
 for each V in Variables do
 label V by the first value in DV
 end for
end generate_first

procedure generate_next(Assignment)
 find first X in Assignment such that
 all following variables are labelled by
 the last value from their respective domains
 (name the set of these variables Vs)
 if X is labelled by the last value then
 return fail
 label B by next value in DX
 for each Y in Vs do
 assign first value in DY to Y
 end for
end generate_next

Example:
Domains: DX=[1,2,3], DY=[a,b,c], DZ=[5,6]
First assignment: X/1, Y/a, Z/5
Other assignments are generated in the following order:

X/1,Y/a,Z/6
X/1,Y/b,Z/5
X/1,Y/b,Z/6
...
X/3,Y/c,Z/6

Disadvantages: The pure generate-and-test approach is not very efficient because it generates many
wrong assignments of values to variables which are rejected in the testing phase. In addition, the
generator leaves out the conflicting instantiations and it generates other assignments independently of the
conflict (a blind generator). There are two ways how to improve the pure GT approach:

• The generator of assignments is smart, i.e., it generates the next complete assignment in such a way
that the conflict found by the test phase is minimised. This is a basic idea of stochastic algorithms
based on local search that are not covered by this tutorial.

• Generator is merged with the tester, i.e., the validity of the constraint is tested as soon as its
respective variables are instantiated. In fact, this method is used by the backtracking approach.

Backtracking (BT)
The most common algorithm for performing systematic search is backtracking. Backtracking
incrementally attempts to extend a partial assignment that specifies consistent values for some of the
variables, toward a complete assignment, by repeatedly choosing a value for another variable consistent
with the values in the current partial solution.

 9

Backtracking can be seen as a merge of generate and test phases from the GT approach. In the BT
method, variables are instantiated sequentially and as soon as all the variables relevant to a constraint are
instantiated, the validity of the constraint is checked. If a partial assignment violates any of the
constraints, backtracking is performed to the most recently instantiated variable that still has alternatives
available. Clearly, whenever a partial assignment violates a constraint, backtracking is able to eliminate a
subspace from the Cartesian product of all variable domains. Consequently, backtracking is strictly better
than generate-and-test, however, its running complexity for most nontrivial problems is still exponential.

The basic form of backtracking algorithm is called chronological backtracking. If this algorithm
discovers an inconsistency then it always backtracks to the last decision, therefore chronological.

Algorithm (chronological) BT:
procedure BT(Variables, Constraints)
 BT-1(Variables,{},Constraints)
end BT

procedure BT-1(Unlabelled, Labelled, Constraints)
 if Unlabelled = {} then return Labelled
 pick first X from Unlabelled
 for each value V from DX do
 if consistent({X/V}+Labelled, Constraints) then
 R <- BT-1(Unlabelled-{X}, {X/V}+Labelled, Constraints)
 if R # fail then return R
 end if
 end for
 return fail % backtrack to previous variable
end BT-1

procedure consistent(Labelled, Constraints)
 for each C in Constraints do
 if all variables from C are Labelled then
 if C is not satisfied by Labelled then
 return fail
 end for
 return true
end consistent

Again, the above algorithm schema for chronological backtracking can be parameterised. It is possible to
plug-in various procedures for choosing the unlabelled variable (variable ordering) and for choosing the
value for this variable (value ordering). It is also possible to use more sophisticated consistency test that
discovers inconsistencies earlier then the above procedure. We will discuss all these possibilities later.

Disadvantages: There are three major drawbacks of the standard (chronological) backtracking scheme.

• The first drawback is thrashing, i.e., repeated failure due to the same reason. Thrashing occurs
because the standard backtracking algorithm does not identify the real reason of the conflict, i.e., the
conflicting variables. Therefore, search in different parts of the space keeps failing for the same
reason. Thrashing can be avoided by backjumping, sometimes called intelligent backtracking, i.e., by
a scheme on which backtracking is done directly to the variable that caused the failure.

• The other drawback of backtracking is having to perform redundant work. Even if the conflicting
values of variables are identified during the intelligent backtracking, they are not remembered for
immediate detection of the same conflict in a subsequent computation. The methods to resolve this
problem are called backchecking or backmarking. Both algorithms are useful methods for reducing
the number of compatibility checks. There is also a backtracking based method that eliminates both
of the above drawbacks of backtracking. This method is traditionally called dependency-directed
backtracking and is used in truth maintenance systems. It should be noted that using advanced
techniques adds other expenses to the algorithm that has to be balanced with the overall advantage of
using them.

• Finally, the basic backtracking algorithm still detects the conflict too late as it is not able to detect
the conflict before the conflict really occurs, i.e., after assigning the values to the all variables of the
conflicting constraint. This drawback can be avoided by applying consistency techniques to forward
check the possible conflicts.

 10

Backjumping (BJ)
In the above analysis of disadvantages of chronological backtracking we identified the thrashing problem,
i.e., a problem with repeated failure due to the same reason. We also outlined the method to avoid
thrashing, called backjumping (Gaschnig, 1979).

The control of backjumping is exactly the same as backtracking, except when backtracking takes place.
Both algorithms pick one variable at a time and look for a value for this variable making sure that the new
assignment is compatible with values committed to so far. However, if BJ finds an inconsistency, it
analyses the situation in order to identify the source of inconsistency. It uses the violated constraints as a
guidance to find out the conflicting variable. If all the values in the domain are explored then the BJ
algorithm backtracks to the most recent conflicting variable. This is the main difference from the BT
algorithm that backtracks to the immediate past variable.

The following example shows the advantage of backjumping over chronological backtracking. It displays
a board situation in the typical 8-queens problem. We have allocated first five queens by respective
columns (each queen is in different row) and now we are looking for a consistent column position for the
6th queen. Unfortunately, each position is inconsistent with the assignment of the first five queens so we
have to backtrack. The chronological backtracking backtracks to the Queen 5 and it finds another column
for this queen (column H). However, it is still impossible to place the Queen 6 because, in fact, the
conflict is with the Queens 4.

The backjumping is more "intelligent" in discovering the real conflict. The numbers in row 6 indicate the
assigned queens that the corresponding squares are incompatible with. It is possible at this stage to realise
that changing the value of Queen 5 will not resolve the conflict. The closest queen that can resolve the
conflict is Queen 4 because then there is a chance that column D can be used for Queen 6.

The question is how to identify the most recent conflicting variable in general.

Violated constraints level C1 C2 C3 C4
1 X
2 X X -O-
3 X --O--
4 O
5 O
6
7 X X X X

value A B

The above figure sketches the situation when a value is being assigned to the 7th variable. There are two
possible values, A and B, and there exist two violated constraints for both values. The figure shows which
variables are bound by respective constraints. These variables are marked by "X" and "O". For each
constraint, a variable at the highest level is selected as the closest conflicting variable (to currently

Q

Q

Q

Q

Q

3,41 4,52,5 13,5 32

1

2

3

4

5

6

7

8

A B C D E F G H

 11

labelled variable). This variable is marked "O". We have to choose this variable because if its value is
changed then it could be possible to satisfy the constraint. Now, we choose a conflicting level for each
value of the 7th variable. It is the minimal level of conflicting variables for constraints violated by given
value of the variable (marked "-O-"). This is because we need all constraints to be satisfied, e.g., even if
the value of 5th variable is changed to satisfy the constraint C1 we need to satisfy the constraint C2 as well,
and consequently the value of 3rd variable has to be changed too. Finally, the conflicting level for the 7th
variable is found as the maximum of conflicting levels for each value of the variable (marked "--O--").
There is a direct consequence of the above method, namely, if there exist a consistent value for the
variable then the algorithm jumps to the previous level upon backtracking.

There also exist less expensive methods of finding conflicting level, for example graph-based
backjumping that jumps to the most recent variable that constraints the current variable (the 5th variable in
the above example). However, graph-based backjumping behaves in the same way as chronological
backtracking if each variable is constrained by every other variable (like in the N-Queens problem).
Fortunately, for many problems, the constraint graphs are not complete

Algorithm BJ:
procedure BJ(Variables, Constraints)
 BJ-1(Variables,{},Constraints,0)
end BJ

procedure BJ-1(Unlabelled, Labelled, Constraints, PreviousLevel)
 if Unlabelled ={} then return Labelled
 pick first X from Unlabelled
 Level <- PreviousLevel+1
 Jump <- 0
 for each value V from DX do
 C <- consistent({X/V/Level}+Labelled, Constraints, Level)
 if C = fail(J) then
 Jump <- max {Jump, J}
 else
 Jump <- PreviousLevel
 R <- BJ-1(Unlabelled-{X},{X/V/Level}+Labelled,
 Constraints, Level)
 if R # fail(Level) then return R
 % success or backtrack to past level
 end if
 end for
 return fail(Jump) % backtrack to conflicting variable
end BJ-1

procedure consistent(Labelled, Constraints, Level)
 J <- Level
 NoConflict <- true
 for each C in Constraints do
 if all variables from C are Labelled then
 if C is not satisfied by Labelled then
 NoConflict <- false
 J <- min {{J}+ max{L | X in C & X/V/L in Labelled & L<Level}}
 end if
 end for
 if NoConflict then return true
 else return fail(J)
end consistent

Backmarking (BM)
In the above analysis of disadvantages of chronological backtracking we identified the problem with
redundant work, i.e., even if the conflicting values of variables are identified during the intelligent
backtracking, they are not remembered for immediate detection of the same conflict in a subsequent
computation. We mentioned two methods to resolve this problem, namely backchecking (BC) and
backmarking (BM).

Both backchecking and its descendent backmarking are useful algorithms for reducing the number of
compatibility checks. If the backchecking finds that some label Y/b is incompatible with any recent label
X/a then it remembers this incompatibility. As long as X/a is still committed to, the Y/b will not be
considered again.

 12

Backmarking (Haralick, Elliot, 1980) is an improvement over backchecking that avoids some redundant
constraint checking as well as some redundant discoveries of inconsistencies. It reduces the number of
compatibility checks by remembering for every label the incompatible recent labels. Furthermore, it
avoids repeating compatibility checks which have already been performed and which have succeeded.

To simplify the description of backmarking algorithm we assume working with binary CSPs (note, that it
is not restriction because each CSP can be converted to equivalent binary CSP – see References). The
idea of backmarking is as follows. When trying to extend a search path by choosing a value for a variable
X, backmarking marks the individual level, Mark, in the search tree at which an inconsistency is detected
for each value of X. If no inconsistency is detected for a value, its Mark is set to the level above the level
of the variable X. In addition, the algorithm also remembers the highest level, BackTo, to which search
has backed up since the last time X was considered. Now, when backmarking next considers a value V
for X, the Mark and BackTo levels can be compared. There are two cases:

• Mark < BackTo. If the level at which V failed before is above the level to which we have
backtracked, we know, without further constraint checking, that V will fail again. The value it failed
against is still there.

• Mark >= BackTo. If since V last failed we have backed up to or above the level at which V
encountered failure, we have to test V. However, we can start testing values against V at level
BackTo because the values above that level are unchanged since we last successfully tested them
against V.

Example:

Mark < BackTo Mark >= BackTo

The following figure demonstrates how the values of global variables (arrays) Mark and BackTo are
computed. We use the 8-Queens problems again and the board shows the same situation as in the
backjumping example. Note, that computating of Mark value is similar to finding the conflicting level in
backjumping and that backjumping can naturally be combined with backmarking to improve the
efficiency without additional overhead. The board situation shows the values of Mark (the number at each
square) and BackTo at the state when all the values for Queen 6 have been rejected, and the algorithm
backtracks to Queen 5 (therefore BackTo(6)=5). If and when all the values of Queen 5 are rejected, both
BackTo(5) and BackTo(6) will be changed to 4.

BackTo

Mark

b is still inconsistent
with a

b is inconsistent
with a

a BackTo

Mark

b b is inconsistent
with a

a

check consistency
w

ith b
still consistent

w
ith b

Q

Q

Q

Q

Q
3 1 4 2 1 3 3 2

1

2

3

4

5

6

7

8

A B C D E F G H

1

1

2

1

1 1

1 2

2

4

1

1

1

1

1

5

1

1

BackTo

 13

Algorithm BM:
procedure BM(Variables, Constraints)
 INITIALIZE(Variables)
 BM-1(Variables,{},Constraints,1)
end BM

procedure INITIALIZE(Variables)
 for each X in Variables do
 BackTo(X) <- 1
 for each V from DX do
 Mark(X,V) <- 1
 end for
 end for
end INITIALIZE

procedure BM-1(Unlabelled, Labelled, Constraints, Level)
 if Unlabelled ={} then return Labelled
 pick first X from Unlabelled % now, the order is fixed
 for each value V from DX do
 if Mark(V,X) >= BackTo(X) then
 if consistent(X/V, Labelled, Constraints, Level) then
 R <- BM-1(Unlabelled-{X}, Labelled+{X/V/Level},
 Constraints, Level+1)
 if R # fail then return R % success
 end if
 end if
 end for
 BackTo(X) <- Level-1
 for each Y in Unlabelled do
 BackTo(Y) <- min {Level-1, BackTo(Y)}
 end for
 return fail % backtrack to recent variable
end BM-1

procedure consistent(X/V, Labelled, Constraints, Level)
 for each Y/VY/LY in Labelled such that LY>=BackTo(X) do
 % in increasing order of LY
 if X/V is not compatible with Y/VY using Constraints then
 Mark(X,V) <- LY
 return fail
 end if
 end for
 Mark(X,V) <- Level-1
 return true
end consistent

Further Reading
A nice survey on depth-first search techniques is (Dechter, Frost, 1998); also the book (Dechter, 2003)
contains nicely written chapters on search technique in constraint satisfaction. Backjumping has been
introduced in (Gaschnig, 1979); its further improvement called dynamic backtracking was proposed in
(Ginsberg, 1993). Backmarking is described in (Haralick, Elliot, 1980).

In addition to complete depth-first search techniques, there also exist many incomplete techniques like
depth-bounded search (Beldiceanu et al, 1997), credit search (Cheadle et al, 2003) or iterative broadening
(Ginsberg, Harvey, 1990).

Recently, techniques for recovery from a failure of value ordering heuristic called discrepancy search
became popular thanks to good practical applicability. These are techniques like limited discrepancy
search (Harvey, Ginsberg, 1995), improved limited discrepancy search (Korf, 1996), discrepancy-
bounded depth first search (Beck, Perron, 2000), interleaved depth-first search (Meseguer, 1997), and
depth-bounded discrepancy search (Walsh, 1997). A survey can be found in (Harvey, 1995) or (Barták,
2004).

 14

.

Consistency Techniques1
Can constraints be used more actively during constraint satisfaction?

Consistency techniques were first introduced for improving the efficiency of picture recognition
programs, by researchers in artificial intelligence (Montanari, 1974), (Waltz, 1975). Picture recognition
involves labelling all the lines in a picture in a consistent way. The number of possible combinations can
be huge, while only very few are consistent. Consistency techniques effectively rule out many
inconsistent assignments at a very early stage, and thus cut short the search for consistent assignment.
These techniques have since proved to be effective on a wide variety of hard search problems.

Example:

Let A<B be a constraint between the variable A with the domain DA=3..7 and the
variable B with the domain DB=1..5.

Visibly, for some values in DA there does not exist a consistent value in DB
satisfying the constraint A<B and vice versa. Such values can be removed from
respective domains without loss of any solution, i.e., the reduction is safe. We
get reduced domains DA ={3,4} and DB={4,5}.

Note, that this reduction does not remove all inconsistent pairs necessarily, for
example A=4, B=4 is still in domains, but for each value of A from DA it is
possible to find a consistent value of B and vice versa.

Notice that consistency techniques are deterministic, as opposed to the search which is non-deterministic.
Thus the deterministic computation is performed as soon as possible and non-deterministic computation
during search is used only when there is no more propagation to done. Nevertheless, the consistency
techniques are rarely used alone to solve constraint satisfaction problem completely (but they could).

In binary CSPs (all constraints are binary), various consistency techniques for constraint graphs were
introduced to prune the search space. The consistency-enforcing algorithm makes any partial solution of a
small sub-network extensible to some surrounding network. Thus, the potential inconsistency is detected
as soon as possible.

In the following, we expect that a binary CSP is represented as a constraint graph where each node is
labelled by the variable and the edge between two nodes corresponds to the binary constraint binding the
variables that label the nodes connected by the edge. Unary constraint can be represented by the cycle
edge.

Node Consistency (NC)
The simplest consistency technique is referred to as node consistency (NC).

Definition: The node representing a variable X in a constraint graph is node consistent if and only if for
every value V in the current domain DX of X, each unary constraint on X is satisfied. A CSP is node
consistent if and only if all variables are node consistent, i.e., for all variables all values in its domain
satisfy the constraints on that variable.

1 based on Vipin Kumar: Algorithms for Constraint Satisfaction Problems: A Survey, AI Magazine 13(1):32-
44,1992

 15

If the domain DX of the variable X contains a value "a" that does not satisfy the unary constraint on X,
then the instantiation of X to "a" will always result in an immediate failure. Thus, the node inconsistency
can be eliminated by simply removing those values from the domain DX of each variable X that do not
satisfy a unary constraint on X.

Algorithm NC:
procedure NC(G)
 for each variable X in nodes(G) do
 for each value V in the domain DX do
 if unary constraint on X is inconsistent with V then
 delete V from DX
 end for
 end for
end NC

Arc Consistency (AC)
If the constraint graph is node consistent then unary constraints can be removed because they all are
satisfied. As we are working with the binary CSP, there remains to ensure consistency of binary
constraints. In the constraint graph, binary constraint corresponds to arc, therefore this type of consistency
is called arc consistency (AC).

Definition: An arc (Vi,Vj) is arc consistent if and only for every value x in the current domain of Vi
which satisfies the constraints on Vi there is some value y in the domain of Vj such that Vi=x and Vj=y is
permitted by the binary constraint between Vi and Vj. Note, that the concept of arc-consistency is
directional, i.e., if an arc (Vi,Vj) is consistent, then it does not automatically mean that (Vj,Vi) is also
consistent. A CSP is arc consistent if and only if every arc (Vi,Vj) in its constraint graph is arc
consistent.

Clearly, an arc (Vi,Vj) can be made consistent by simply deleting those values from the domain of Vi for
which there does not exist a corresponding value in the domain of Dj such that the binary constraint
between Vi and Vj is satisfied (note, that deleting of such values does not eliminate any solution of the
original CSP). The following algorithm does precisely that.

Algorithm REVISE:
procedure REVISE(Vi,Vj)
 DELETED <- false
 for each X in Di do
 if there is no such Y in Dj such that (X,Y) is consistent, i.e.,
 (X,Y) satisfies all the constraints on Vi, Vj then
 delete X from Di
 DELETED <- true
 end if
 end for
 return DELETED
end REVISE

To make every arc of the constraint graph consistent, i.e., to make a corresponding CSP arc consistent, it
is not sufficient to execute REVISE for each arc just once. Once REVISE reduces the domain of some
variable Vi, then each previously revised arc (Vj,Vi) has to be revised again, because some of the
members of the domain of Vj may no longer be compatible with any remaining members of the revised
domain of Vi. The easiest way how to establish arc consistency is to apply the REVISE procedure to all
arcs repeatedly till the domain of any variable changes. The following algorithm, known as AC-1, does
exactly this (Mackworth, 1977).

Algorithm AC-1:
procedure AC-1(G)
 Q <- {(Vi,Vj) in arcs(G), i#j}
 repeat
 CHANGED <- false
 for each arc (Vi,Vj) in Q do
 CHANGED <- REVISE(Vi,Vj) or CHANGED
 end for
 until not(CHANGED)
end AC-1

 16

The AC-1 algorithm is not very efficient because the successful revision of even a single arc in some
iteration forces all the arcs to be revised again in the next iteration, even though only a small number of
them are really affected by this revision. Visibly, the only arcs affected by the reduction of the domain of
Vk are the arcs (Vi,Vk). Also, if we revise the arc (Vk,Vm) and the domain of Vk is reduced, it is not
necessary to re-revise the arc (Vm,Vk) because non of the elements deleted from the domain of Vk
provided support for any value in the current domain of Vm. The following variation of arc consistency
algorithm, called AC-3 (Mackworth, 1977), removes this drawback of AC-1 and performs re-revision
only for those arcs that are possibly affected by a previous revision.

Algorithm AC-3:
procedure AC-3(G)
 Q <- {(Vi,Vj) in arcs(G), i#j}
 while not empty Q do
 select and delete any arc (Vk,Vm) from Q
 if REVISE(Vk,Vm) then
 Q <- Q union {(Vi,Vk) such that (Vi,Vk) in arcs(G), i#k, i#m}
 end if
 end while
end AC-3

When the algorithm AC-3 revises the edge for the second time it re-tests many pairs of values which are
already known (from the previous iteration) to be consistent or inconsistent respectively and which are
not affected by the reduction of the domain. The idea behind AC-3 is based on the notion of support; a
value is supported if there exists a compatible value in the domain of every other variable. When a value
V is removed from the domain of the variable X, it is not always necessary to examine all the binary
constraints CY,X. Precisely, we can ignore those values in DY which do not rely on V for support (in other
words, those values in DY that are compatible with some other value in DX other than V). The following
figure shows these dependencies between pairs of values. If we remove the value a from the domain of
variable V2 (because it has no support in V1), we do not need to check values a, b, c from the domain of
V3 because they all have other supports in the domain of V2. However, we have to remove the value d
from the domain of V3 because it lost the only support in V2.

Checking pairs of values again and again is a source of potential inefficiency. Therefore the algorithm
AC-4 (Mohr, Henderson, 1986) was introduced to refine handling of edges (constraints). The algorithm
works with individual pairs of values using support sets for each value. First, the algorithm AC-4
initialises its internal structures which are used to remember pairs of consistent (inconsistent) values of
incidental variables (nodes) - structure Si,a representing set of supports. This initialisation also counts
"supporting" values from the domain of incidental variable - structure counter(i,j),a - and it removes those
values which have no support. Once the value is removed from the domain, the algorithm adds the pair
<Variable, Value> to the list Q for re-revision of affected values of corresponding variables.

a
b
c
d

a
b
c
d

a
b
c
d

V1 V2 V3

k m

i

j

.
.
.

 17

Algorithm INITIALIZE:
procedure INITIALIZE(G)
 Q <- {}
 S <- {} % initialize each element in the structure Sx,v
 for each arc (Vi,Vj) in arcs(G) do
 for each a in Di do
 total <- 0
 for each b in Dj do
 if (a,b) is consistent according to the constraint Ci,j then
 total <- total + 1
 Sj,b <- Sj,b union {<i,a>}
 end if
 end for
 counter[(i,j),a] <- total
 if counter[(i,j),a] = 0 then
 delete a from Di
 Q <- Q union {<i,a>}
 end if
 end for
 end for
 return Q
end INITIALIZE

After the initialisation, the algorithm AC-4 performs re-revision only for those pairs of values of
incidental variables that are affected by the previous revision.

Algorithm AC-4:
procedure AC-4(G)
 Q <- INITIALIZE(G)
 while not empty Q do
 select and delete any pair <j,b> from Q
 for each <i,a> from Sj,b do
 counter[(i,j),a] <- counter[(i,j),a] - 1
 if counter[(i,j),a] = 0 & "a" is still in Di then
 delete "a" from Di
 Q <- Q union {<i,a>}
 end if
 end for
 end while
end AC-4

Directional Arc Consistency (DAC)
In the above definition of arc consistency we mentioned a directional nature of arc consistency (for arc).
Nevertheless, the arc consistency for CSP is not directional at all as each arc is assumed in both directions
in the AC-x algorithms. Although, the node and arc consistency algorithms seem easy they are still
stronger than necessary for some problems, for example, for enabling backtrack-free search in CSPs
which constraints form trees. Therefore yet simpler concept was proposed to achieve some form of
consistency, namely, directional arc consistency (DAC) that is defined under total ordering of the
variables.

Definition: A CSP is directional arc consistent under an ordering of variables if and only if every arc
(Vi,Vj) in its constraint graph such that i<j according to the ordering is arc consistent.

Notice the difference between AC and DAC, in AC we check every arc (Vi,Vj) while in DAC only the
arcs (Vi,Vj) where i<j are considered. Consequently, the arc consistency is stronger than directional arc
consistency, i.e., arc consistent CSP is also directional arc consistent but not vice versa (directional arc
consistent CSP is not necessarily arc consistent as well).

counter(i,j),_
2
2
1

Sj,_
<i,a1>,<i,a2>
<i,a1>
<i,a2>,<i,a3>

i
a1
a2
a3

j
b1
b2
b3

 18

The algorithm for achieving directional arc consistency is easier and more efficient than AC-x algorithms.
In fact, each arc is examined exactly once in the following algorithm DAC-1.

Algorithm DAC-1:
procedure DAC-1(G)
 for j = |nodes(G)| to 1 by -1 do
 for each arc (Vi,Vj) in arcs(G) such that i<j do
 REVISE(Vi,Vj)
 end for
 end for
end DAC-1

The DAC-1 procedure potentially removes fewer redundant values than the algorithms already mentioned
which achieve AC. However, DAC-1 requires less computation than procedures AC-1 to AC-3, and less
space than procedure AC-4. The choice of achieving AC or DAC is domain dependent. In principle, more
values can be removed through constraint propagation in more tightly constraint problems. Thus AC
tends to be worth achieving in more tightly constrained problems.

The directional arc-consistency is sufficient for backtrack-free solving of CSPs which constraints form
trees. In this case, it is possible to order the nodes (variables) starting from the tree root and concluding at
tree leaves. If the graph (tree) is made directional arc-consistent using this order then it is possible to find
the solution by assigning values to variables in the same order. The directional arc-consistency guarantees
that for each value of the root (parent) we will find consistent values in daughter nodes and so on till the
values of the leaves. Consequently, no backtracking is necessary to find a complete consistent
assignment.

From DAC to AC
Notice, that a CSP is arc-consistent if, for any given ordering < of the variables, this CSP is directional
arc-consistent under both < and its reverse. Therefore, it is tempting to believe (wrongly) that arc-
consistency could be achieved by running DAC-1 in both directions for any given <. The following
simple example shows that this belief is a fallacy.

Example:

If the DAC-1 is applied to the
following graph using variable
ordering X,Y,Z, the domains of
respective variables do not change.

Now, if the DAC-1 is applied using
reverse order Z,Y,X, the domain of
variable Z changes only but the
resulting graph is still not arc-
consistent (the value 2 in DX is
inconsistent with Z).

Nevertheless, in some cases it is possible to achieve arc-consistency by running DAC algorithm in both
directions for particular ordering of variables. In particular, if DAC is applied to a tree graph using the
ordering starting from the root and concluding at leaves and, subsequently, the DAC is applied in the
opposite direction then we achieve full arc-consistency. In the above example, if we apply DAC under the
ordering Z,Y,X (or Y,X,Y) and, subsequently, in opposite direction, we get an arc-consistent graph.

Z

X Y

Y<Z X#Z

{1,2}

{1} {1,2}

Z

X Y

Y<Z X#Z

{2}

{1} {1,2}

 19

Proposition: If DAC is applied to a tree graph using the ordering starting from the root and
concluding at leaves and, subsequently, the DAC is applied in the opposite direction, then we
achieve full arc-consistency.

Proof: If the first run of DAC is finished then all values in any parent node are consistent with
some assignment of daughter nodes. In other words, for each value of the parent node there exists
at least one support (consistent value) in each daughter node.

Now, if the second run of the DAC is performed in the opposite direction and some value is
removed from a node then this value is not a support of any value of the parent node (this is the
reason why this value is removed, it has no support in the parent node and, consequently, it is not a
support of any value from the parent node). Consequently, removing a value from some node does
not evoke losing support of any value of the parent node.

The conclusion is that each value in some node is consistent with any value in each daughter node
(first run) and with any value in the parent node (second run) and, therefore the graph is arc
consistent.

Q.E.D.

Is Arc-Consistency sufficient?
Achieving arc consistency removes many inconsistencies from the constraint graph but is any (complete)
instantiation of variables from current (reduced) domains a solution to the CSP? Or can we at least prove
that the solution exists?

If the domain size of each variable becomes one, then the CSP has exactly one solution which is obtained
by assigning to each variable the only possible value in its domain (this holds for AC and DAC as well).
If any domain becomes empty, then the CSP has no solution. Otherwise, the answer to above questions is
no in general. The following example shows such a case where the constraint graph is arc consistent,
domains are not empty but there is still no solution satisfying all constraints.

Example:

This constraint graph is arc-consistent but
there does not exist any labelling that satisfies
all the constraints.

A CSP after achieving arc-consistency:

1) domain size for each variable becomes one => exactly one solution exists
2) any domain becomes empty => no solution exists
3) otherwise => ???

a b

p q r

c a b

u v

a b

 p q r

c a b

u v

X

Y Z

X#Z X#Y

{1,2}

{1,2} {1,2} Y#Z

 20

Path Consistency (PC)
Given that arc consistency is not enough to eliminate the need for backtracking, is there another stronger
degree of consistency that may eliminate the need for search? The above example shows that if one
extends the consistency test to two or more arcs, more inconsistent values can be removed. This is the
main idea of path-consistency.

Definition: A path (V0, V1,..., Vm) in the constraint graph for CSP is path consistent if and only if for
every pair of values x in D0 and y in Dm that satisfies all the constraints on V0 and Vm there exists a label
for each of the variables V1,..., Vm-1 such that every binary constraint on the adjacent variables Vi, Vi+1 in
the path is satisfied. A CSP is path consistent if and only if every path in its graph is path consistent.

Note carefully that the definition of path consistency for
the path (V0, V1,..., Vm) does not require the values x0,
x1,..., xm to satisfy all the constraints between variables
V0, V1,..., Vm, In particular, the variables V1, V3 are not
adjacent variables in the path (V0, V1,..., Vm), so the
values x1, x3 needs not satisfy the constraint between V1,
V3.

Naturally, a path consistent CSP is arc consistent as well because an arc is equivalent to the path of length
1. In fact, to make the arc (Vi,Vj) arc-consistent one can make the path (Vi,Vj,Vi) path-consistent.
Consequently, path consistency implies arc consistency. However, the reverse implication does not hold,
i.e., arc consistency does not imply the path consistency as the above example shows (if we make the
graph path consistent, we discover that the problem has no solution). Therefore, path consistency is
stronger than arc consistency.

There is an important proposition about path consistency that simplifies maintaining path consistency. In
1974, Montanary pointed out that if every path of length 2 is path consistent then the graph is path
consistent as well. Consequently, we can check only the paths of length 2 to achieve full path consistency.

Proposition: A CSP is path consistent if and only if all paths of length 2 are path consistent.

Proof: Path consistency for paths of length 2 is just a special case of full path consistency so the
implication path-consistent => path-consistent for paths of length 2 (1) is trivially true.

The other implication path-consistent <= path-consistent for paths of length 2 (2) can be proved
using induction on the length of the path.

1. Base Step: When the length of path is 2 then the above implication (2) holds (trivial).

2. Induction Step: Assume that the implication (2) is true for all paths with length between 2
and some integer m. Pick any two variables V0 and Vm+1 and assume that x0 in D0 and xm+1 in
Dm+1 are two values that satisfy all the constraints on V0 and Vm+1. Now pick any m variables
V1,..., Vm. There must exist some value xm in Dm such that
all the constraints on the V0, Vm and Vm, Vm+1 are satisfied
(according to the base step). Finally, there must exists a
label for each of the variables V1,..., Vm-1 such that every
binary constraint on the adjacent edges in the path (V0,
V1,..., Vm) is satisfied (according to the base step; we can
assume that xm satisfies all unary constraints on Vm).
Consequently, every binary constraint on the adjacent
edges in the path (V0, V1,..., Vm+1) is also satisfied and the
path (V0, V1,..., Vm+1) is path-consistent.

Q.E.D.

Algorithms which achieve path-consistency remove not only inconsistent values from the domains but
also inconsistent pairs of values from the constraints (remind that we are working with binary CSPs). The
binary constraint is represented here by a {0,1}-matrix where value 1 represents legal, consistent pair of
values and value 0 represents illegal, inconsistent pair of values. For uniformity, both the domain and the
unary constraint of a variable X is also represented using the {0,1}-matrix. In fact, the unary constraint on
X is represented in the form of a binary constraint on (X, X).

V1

V2

V3

V4 V5

??? V0

V0

Vm+1 Vm

V1

Vm-1

 21

Example:

The binary constraint A>B+1 on
variables A and B with respective
domains DA={3,4,5} and
DB={1,2,3} can be represented by
the following {0,1}-matrix:

The domain of variable A,
DA={3,4,5}, and the unary
constraint A>3 can also be
represented by the {0,1}-matrix (in
this case, the matrix is diagonal):

B
A

1 2 3 A
A

3 4 5

3 1 0 0 3 0 0 0

4 1 1 0 4 0 1 0

5 1 1 1 5 0 0 1

Note, that we need to know the exact order of variables in the binary constraint as well
the order of values in respective domains.

Now, using the matrix representation it is easier to compose constraints. This constraint composition is a
kernel of the path consistency algorithms because to achieve path consistency in path (X,Y,Z) we can
compose the constraint on (X,Y) with the constraint on (Y,Z) and make an intersection of this
composition with the constraint on (X,Z). In fact, the composition of two constraints is equivalent to
multiplication of {0,1}-matrices using binary operations AND, OR instead of *, + and the intersection of
the matrices corresponds to performing AND operation on respective elements of the matrices. Therefore
we use * to mark the composition operation and & to mark the intersection. More formally, let CX,Y be a
{0,1}-matrix representing constraint on X and Y. Then we can make the path (X,Y,Z) path consistent by
the following assignment:

CX,Z <- CX,Z & CX,Y * CY,Y * CY,Z

Example:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00
00

01
10

*
10
01

*
01
10

&
01
10

Naturally, the composition operation has to be performed for all pairs (X, Z) and for all intermediary
nodes Y. Similarly to arc consistency, to make every path of the constraint graph consistent, i.e., to make
the corresponding CSP path consistent, it is not sufficient to execute this composition operation for each
path (X,Y,Z) just once. Once a domain of a variable/constraint is reduced then it is possible that some
previously revised path has to be revised again, because some pairs of values become incompatible due to
missing value of intermediary node. The easiest was how to establish path consistency is to apply the
composition operations to all paths repeatedly till the domain of any variable/constraint changes. The
following naive algorithm PC-1 does exactly this (Mackworth, 1977).

{1,2}

{1,2}

{1,2}

 22

Algorithm PC-1:
procedure PC-1(Vars, Constraints)
 n <- |Vars|
 Y(n) <- Constraints % we use the {0,1}-matrix representation
 % Y(k)(i,j) represents a matrix for constraint Ci,j in k-th step
 repeat
 Y(0) <- Y(n)
 for k=1 to n do
 for i=1 to n do
 for j=1 to n do
 Y(k),(i,j) <- Y(k-1),(i,j) &
 Y(k-1),(i,k)* Y(k-1),(k,k)* Y(k-1),(k,j)
 until Y(n)=Y(0)
 Constraints <- Y(n)
end PC-1

The basic idea of PC-1 is as follows: for every variable Vk, pick every constraint Ci,j from the current set
of constraints Yk and attempt to reduce it by means of relations composition using Ci,k, Ck,k and Ck,j. After
this is done for all variables, the set of constraints is examined to see if any constraint in it has changed.
The whole process is repeated as long as some constraints have been changed. Note that Yk(i,j) represents
the constraint Ci,j in the set Yk and that Yk is only used to build Yk+1.

Like AC-1, PC-1 is very inefficient because even a small change in one constraint will cause the whole
set of constraints to be re-examined. Moreover, PC-1 is also very memory consuming as many arrays Yk
are stored. Therefore improved algorithm PC-2 (Mackworth, 1977) was introduced in which only
relevant constraints are re-examined.

Similarly to AC algorithms we first introduce a procedure for path revision that restricts a constraint Ci,j
using Ci,k and Ck,j. The procedure returns TRUE, if the constraint domain is changed, and FALSE
otherwise.

Algorithm REVISE PATH:
procedure REVISE_PATH((i,k,j), C)
 Temp <- Ci,j & (Ci,k * Ck,k * Ck,j)
 if (Temp = Ci,j) then return FALSE
 else
 Ci,j <- Temp
 return TRUE
 end if
end REVISE_PATH

Note, that we do not need revise path in both directions if Ci,j = CT
j,i, i.e., if only one {0,1}-matrix is used

to represent the constraints Ci,j and Cj,i (CT is the transposition of the matrix C, i.e., rows and columns are
interchanged). This is because the following deduction holds:

(Ci,j & Ci,k * Ck,k * Ck,j)T = CT
i,j & (Ci,k * Ck,k * Ck,j)T = CT

i,j & CT
k,j * CT

k,k * CT
i,k = Cj,i & Cj,k * Ck,k * Ck,i

Now, we can use some ordering of variables and examine only paths (i,k,j) such that i=<j. Note, that there
is no condition about k and, therefore, we do not restrict ourselves to some form of directional path
consistency.

Finally, if the constraint Ci,j is reduced in REVISE_PATH, we want to re-examine only the relevant paths.
Because of above discussion about variable ordering there are two cases when the constraint Ci,j is
reduced, namely i<j and i=j.

• If i<j then all paths which contain (i,j) or (j,i) are relevant with the exception of (i,i,j) and (i,j,j)
because Ci,j will not be restricted by these paths as a result of itself being reduced.

• If i=j, i.e., the restricted path was (i,k,i), then all paths with i in it need to be re-examined, with the
exception of (i,i,i) and (k,i,k). This is because neither Ci,i nor Ck,k will be further restricted (it was the
variable Vk which has caused Ci,i to be reduced).

The following algorithm RELATED_PATHS returns paths relevant to a given path (i,k,j). Note that n is
equal to the number of variables in the CSP (and the numbering of variables starts in 1).

 23

Algorithm RELATED PATHS:
procedure RELATED_PATHS((i,k,j))
 if (i<j) then
 return {(i,j,p) | i<=p<=n & p#j} U
 {(p,i,j) | 1<=p<=j & p#i} U
 {(j,i,p) | j<p<=n} U
 {(p,j,i) | 1<=p<i}
 else % i.e. i=j
 return {(p,i,r) | 1<=p<=r<=n} - {(i,i,i),(k,i,k)}
 end if
end RELATED_PATHS

Now, it is easy to write PC-2 algorithm whose structure is very similar to AC-3 algorithm. The algorithm
starts with the queue of all paths to be revised and as soon as a constraint is reduced, the relevant paths
are added to the queue. As we mentioned above, the algorithm assumes ordering < among variables to
further decrease the number of checked paths. Remind that this is because the reduction Ci,k * Ck,k * Ck,j is
equivalent to the reduction Cj,k * Ck,k * Ck,i.

Algorithm PC-2:
procedure PC-2(Vars, Constraints)
 n <- |Vars|
 Q <- {(i,k,j) | 1<=i<=j<=n & i#k & k#j}
 while Q # {} do
 select and delete any path (i,k,j) from Q
 if REVISE_PATH((i,k,j),Constraints) then
 Q <- Q U RELATED_PATHS((i,k,j))
 end while
end PC-2

The PC-2 algorithm is far away efficient than the PC-1 algorithm and it has also smaller memory
consumption than PC-1.

Directional Path Consistency (DPC)
Similarly to weakening arc-consistency to directional arc-consistency we can weaken path-consistency to
directional path consistency. The reason for doing this is also the same as in DAC. Sometimes, it is
sufficient to achieve directional path-consistency which is computationally less expensive than achieving
full path-consistency.

Definition: A CSP is directional path consistent under an ordering of variables if and only if for every
two variables Vi and Vj each path (Vi,Vk,Vj) in its constraint graph such that k>i and k>j according to the
ordering is path consistent.

Again, notice the difference between PC and DPC. In PC we check every path (Vi,Vk,Vj) while in DPC
only the paths (Vi,Vk,Vj) where k>i and k>j are considered. Consequently, the path consistency is
stronger than directional path consistency; however, it is less expensive to achieve directional path
consistency. The following example shows that path consistency is strictly stronger than directional path
consistency, i.e., PC removes more inconsistent values than DPC. It also shows that DPC can be even
weaker then AC. However, DPC is at least as strong as DAC because if path (Vi,Vk,Vi) where i<k is path-
consistent then also the arc (Vi,Vk) is arc-consistent.

 24

Example:

This CSP is directional path consistent
under the ordering A,B,C of variables.
However, this graph is not path
consistent.

This is the same CSP after achieving full
path consistency.

Similarly to DAC, the algorithm for achieving directional path-consistency is easier and more efficient
than the PC algorithms. Again, the algorithm DPC-1 goes through the variables in the descending order
(according to the ordering <) and each path is examined exactly once.

Algorithm DPC-1:
procedure DPC-1(Vars, Constraints)
 n <- |Vars|
 Q <- {(i,j) | i<j & Ci,j in Constraints}
 for k = n to 1 by -1 do
 for i = 1 to k-1 do
 for j = i to k do
 if (i,k) in Q & (j,k) in Q then
 Ci,j <- Ci,j & (Ci,k * Ck,k * Ck,j)
 Q <- Q + (i,j)
 end if
 end for
 end for
 end for
end DPC-1

Why not path-consistency?
Path consistency removes more inconsistencies from the constraint graph than arc-consistency but it has
also many disadvantages. Here are three main reasons why path-consistency algorithms are almost never
implemented in commercial CSP-solving systems:

• The ration between the complexity of PC and the simplification factor brings path-consistency far
less interesting than the one brought by arc-consistency.

• PC algorithms are based on elimination of pairs of values assignments. This imposes that constraints
should have an extensive representation ({0,1}-matrix) from which individual pairs can be deleted.
Such a representation is often unacceptable for the implementation of real-world problems for which
intensive representations are much more concise and efficient.

• Finally, enforcing path-consistency has the major drawback of bringing some modifications to the
connectivity of the constraint graph by adding some edges to this graph (i.e., if a path consistency for
(Vi,Vk,Vj) is enforced and there is no constraint between Vi and Vj then a new constraint between
these two variables appears)

Restricted Path Consistency (RPC)
Because of above mentioned reasons, Pierre Berlandier (1995) introduced a new level of partial
consistency which is situated between arc and path consistency. This level, half way between AC and PC,
is called restricted path-consistency (RPC).

A:{1}

B:{1,2}

C:{1,2,3} A<C
{(1,2),(1,3)}

A<B
{(1,2)}

B<C
{(1,2),(1,3),(2,3)}

A:{1}

B:{2}

C:{3} A<C
{(1,3)}

A<B
{(1,2)}

B<C
{(2,3)}

 25

The procedure for enforcing restricted path-consistency turns the above three drawbacks of PC by their
incompleteness: path-consistency checking is engaged for a given assignment pair if and only if the
deletion of this pair implies the deletion of one of its elements. Such situation occurs when a given
assignment pair represents the only support for one of the assignments with regard to some constraint.
The algorithm for making a graph restricted path consistent can be naturally based on AC-4 algorithm
that counts the number of supporting values.

Definition: A node representing variable Vi is restricted path consistent if it is arc-consistent, i.e., all
arcs from this node are arc-consistent, and the following is true: For every value “a” in the domain Di of
the variable Vi that has just one supporting value “b” from the domain of incidental variable Vj there
exists a value “c” in the domain of other incidental variable Vk such that (a,c) is permitted by the binary
constraint between Vi and Vk, and (c,b) is permitted by the binary constraint between Vk and Vj.

The restricted path consistency removes at least the same number of inconsistent pairs as the arc-
consistency does and also some pairs beyond. The following example demonstrates such case.

Example:

Initial situation (it is AC)
(the arcs associate compatible values)

After enforcing restricted path-consistency

Path-Consistency still not sufficient?
Enforcing path consistency removes more inconsistencies from the constraint graph than arc-consistency
but is it sufficient now? The answer is unfortunately the same as for arc-consistency, i.e., achieving path-
consistency still does not imply neither that any (complete) instantiation of variables from current
(reduced) domains is a solution to the CSP nor that the solution exists. The following example shows
such a case where the constraint graph is path consistent, domains are not empty but there is still no
solution satisfying all constraints.

Example:

This constraint graph (the
constraints are inequalities
between respective variables) is
path-consistent but there does not
exist any labelling that satisfies all
the constraints.

A CSP after achieving path-consistency:
• domain size for each variable becomes one => exactly one solution exists
• any domain becomes empty => no solution exists
• otherwise => ???

A

C D

{1,2,3} {1,2,3}

B
{1,2,3} {1,2,3}

a

V1

b c

d

e f

V3

V2

a

V1

b c

d

e f

V3

V2

 26

K-consistency
Because path-consistency is still not sufficient to solve the CSP in general, there remains a question
whether there exists any consistency technique that can solve the CSP problem completely. Let us first
define a general notion of consistency that covers node, arc, and path consistencies.

Definition: A constraint graph is K-consistent if the following is true: Choose values of any K-1
variables that satisfy all the constraints among these variables and choose any K-th variable. Then there
exists a value for this K-th variable that satisfies all the constraints among these K variables. A constraint
graph is strongly K-consistent if it is J-consistent for all J<=K.

Visibly, strongly K-consistent graph is K-consistent as well. However, the reverse implication does not
hold in general as the following example shows.

Example:

This constraint graph is 2-
consistent but it is not 1-consistent
because the value 1 of variable X
does not satisfy the unary
constraint X>1. Consequently, the
graph is not strongly 2-consistent.

K-consistency is a general notion of consistency that covers all above mentioned consistencies (with the
exception of RPC). In particular:

• node consistency is equivalent to strong 1-consistency,
• arc-consistency is equivalent to strong 2-consistency, and
• path-consistency is equivalent to strong 3-consisetncy.

Algorithms exist for making a constraint graph strongly K-consistent for K>2 but in practice they are
rarely used because of efficiency issues. Although these algorithms remove more inconsistent values than
any arc-consistency algorithm they do not eliminate the need for search in general.

Clearly, if a constraint graph containing N nodes is strongly N-consistent, then a solution to the CSP can
be found without any search. But the worst-case time complexity of the algorithm for obtaining N-
consistency in an N-node constraint graph is exponential. If the graph is (strongly) K-consistent for K<N,
then in general, backtracking (search) cannot be avoided, i.e., there still exist inconsistent values.

Example:

This constraint graph with
inequality constraints between
each pair of variables is strongly
K-consistent for each K<N, where
N is a number of nodes (variables).
However, there does not exist any
labelling that satisfies all the
constraints.

Further Reading
Consistency techniques make the core of constraint satisfaction technology. The basic arc consistency and
path consistency algorithms (AC-1,2,3, PC-1,2) are described in (Mackworth, 1997), their complexity
study can be found in (Mackworth, Freuder, 1985). Algorithm AC-4 with the optimal worst-case time
complexity has been proposed in (Mohr, Henderson, 1986). Its improvement called AC-6 that decreases

VN

{1,...,N-1} Vi

V2 V1 {1,...,N-1} {1,...,N-1}

{1,...,N-1}
......

.....

X

{1,2}

Y

{1}

X#Y
X>1

 27

memory consumption and improves average time complexity was proposed in (Bessiere, 1994). This
algorithm has been further improved to AC-7 in (Bessiere, Freuder, Regin, 1999). AC-5 is a general
schema for AC algorithms that can collapse to both AC-3 and AC-4. It is described in (Van Hentenryck et
al, 1992). Recently, optimal versions of AC-3 algorithms have been independently proposed, namely AC-
3.1 (Zhang, Yap, 2001) and AC-2001 (Bessiere, Regin, 2001).

Mohr and Henderson (1986) proposed an improved algorithm for path consistency PC-3 based on the
same idea as AC-4. However, this algorithm is not sound – a correction called PC-4 is described in (Han,
Lee, 1988). Algorithm PC-5 using the ideas of AC-6 is described in (Singh, 1995). Restricted path
consistency that is a half way between AC and PC is described in (Berlandier, 1995).

There also exist other consistency techniques going beyond the k-consistency scheme like inverse
consistencies (Verfaillie et al, 1999), neighbourhood inverse consistencies (Freuder, Elfe, 1996), or
singleton consistencies (Prosser et al, 2000). Stronger consistency techniques are usually not used in
practice due to their time and space complexity and most constraint solvers are built around (generalized)
arc consistency. Filtering power is improved there via so called global constraints that encapsulate
several “simple” constraints and typically achieve a stronger pruning. A typical representative of global
constraints is all-different by Regin (1994).

 28

.

Constraint Propagation
Can we combine depth-first search and consistency techniques?

In the previous chapters we presented two rather different schemes for solving the CSP: systematic search
with chronological backtracking as its representative and consistency techniques. The systematic search
was developed for general applications, and does not use constraints to improve the efficiency
(backjumping and backmarking are two improvements that try to exploit constraints to reduce the search
space). Opposite, the consistency techniques reduce the search space using constraints till the solution is
found. Neither systematic search nor consistency techniques prove themselves to be efficient enough to
solve the CSP completely. Therefore a third possible schema was introduced that embeds a consistency
algorithm inside a search algorithm. Such schemas are usually called look-ahead strategies and they are
based on idea of reducing the search space through constraint propagation.

As a skeleton we use a simple backtracking algorithm that incrementally instantiates variables and
extends a partial assignment that specifies consistent values for some of the variables, toward a complete
assignment, by repeatedly choosing a value for another variable. In order to reduce the search space, some
consistency technique is applied to the constraint graph after assigning a value to the variable. Depending
on the degree of consistency technique we get various constraint satisfaction algorithms.

Backtracking, once more
Even simple backtracking (BT) performs some kind of consistency technique and it can be seen as a
combination of pure generate & test and a fraction of arc consistency. The BT algorithm tests arc
consistency among already instantiated variables, i.e., the algorithm checks the validity of constraints
considering the partial instantiation. Because the domains of instantiated variables contain just one value,
it is enough to check only those constraints/arcs containing the last instantiated variable. If any domain is
reduced then the corresponding constraint is not consistent and the algorithm backtracks to a new
instantiation.

The following procedure AC-BT is called each time a new value is assigned to some variable Vcv (cv is
the consecutive number of the variable in the order of instantiating variables).

Algorithm AC for Backtracking:
procedure AC-BT(cv)
 Q <- {(Vi,Vcv) in arcs(G),i<cv};
 consistent <- true;
 while not Q empty & consistent do
 select and delete any arc (Vk,Vm) from Q;
 consistent <- not REVISE(Vk,Vm)
 end while
 return consistent
end AC-BT

The BT algorithm detects the inconsistency as soon as it appears and, therefore, it is far away efficient
than the simple generate & test approach. But it has still to perform too much search because it waits till
the inconsistency really appears.

 29

Example: (4-queens problem and BT)

As we demonstrated with backjumping and backmarking strategies, the BT algorithm can be easily
extended to backtrack to the conflicting variable and, thus, to incorporate some form of look-back scheme
or intelligent backtracking. Nevertheless, this adds some additional expenses to the algorithm and it
seems that preventing possible future conflicts is more reasonable than recovering from them.

Forward Checking
Forward checking is the easiest way to prevent future conflicts. Instead of performing arc consistency
between instantiated variables, it performs arc consistency between pairs of a not-yet instantiated variable
and an instantiated variable. Therefore, it maintains the invariance that for every un-instantiated variable
there exists at least one value in its domain which is compatible with the values of instantiated variables.

The forward checking algorithm is based on the following idea. When a value is assigned to the current
variable, any value in the domain of a "future" variable which conflicts with this assignment is
(temporarily) removed from the domain. Notice, that we check only the constraints/arcs between the
future variables and the currently instantiated variable. The reason is that the satisfaction of other
constraints between future variable and already instantiated variables does not change. If the domain of a
future variable becomes empty, then it is known immediately that the current partial assignment is
inconsistent. Consequently, forward checking allows branches of the search tree that will lead to a failure
to be pruned earlier than with chronological backtracking. Note also that whenever a new variable is
considered, all its remaining values are guaranteed to be consistent with the past variables, so checking
the assignment against the past assignments is no longer necessary.

Algorithm AC for Forward Checking:
procedure AC-FC(cv)
 Q <- {(Vi,Vcv) in arcs(G),i>cv};
 consistent <- true;
 while not Q empty & consistent do
 select and delete any arc (Vk,Vm) from Q;
 if REVISE(Vk,Vm) then
 consistent <- not empty Dk
 end if
 end while
 return consistent
end AC-FC

Notice, that in AC-BT algorithm we use procedure REVISE as a consistency test and in AC-FC we have
to test the emptiness of the domain. This is because the procedure REVISE is applied to domains
containing exactly one value in AC-BT. Consequently, if the domain is reduced (REVISE returns True)
then the domain becomes empty. In AC-FC, the reduction of the domain does not mean necessarily that
the domain is empty (because the domain of a future variable can contain more than one value) so we
have to test emptiness explicitly.

 30

Example: (4-queens problem and FC)

Forward checking detects the inconsistency earlier than chronological backtracking and thus it reduces
the search tree and (hopefully) the overall amount of work done. But it should be noted that forward
checking does more work when an instantiated variable is added to the current partial assignment.
Nevertheless, forward checking is still almost always a better choice than simple backtracking.

Partial Look Ahead
The more computational effort is spent on the problem reduction the more inconsistencies can be
removed. Consequently, less search is necessary to find the solution. Forward checking performs only the
checks of constraints between the current variable and the future variables. Now, we can extend this
consistency checking to even latter variables that have not a direct connection with already instantiated
variables, using directional arc-consistency. This algorithm is called DAC-Look Ahead or Partial Look
Ahead.

Remind that directional arc-consistency requires some total ordering of the variables. For simplicity
reasons, we will use the reverse ordering of variables from the backtracking skeleton. In practice, this is
not necessary and any different orderings can be used. However, in such case, the consistency of current
variable with previously assigned variables has to be checked as well.

Algorithm DAC for Partial Look Ahead:
procedure DAC-LA(cv)
 for i=cv+1 to n do
 for each arc (Vi,Vj) in arcs(G) such that i>j & j>=cv do
 if REVISE(Vi,Vj) then
 if empty Di then return fail
 end for
 end for
 return true
end DAC-LA

Notice, that we check directional arc-consistency only between the future variables and between the
future variables and the current variable. The reason is that the constraints between the future and past
variables are not influenced by assigning a value to the current variable and therefore it is not necessary to
re-check these constraints.

Partial Look Ahead checks more constraints than Forward Checking and, thus, it can find more
inconsistencies than FC as the following example shows.

Example: (4-queens problem and PLA)

.
X √

 31

Full Look Ahead
In above paragraphs we showed that using directional arc-consistency can remove more values from
domains of future variables than forward checking. So why not to perform full arc consistency that will
further reduces the domains and removes possible conflicts? This approach is called (Full) Look Ahead
or Maintaining Arc Consistency (MAC).

Similarly to partial look ahead, in full look ahead we check the constraints between the future variables
and between the future variables and the current variable. However, now the constraints are checked in
both directions so even more inconsistencies can be detected. Again, whenever a new variable is
considered, all its remaining values are guaranteed to be consistent with the past variables, so checking
the instantiated variable against the past assignments is not necessary. Also, it is not necessary to check
constraints between the future and past variables because of the same reason as with partial look ahead.

The full look ahead procedure can use arbitrary arc-consistency algorithm. In the following procedure we
use the AC-3 algorithm. Notice that we start checking arc consistency with the queue containing the arcs
from the future variables to the current variable only. This is because only these arcs/constraints are
influenced by assigning a value to the current variable.

Algorithm AC-3 for Full Look Ahead:
procedure AC3-LA(cv)
 Q <- {(Vi,Vcv) in arcs(G),i>cv};
 consistent <- true;
 while not Q empty & consistent do
 select and delete any arc (Vk,Vm) from Q;
 if REVISE(Vk,Vm) then
 Q <- Q union {(Vi,Vk) | (Vi,Vk) in arcs(G),i#k,i#m,i>cv}
 consistent <- not empty Dk
 end if
 end while
 return consistent
end AC3-LA

The advantage of full look ahead is that it allows branches of the search tree that will lead to a failure to
be pruned earlier than with forward checking and with partial look ahead. However, it should be noted
again that full look ahead does even more work when an instantiated variable is added to the current
partial assignment than forward checking and partial look ahead.

Example: (4-queens problem and LA)

Comparison of propagation techniques
The constraint propagation methods can be easily compared be exploring which constraints are being
checked when a value is assigned to current variable Vcv. The following figure shows which constraints
are tested when the above described propagation techniques are applied. Note that in partial look ahead
the same arcs are checked as in full look ahead. However, in partial look ahead each arc is checked
exactly once.

 32

More constraint propagation at each node will result in the search tree containing fewer nodes, but the
overall cost may be higher, as the processing at each node will be more expensive. In one extreme,
obtaining strong n-consistency for the original problem would completely eliminate the need for search,
but as mentioned before, this is usually more expensive than simple backtracking. Actually, in some cases
even the full look ahead may be more expensive than simple backtracking. That is the reason why
forward checking and simple backtracking are still used in applications.

 33

.

Search Orders and Search Reduction
Can we further influence efficiency of solving algorithms?

In the previous chapter we presented few search algorithms for constraint satisfaction. All of these
algorithms require the order in which variables are to be considered for labelling as well as the order in
which the values are assigned to the variable on backtracking. Note, that decisions about these orderings
could affect the efficiency of the constraint satisfaction algorithm dramatically. For example, if a right
value is chosen for each variable during labelling then the problem is solved completely without
backtracking. Of course, this is an artificial case but in most cases we can choose ordering which can
reduce the number of backtracks required in a search. In look-ahead algorithms, the ordering of variables
could affect the amount of search space pruned.

Both topics of search orders and reduction of search space are discussed in this chapter

Variable Ordering2
Experiments and analysis of several researchers have shown that the ordering in which variables are
chosen for instantiation can have substantial impact on the complexity of backtrack search. The ordering
may be either

• a static ordering, in which the order of the variables is specified before the search begins, and it is
not changed thereafter, or

• a dynamic ordering, in which the choice of next variable to be considered at any point depends on the
current state of the search.

Dynamic ordering is not feasible for all search algorithms, e.g., with simple backtracking there is no extra
information available during the search that could be used to make a different choice of ordering from the
initial ordering. However, in look-ahead algorithms, the current state includes the domains of the
variables as they have been pruned by the current set of instantiations, and so it is possible to base the
choice of next variable on this information.

Several heuristics have been developed and analysed for selecting variable ordering. The most common
one is based on the "FAIL-FIRST" principle, which can be explained as:

"To succeed, try first where you are most likely to fail."

In this method, the variable with the fewest possible remaining alternatives, i.e., the variable with the
smallest domain, is selected for instantiation. Thus the order of variable instantiations is, in general,
different in different branches of the tree, and is determined dynamically. This method is based on
assumption that any value is equally likely to participate in a solution, so that the more values there are,
the more likely it is that one of them will be a successful one.

The fail-first principle may seem slightly misleading, after all, we do not want to fail. The reason is that if
the current partial solution does not lead to a complete solution, then the sooner we discover it the better.
Hence encouraging early failure, if failure is inevitable, is beneficial in the long term. On the other end, if
the current partial solution can be extended to a complete solution, then every remaining variable must be
instantiated and the one with the smallest domain is likely to be the most difficult to find a value for
(instantiating other variables first may further reduce its domain and lead to a failure). Hence the principle
could equally well be stated as:

2 partly taken from Barbara M. Smith: A Tutorial on Constraint Programming, TR 95.14, University of
Leeds,1995

 34

"Deal with hard cases first: they can only get more difficult if you put them off."

This heuristic should reduce the average depth of branches in the search tree by triggering early failure.

Another heuristic, that is applied when all variables have the same number of values (their domains are of
the same size), is to choose the variable which participates in most constraints (in the absence of more
specific information on which constraints are likely to be difficult to satisfy, for instance). This heuristic
follows also the principle of dealing with hard cases first and it is called most constrained heuristics.

There is also a heuristic for static ordering of variables that is suitable for simple backtracking. This
heuristic says: choose the variable which has the largest number of constraints with the past variables.
For instance, during solving graph colouring problem, it is reasonable to assign colour to the vertex which
has common arcs with already coloured vertices so the conflict is detected as soon as possible.

Backtrack-free Search
In the above paragraphs we presented variable orderings which can noticeably improve the efficiency of
backtrack search. The open question is:

Does there exist any variable ordering which can eliminate the need for backtracking at all?

Before answering this question we definite what is backtrack-free search first.

Definition: A search in CSP is backtrack-free if in a depth first search under an ordering of its variables
for every variable that is to be labelled, one can always find for it a value which is compatible with all
labels committed to so far.

If the ordering of variables is backtrack-free then we know that for each variable there exists a value
compatible with the assignment of foregoing variables in the search and, therefore, no backtrack to
change a value of foregoing variable is necessary. The following definitions and theorem show how to
establish such backtrack-free ordering for strongly K-consistent constraint graphs.

Definition: An ordered constraint graph is a constraint graph whose vertices have been ordered linearly.
The width of the vertex in an ordered constraint graph is the number of constraint arcs that lead from the
vertex to the previous vertices (in the linear order). The width of the ordered constraint graph is the
maximum width of any of its vertices and the width of the constraint graph is the minimum width of all
the orderings of that graph. In general the width of a constraint graph depends upon its structure.

The following example demonstrates the meaning of above defined notions.

Example: (width of constraint graph)

Constraint graph

Ordered constrained graphs (up-down)

1 1 1 2 1 2 Width of the ordered constraint graphs

The width of the constraint graph is 1.

To find the width of the constraint graph we do not need to explore all possible variable orderings. The
following procedure by Freuder finds a sequence of variables (vertices) which has the minimal width of
the graph. In other words, the width of the ordered constraint graph defined by the returned ordering is the
width of the constraint graph. The input to the procedure is a general graph and the output is a sequence
of vertices which has the minimal width.

a

cb

a

c

b

a

b

c

b

c

a

b

a

c

c

b

a

c

a

b

 35

Algorithm Min Width Ordering:
procedure Min-Width-Ordering((V,E))
 Q <- {};
 while not V empty do
 N <- the node in V joined by the least number of edges in E;
 % in case of a tie, make arbitrary choice
 V <- V - {N};
 Remove all the edges from E which join V to other nodes in V;
 Q <- N:Q % put N as a head of the sequence Q
 end while
 return Q;
end Min-Width-Ordering

Proposition: If a constraint graph is strongly K-consistent, and K>w where w is the width of the
constraint graph, then there exists a search order that is backtrack free

Proof: The proof of the above proposition is straightforward. There exists an
ordering of the graph such that the number of constraint arcs leading from
any vertex of the graph to the previous vertices is at most w. Now if the
variables are instantiated using this ordering, then whenever a new variable is
instantiated, a value for this variable is consistent with all the previous
assignments because:

(i) this value is to be consistent with the assignments of at most w other
variables, and

(ii) the graph is strongly (w+1)-consistent.

Q.E.D.

Interestingly, all tree structured constrained graphs have width 1, so it is possible to find at least one
ordering that can be used to solve the constraint graph without backtracking provided that the constraint
graph is arc consistent.

Value Ordering3
Once the decision is made to instantiate a variable, it may have several values available. Again, the order
in which these values are considered can have substantial impact on the time to find the first solution.
However, if all solutions are required or there are no solutions, then the value ordering is indifferent.

A different value ordering will rearrange the branches emanating from each node of the search tree. This
is an advantage if it ensures that a branch which leads to a solution is searched earlier than branches
which lead to death ends. For example, if the CSP has a solution, and if a correct value is chosen for each
variable, then a solution can be found without any backtracking.

Suppose we have selected a variable to instantiate: how should we choose which value to try first? It may
be that none of the values will succeed, in that case, every value for the current variable will eventually
have to be considered, and the order does not matter. On the other hand, if we can find a complete
solution based on the past instantiations, we want to choose a value which is likely to succeed, and
unlikely to lead to a conflict. So, we apply the "SUCCEED-FIRST" principle.

One possible heuristic is to prefer those values that maximise the number of options available. Visibly,
the algorithm AC-4 is good for using this heuristic as it counts the supporting values. It is possible to
count "promise" of each value, that is the product of the domain sizes of the future variables after
choosing this value (this is an upper bound on the number of possible solutions resulting from the
assignment). The value with the highest promise should be chosen. It is also possible to calculate the
percentage of values in future domains which will no longer be usable. The best choice would be the
value with the lowest cost.

Another heuristic is to prefer the value (from those available) that leads to an easiest to solve CSP. This
requires to estimate the difficulty of solving a CSP. One method by Dechter propose to convert a CSP

3 partly taken from Barbara M. Smith: A Tutorial on Constraint Programming, TR 95.14, University of
Leeds,1995

V1

Vm

Vj

Vi

.....

m
ax. w

.....
.....

 36

into a tree-structured CSP by deleting a minimum number of arcs and then to find all solutions of the
resulting CSP (higher the solution count, easier the CSP).

For randomly generated problems, and probably in general, the work involved in assessing each value is
not worth the benefit of choosing a value which will on average be more likely to lead to a solution than
the default choice. In particular problems, on the other hand, there may be information available which
allows the values to be ordered according to the principle of choosing first those most likely to succeed.

CC (Cycle-Cut set)
Above, we presented a theorem whose direct consequence is:

acyclic constraint graphs are globally consistent iff they are arc consistent.

Therefore, if we make the acyclic constraint graph arc-consistent then the graph is globally consistent as
well so we can find the solution using backtrack-free search. Unfortunately, most constraint graphs
contain cycles so it is not possible to use the sketched method directly. Nevertheless, after removing all
cycles the method is applicable. Naturally, we do not need to remove all nodes (variables) on cycle, it is
sufficient to cut the cycles by removing some nodes. A set of nodes which cut all the cycles in the graph
is called a cycle-cut set.

And how to remove a variable from the constraint network? This is done by instantiating the variable and
propagating this instantiation to neighbour variables via constraints. Then we can remove the variable
from the network without influence to the rest of solution. Naturally, we may find later that this
instantiation is in conflict with some other (cycle-cut set) variables so another instantiation should be
tried. Finally, if we find a consistent instantiation of cycle-cut set then it is possible to extend this partial
solution to a complete solution in a backtrack-free manner using the variable ordering described in the
previous section. This observation makes the basis of the cycle-cut set algorithm whose formal definition
follows.

Algorithm Cycle Cutset:
procedure cycle-cutset(G)
 C <- find-cycle-cutset(G); % see next chapters
 while ex. labeling of variables in C satisfying all constraints do
 LC <- a(nother) labelling of variables in C satisfying all
 constraints;
 enforce DAC from C to the remaining variables;
 if all domains are non-empty then
 LR <- labelling of remaining variables (out of C)
 using backtrack-free search;
 return LC+LR;
 end if
 end while
 return fail;
end cycle-cutset

The major problem with the cycle-cut set method is its potential for thrashing. Because we are solving the
cycle-cut set C independently of the rest of the network, the backtracking may occur to find another
labelling for C caused by the same conflict.

MACE (MAC Extended)
To eliminate the potential sources of thrashing in the cycle-cut set algorithm, an extended version of
MAC algorithm, MACE, was proposed using the same principle. MACE combines two basic ideas:
instantiate less and propagate less to improve the efficiency of the constraint satisfaction algorithm. The
algorithm instantiates only a subset of the CSP variables while maintaining only a partial arc consistent
state of the constraint network. This partial arc-consistent state is guaranteed to extend to a fully arc-
consistent state. The gain in efficiency is twofold. Instantiating a smaller number of variables aims at
reducing the number of backtracks (and, accordingly, the number of constraint-checks, nodes visited,
values deleted, etc.).

MACE uses the idea of cycle-cut set of a constraint graph while it removes its major drawback, thrashing,
by maintaining arc consistency.

 37

Algorithm MACE (idea):

1) enforce arc consistency (if it is not possible then return fail)
2) partition the variables into two sets:
 a cycle-cut set C and the set of variables which are not involved
 in any cycle U
 (note, that U is not necessarily the complement of C)
3) disconnect U from the graph
4) while C#0 do
 4a) set value to a variable in C
 4b) enforce arc consistency
 if failed then backtrack to 4a (or to previous variable)
 4c) disconnect singleton variables (add them to U)
 4d) disconnect "cycle-free" variables (add them to U)
5) reconnect variables in U
 enforce directed arc consistency from C to U
6) conduct backtrack-free search for a complete solution

How to find a cycle-cut set?
MACE and CC need an algorithm to find a cycle-cut set. There is no known polynomial algorithm for
finding the minimum cycle-cut set (we prefer a smaller cycle-cut set because it has to labelled
completely). Fortunately, there are several heuristics which yield a good cycle-cut set at a reasonable cost.

(i) The simplest heuristic sorts first the vertices in decreasing order of their degree. Then, starting
with the vertex with the highest degree, as long as the graph still has cycles, add the vertex to the
cycle-cut set and remove it, together with all the edges involving it, from the graph.

(ii) A smaller cycle-cut set can be obtained if, before adding a vertex to the cycle-cut set, we check
whether the vertex is part of any cycle or not.

(iii) The third heuristic determines dynamically the number of cycles in which each vertex is involved
and adds to the cycle-cut set at each step the vertex participating in the most cycles.

Visibly, second and third heuristic yields smaller cut sets than the first heuristic. Based on real-life
observations, the third heuristic yields slightly smaller cycle-cut sets which translate sometimes into small
gains in efficiency, but no major improvement upon the second heuristic. In case of large problems
probably the second heuristic is the best choice, because of its lower cost.

Algorithm Find Cycle Cutset (using heuristic (i)):
procedure find-cycle-cutset(G)
 (V,E) = G;
 Q <- order elements in V by descending order of their degrees
 in the constraint graph G;
 CC <- {};
 while the graph G is cyclic do
 V <- first element in Q;
 CC <- CC + V;
 Q <- Q - V;
 remove V and edges involving it from the constraint graph G;
 end while
 return CC;
end find-cycle-cutset

 38

.

Constraint Optimisation
How to find an optimal solution satisfying the constraints?

Till now we have presented the constraint satisfaction algorithms for finding one or all solutions
satisfying all the constraints, i.e., all solutions were equally good. However, in many real-life
applications, we do not want to find any solution but a good solution. The quality of solution is usually
measured by some application dependent function called an objective function. The goal is to find such an
assignment that satisfies all the constraints and minimise or maximise the objective function respectively.
Such problems are called Constraint Optimisation Problems (COP).

Definition: A Constraint Optimisation Problem (COP) consists of a standard CSP and an objective
function f which maps every solution (complete labelling of variables satisfying all the constraints) to a
numerical value. The task is to find such a solution that is optimal regarding the objective function, i.e., it
minimises or maximises respectively the objective function.

In order to find the optimal solution, we potentially need to explore all the solutions of CSP and to
compare their values using the optimisation function. Therefore techniques for finding or generating all
solutions are more relevant to COP than techniques for finding a single solution.

Branch and Bound
Perhaps the most widely used technique for solving optimisation problems including COP is branch-
and-bound (B&B) which is a well known method both in Artificial Intelligence and Operations
Research. This method uses heuristic to prune the search space. This heuristics, we will call it h, is a
function that maps assignments (even partial) to a numeric value that is an estimate of the objective
function. More precisely, h applied to some partial assignment is an estimate of best values of the
objective function applied to all solutions (complete assignments) that rise by extending this partial
assignment. Naturally, the efficiency of branch and bound method is highly dependent on availability of
good heuristic. In such a case, the B&B algorithm can prune the search sub-trees where the optimal
solution does not settle. Note, that there are two possibilities when the sub-tree can be pruned:

• there is no solution in the sub-tree at all,

• all solutions in the sub-tree are sub-optimal only (they are not optimal).

Of course, the closer the heuristic is to the objective function, the larger sub-tree can be pruned. On the
other hand, we need a reliable heuristic ensuring that no sub-tree where the optimal solution settles is not
pruned. This reliability can be achieved easily if, in case of minimisation problem, the heuristic is an
underestimate of the optimisation function, i.e., the value of the heuristic function is not higher than the
value of the objective function. In case of maximisation problems, we require the heuristic to be an
overestimate of the objective function. In both cases, we can guarantee soundness and completeness of
the branch-and-bound algorithm.

Unfortunately, it is not easy to find a reliable and efficient heuristic and, sometimes, such heuristic is not
available. In such a case, it is up to the user if he or she chooses:

• a more efficient heuristic with the risk of pruning a sub-tree with an optimal solution (consequently,
sub-optimal solution is obtained), or

• a reliable but less efficient heuristic with longer time of computation.

There exist several modifications of branch-and-bound algorithm, we will present here the depth-first
branch-and-bound method that is derived from the backtracking algorithm for solving a CSP. The

 39

algorithm uses two global variables for storing the current upper bound (we are minimising the
optimisation function) and the best solution found so far. It behaves like chronological backtracking
algorithm except that as soon as a value is assigned to the variable, the value of heuristic function is
computed. If this value exceeds the bound, then the sub-tree under the current partial assignment is
pruned immediately. Initially, the bound is set to (plus) infinity and during computation it records the
value of the objective function for the best solution found so far.

Algorithm Branch & Bound:
procedure BB(Variables, Constraints)
 Bound <- infinity; % looking for minimum of function f
 Best <- nil; % best solution found so far
 BB-1(Variables,{},Constraints)
 return Best
end BT

procedure BB-1(Unlabelled, Labelled, Constraints)
 if Unlabelled = {} then
 if f(Labelled) < Bound then
 Bound <- f(Labelled); % set new upper bound
 Best <- Labelled; % remember new best solution
 end if
 else
 pick first X from Unlabelled
 for each value V from DX do
 if consistent({X/V}+Labelled, Constraints)
 & h({X/V}+Labelled) < Bound then
 BB-1(Unlabelled-{X}, {X/V}+Labelled, Constraints)
 end if
 end for
end BB-1

The efficiency of B&B is determined by two factors:

• the above discussed quality of the heuristic function and

• whether a good bound is found early.

Notice that we set (plus) infinity as the initial bound in the algorithm. However, if the user knows the
value of optimum or its approximation (an upper bound in case of minimisation) then he or she can set the
initial bound to a "better" value closer to optimum. Consequently, the algorithm can prune more sub-trees
sooner and it is much more efficient.

Observations of real-life problems show also that the “last step” to optimum, i.e., improving a good
solution even more, is usually the most computationally expensive part of the solving process.
Fortunately, in many applications, users are satisfied with a solution that is close to optimum if this
solution is found early. Branch-and-bound algorithm can be modified to find sub-optimal solutions as
well by using the second “acceptability” bound that describes the upper bound of acceptable solution. The
only modification of the above B&B algorithm to use acceptability bound is in the part where a complete
assignment is found. If the algorithm finds a solution that is better than the acceptability bound then this
solution is accepted, i.e., it can be returned immediately to the user even if it is not proved to be optimal.

Algorithm Branch & Bound with acceptability bound:
procedure BB-2(Unlabelled, Labelled, Constraints)
 if Unlabelled = {} then
 if f(Labelled) < Bound then
 Bound <- f(Labelled); % set new upper bound
 Best <- Labelled; % remember new best solution
 if f(Labelled) =< Acceptability_Bound then
 return Best
 end if
 end if
 else
 ... % this part is the same as in BB-1 procedure
end BB-1

 40

.

Glossary
What does this notion mean?

Arc consistency (AC) - a method of removing
values from the domain that does not satisfy
binary constraints on the variable

Arity - a number of parameters

Backjumping (BJ) - a backtracking based
method to avoid thrashing using direct jump
to conflicting variable

Backmarking (BM) - a method of reducing the
number of consistency checks (during
backtracking) by remembering incompatible
labels

Backtracking (BT) - a search method using
come-back upon failure

Binarization - a process of converting n-ary
constraint to binary constrains

Binary CSP - a CSP with binary constraints only

Boolean CSP - a CSP with binary domains only

Constraint - a logical relation among several
unknowns

Constraint Logic Programming (CLP) - an
extension of logic programming to work
with constraints over a given domain

Constraint Optimisation Problems (COP) - a
variant of CSP when an optimal solution,
given some objective function, is being
found

Constraint Satisfaction Problem (CSP) - a
problem consisting of the set of variables,
their domains and constraints among
variables that must hold

Directional Arc Consistency (DAC) - a method
of removing values from the domain that
does not satisfy binary constraints on the
variable under an ordering of variables

Directional Path Consistency (DPC) - a method
of removing value pairs from constraints that
are not consistent along a path under an
ordering of variables

Forward checking (FC) - a method of preventing
future conflicts during search by removing

inconsistent values from variables connected
to currently labelled variable

Full Look Ahead (FLA) - see Look Ahead

Generate and test (GT) - a method of problem
solving by exploring all possibilities and
testing whether they satisfy the constraints

K-consistency - a method of removing
inconsistent values by checking all
constraints between K variables

Look ahead (LA) - a method of preventing future
conflicts during search by maintaining arc
consistency between unlabelled variables

Maintaining Arc Consistency (MAC) - see
Look Ahead

Node consistency (NC) - a method of removing
values from the domain that does not satisfy
unary constraints on the variable

Partial Look Ahead (PLC) - a method of
preventing future conflicts during search by
maintaining directional arc consistency
between unlabelled variables

Path consistency (PC) - a method of removing
value pairs from constraints that are not
consistent along a path

Restricted Path Consistency (RPC) - a method,
half way between AC and PC, that checks
path consistency only if one supporting
value remains

SAT - a problem of satisfaction of logical formula

Strong K-consistency - a method of removing
inconsistent values by checking all
constraints between K or less variables

Thrashing - a repeated failure due to the same
reason (during backtracking)

 41

.

References
Where can I find more information?

On-line
On-line Guide to Constraint Programming
R. Barták, http://kti.mff.cuni.cz/~bartak/constraints,
1998.

Constraints Archive
http://4c.ucc.ie/web/archive/index.jsp

Association for Constraint Programming
http://slash.math.unipd.it/acp/

Books
Constraint Processing
R. Dechter, Morgan Kaufmann, 2003

Programming with Constraints: An Introduction
K. Marriott, P.J. Stuckey, MIT Press, 1998.

Constraint Satisfaction in Logic Programming
P. Van Hentenryck, MIT Press, 1989.

Foundations of Constraint Satisfaction
E. Tsang, Academic Press, 1993.

General Surveys
Constraint Logic Programming – A Survey
J. Jaffar & M.J. Maher, J. Logic Programming,
19/20:503-581, 1996.

Algorithms for Constraint Satisfaction Problems: A
Survey
V. Kumar, AI Magazine 13(1): 32-44, 1992.

A Tutorial on Constraint Programming
B.M. Smith, TR 95.14, University of Leeds, 1995.

The Origins
The Programming Language Aspects of ThingLab, A
Constraint-Oriented Simulation Laboratory
A. Borning, in ACM Transactions on Programming
Languages and Systems 3(4): 252-387, 1981.

Logic Programming: Further Developments
H. Gallaire, in: IEEE Symposium on Logic
Programming, Boston, IEEE, 1985.

Constraint Logic Programming
J. Jaffar & J.L. Lassez, in Proc. The ACM Symposium on
Principles of Programming Languages, ACM, 1987.

Networks of constraints fundamental properties and
applications to picture processing
U. Montanary, in: Information Sciences 7: 95-132, 1974.

Sketchpad: a man-machine graphical communication
system
I. Sutherland, in Proc. IFIP Spring Joint Computer
Conference, 1963.

Understanding line drawings of scenes with shadows
D.L. Waltz, in Psychology of Computer Vision,
McGraw-Hill, New York, 1975.

Binarisation
On the conversion between Non-Binary and Binary
Constraint Satisfaction Problems
F. Bacchus, P. van Beek, in Proc. National Conference on
Artifical Intelligence (AAAI-98), Madison, Wisconsin,
1998.

On the equivalence of constraint satisfaction problems
F. Rossi, V. Dahr and C. Petrie, in Proc. European
Conference on Artificial Intelligence (ECAI-90),
Stockholm, 1990. Also MCC Technical Report ACT-AI-
222-89.

Using auxiliary variables and implied constraints to
model non-binary problems
B. Smith, K. Stergiou, T. Walsh, in Proc. National
Conference on Artificial Intelligence (AAAI-00), Austin,
Texas, 2000.

Encodings of Non-Binary Constraint Satisfaction
Problems
K. Stergiou, T. Walsh, in Proc. National Conference on
Artificial Intelligence (AAAI-99), Orlando, Florida,
1999.

Depth-First Search
Incomplete Depth-First Search Techniques: A Short
Survey
Roman Barták. In Proceedings of CPDC 2004, Gliwice,
Poland.

 42

Discrepancy-Bounded Depth First Search
J. Christopher Beck and Laurent Perron. In Proceedings
of CP-AI-OR, pp. 7-17, 2000.

Partial Search Strategy in CHIP
Nicolas Beldiceanu, Eric Bourreau, Peter Chan, and
David Rivreau. In Proceedings of 2nd International
Conference on Metaheuristics-MIC97, 1997.

ECLiPSe: An Introduction
Andrew M. Cheadle, Warwick Harvey, Andrew J. Sadler,
Joachim Schimpf, Kish Shen and Mark G. Wallace.
Imperial College London, TR IC-Parc-03-1, 2003.

Backtracking algorithms for constraint satisfaction
problems; a survey
R. Dechter, D. Frost, in Constraints, International
Journal, 1998.

Performance Measurement and Analysis of Certain
Search Algorithms
Gaschnig, J., CMU-CS-79-124, Carnegie-Mellon
University, 1979.

Dynamic Backtracking
M.L. Ginsberg, in Journal of Artificial Intelligence
Research 1, pages 25-46, 1993.

Iterative Broadening
Matthew L. Ginsberg and William D. Harvey. In
Proceedings of National Conference on Artificial
Intelligence (AAAI-90). AAAI Press, pp. 216-220, 1990.

Increasing tree search efficiency for constraint
satisfaction problems
Haralick, R.M., Elliot, G.L., in: Artificial Intelligence
14:263-314, 1980.

Limited Discrepancy Search
W.D. Harvey and M.L. Ginsberg, in Proceedings of
IJCAI95, pages 607-613, 1995.

Nonsystematic backtracking search
William D. Harvey. PhD thesis, Stanford University,
1995.

Limited discrepancy search
William D. Harvey and Matthew L. Ginsberg. In
Proceedings of the 14th International Joint Conference on
Artificial Intelligence, pp. 607-615, 1995.

Improved Limited Discrepancy Search
Richard E. Korf. In Proceedings of National Conference
on Artificial Intelligence (AAAI-96). AAAI Press, pp.
286-291, 1996.

Interleaved Depth-First Search
Pedro Meseguer. In Proceedings of 15th International
Joint Conference on Artificial Intelligence, pp. 1382-
1387, 1997.

Depth-bounded Discrepancy Search
Toby Walsh. In Proceedings of 15th International Joint
Conference on Artificial Intelligence, pp. 1388-1393,
1997.

Consistency techniques
Improving Domain Filtering using Restricted Path
Consistency
P. Berlandier, in Proceedings of the IEEE CAIA-95, Los
Angeles CA, 1995.

Arc-consistency and arc-consistency again
C. Bessiere, in Artificial Intelligence 65, pages 179-190,
1994.

Using constraint metaknowledge to reduce arc
consistency computation
C. Bessiere, E.C. Freuder, and J.-R. Régin, in Artificial
Intelligence 107, pages 125-148, 1999.

Refining the Basic Constraint Propagation Algorithm
Ch. Bessière and J.-Ch. Régin.. In Proceedings of IJCAI-
01, 309-315, (2001).

Some practicable filtering techniques for the constraint
satisfaction problem
R. Debruyne and C. Bessi`ere, in Proceedings of the 15th
IJCAI, pages 412-417, 1997.

Neighborhood inverse consistency preprocessing
E. Freuder and C. D. Elfe, in Proceedings of the AAAI
National Conference, pages 202-208, 1996.

Comments on Mohr and Henderson's path consistency
algorithm
C. Han and C. Lee, in Artificial Intelligence 36, pages
125-130, 1988.

Consistency in networks of relations
A.K. Mackworth, in Artificial Intelligence 8, pages 99-
118, 1977.

The complexity of some polynomial network consistency
algorithms for constraint satisfaction problems
A.K. Mackworth and E.C. Freuder, in Artificial
Intelligence 25, pages 65-74, 1985.

Arc and path consistency revised
R. Mohr and T.C. Henderson, in Artificial Intelligence
28, pages 225-233, 1986.

Arc consistency for factorable relations
M. Perlin, in Artificial Intelligence 53, pages 329-342,
1992.

Singleton Consistencies
P. Prosser, K. Stergiou, T. Walsh, in Proc Principles and
Practice of Constraint Programming (CP2000), pages
353-368, 2000.

A filtering algorithm for constraints of difference in CSPs
J.C. Régin, in AAAI-94, in Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages
362-367, 1994.

Path Consistency Revised
M. Singh, in Proceedings of the 7th IEEE International
Conference on Tolls with Artificial Intelligence, pages
318-325, 1995.

A generic customizable framework for inverse local
consistency
G. Verfaillie, D. Martinez, and C. Bessiere, in
Proceedings of the AAAI National Conference, pages
169-174, 1999.

A generic arc-consistency algorithm and its
specializations
P. Van Hentenryck, Y. Deville, and C.-M. Teng, in
Artificial Intelligence 57, pages 291-321, 1992.

Making AC-3 an Optimal Algorithm
Y. Zhang and R. Yap.. In Proceedings of IJCAI-01, 316-
321, (2001).

