

„Constraint programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it."

Eugene C. Freuder, Constraints, April 1997

-
 Tutorial outline

- Introduction

\square history, applications, a constraint satisfaction problem

- Depth-first search
\square backtracking, backjumping, backmarking
\square incomplete and discrepancy search
- Consistency
\square node, arc, and path consistencies
$\square \mathrm{k}$-consistency and global constraints
- Combining search and consistency
\square look-back and look-ahead schemes
\square variable and value ordering
- Conclusions
\square constraint solvers, resources

- Scene labelling (Waltz 1975)
\square feasible interpretation of 3D lines in a 2D drawing

- Interactive graphics (Sutherland 1963, Borning 1981) \square geometrical objects described using constraints

- Logic programming (Gallaire 1985, J affar, Lassez 1987) \square from unification to constraint satisfaction

Constraint technology

based on declarative problem description via:
\square variables with domains (sets of possible values) e.g. start of activity with time windows
\square constraints restricting combinations of variables e.g. endA < startB
constraint optimization via objective function
e.g. minimize makespan

Why to use constraint technology?
\square understandable
\square open and extendible
\square proof of concept

Constraint satisfaction problem consists of: \square a finite set of variables
\square domains - a finite set of values for each variable
\square a finite set of constraints

- constraint is an arbitrary relation over the set of variables
- can be defined extensionally (a set of compatible tuples) or intentionally (formula)
A solution to a CSP is a complete consistent assignment of variables.
\square complete $=$ a value is assigned to every variable
\square consistent $=$ all the constraints are satisfied

- We are looking for a complete consistent assignment! \square start with a consistent assignment (for example, empty one) \square extend the assignment towards a complete assignment
- Depth-first search is a technique of searching solution by extending a partial consistent assignment towards a complete consistent assignment.
\square assign values gradually to variables
\square after each assignment test consistency of the constraints over the assigned variables
\square and backtrack upon failure
- Backtracking is probably the most widely used complete systematic search algorithm.
\square complete $=$ guarantees finding a solution or proving its non-existence
\square throws away the reason of the conflict
\square Example: A,B,C,D,E:: 1..10, A>E
- BT tries all the assignments for B, C, D before finding that $A \neq 1$
\square Solution: backjumping (jump to the source of the failure)
- redundant work
\square unnecessary constraint checks are repeated
\square Example: A,B,C,D,E:: $1 . .10, B+8<D, C=5 * E$
- when labelling C,E the values $1, . ., 9$ are repeatedly checked for D
\square Solution: backmarking, backchecking (remember (no-)good assignments)
- late detection of the conflict
\square constraint violation is discovered only when the values are known \square Example: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}:: 1 . .10, \mathrm{~A}=3^{*} \mathrm{E}$
- the fact that $A>2$ is discovered when labelling E

Solution: forward checking (forward check of constraints)

A recursive definition

procedure BT (X:variables, V:assignment, C :constraints) if $X=\{ \}$ then return V
$\mathrm{x} \leftarrow$ select a not-yet assigned variable from X
for each value h from the domain of x do
if consistent $(V+\{x / h\}, C)$ then
$R \leftarrow B T(X-\{x\}, V+\{x / h\}, C)$
if $R \neq$ fail then return R
end for
return fail
end $B T$
call $\operatorname{BT}(X,\{ \}, C)$

Consistency procedure checks satisfaction of constraints whose variables are already assigned.

- Backjumping

Backjumping is a technique for removing thrashing from backtracking. How?

1) identify the source of the conflict (impossibility to assign a value) 2) jump to the past variable in conflict

- The same forward run like in backtracking, only the back-jump can be longer, and hence irrelevant assignments are skipped!
- How to find a jump position? What is the source of the conflict?
\square select the constraints containing just the currently assigned variable and the past variables
\square select the closest variable participating in the selected constraints
Graph-directed backjumping

Enhancement: use only the violated constraints
\& conflict-directed backjumping
"- Corffict-directed backjumping

N -queens problem

in practice

Queens in rows are allocated to columns.

6th queen cannot be allocated!

1. Write a number of conflicting queens to each position.
2. Select the farthest conflicting queen for each position.
3. Select the closest conflicting queen among positions.

Note:
Graph-directed backjumping has no effect here (due to the complete graph)!

Consistency check (BM)

Only the constraints where any value is changed are re-checked, and the farthest conflicting level is computed.
procedure consistent(X/V, Labeled, Constraints, Level)
for each $Y / V Y / L Y$ in Labeled such that $L Y \geq \operatorname{BackTo}(X)$ do
\% only possible changed variables Y are explored
\% in the increasing order of LY (first the oldest one)
if X / V is not compatible with Y / VY using Constraints then $\operatorname{Mark}(X, V) \leftarrow L Y$
return fail
end if
end for
$\operatorname{Mark}(X, V) \leftarrow$ Level-1
return true
end consistent

Incomplete search

A cutoff limit to stop exploring a (sub-)tree
\square some branches are skipped \rightarrow incomplete search
When no solution found, restart with enlarged cutoff limit.

- Bounded Backtrack Search (Harvey, 1995)
\square restricted number of backtracks
- Depth-bounded Backtrack Search (Cheadle et al., 2003)
\square restricted depth where alternatives are explored
- Iterative Broadening (Ginsberg and Harvey, 1990)
\square restricted breadth in each node
still exponential!
- Credit Search (Beldiceanu et al., 1997)
\square limited credit for exploring alternatives
\square credit is split among the alternatives

Heuristics in search

- Observation 1:

The search space for real-life problems is so huge that it cannot be fully explored

- Heuristics - a guide of search
they recommend a value for assignment quite often lead to a solution
- What to do upon a failure of the heuristic?

BT cares about the end of search (a bottom part of the search tree) so it rather repairs later assignments than the earliest ones thus BT assumes that the heuristic guides it well in the top part

- Observation 2:

The heuristics are less reliable in the earlier parts of the search tree (as search proceeds, more information is available)

- Observation 3:

The number of heuristic violations is usually small

Discrepancy

= the heuristic is not followed

Basic principles of discrepancy search:

change the order of branches to be explored
\square prefer branches with less discrepancies

\square prefer branches with earlier discrepancies

- hincoduction to consistencies

So far we used constraints in a passive way (as a test) ...
...in the best case we analysed the reason of the conflict.
Cannot we use the constraints in a more active way?

Example:

$$
\begin{array}{ll}
A \text { in } 3 . .7, B \text { in } 1 . .5 & \text { the variables' domains } \\
A<B & \text { the constraint }
\end{array}
$$

many inconsistent values can be removed
we get $\quad A$ in $3 . .4$, B in $4 . .5$
Note: it does not mean that all the remaining combinations of the values are consistent (for example $A=4, B=4$ is not consistent)

How to remove the inconsistent values from the variables' domains in the constraint network?

Node consistency (NC)

Unary constraints are converted into variables' domains.

Definition:

The vertex representing the variable X is node consistent iff every value in the variable's domain D_{x} satisfies all the unary constraints imposed on the variable X
CSP is node consistent iff all the vertices are node consistent.

-

Since now we will assume binary CSP only
i.e. a constraint corresponds to an arc (edge) in the constraint network.

Definition:

\square The $\operatorname{arc}\left(\mathbf{V}_{\mathbf{i}}, \mathbf{V}_{\mathbf{i}}\right)$ is arc consistent iff for each value x from the domain D_{i} there exists a value y in the domain D_{i} such that the assignment $V_{i}=x$ and $\mathrm{V}_{\mathrm{i}}=\mathrm{y}$ satisfies all the binary constraintson $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}}$

- Note: The concept of arc consistency is directional, i.e., arc consistency of $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}}\right)$ does not guarantee consistency of $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}}\right)$.
\square CSP is arc consistent iff every $\operatorname{arc}\left(V_{i}, V_{j}\right)$ is arc consistent (in both directions).

Example:

$$
\begin{aligned}
& \text { no arc is consistent }
\end{aligned}
$$

$$
\begin{aligned}
& A 4.4=4 \times B \\
& A
\end{aligned}
$$

Arc revisions

How to make ($\mathbf{V}_{\mathbf{i}}, \mathbf{V}_{\mathbf{j}}$) arc consistent?

- Delete all the values x from the domain D_{i} that are inconsistent with all the values in D_{j} (there is no value y in D_{j} such that the assignment $V_{i}=x, V_{j}=y$ satisfies all the binary constrains on $\mathrm{V}_{\mathrm{i}} \mathrm{a} \mathrm{V}_{\mathrm{j}}$).
procedure REVISE((i,j))
DELETED \leftarrow false
for each X in D_{i} do
if there is no such Y in D_{j} such that (X, Y) is consistent, i.e., (X, Y) satisfies all the constraints on $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}}$ then delete X from D_{i}

end if
end for
return DELETED
end REVISE

- Mackworth (1977)
 Algorithm AC-1

How to establish arc consistency among the constraints?
Doing revision of every arc is not enough!
Example: X in $[1, . ., 6], Y$ in $[1, . ., 6], \mathrm{Z}$ in $[1, . ., 6], X<Y, Z<X-2$

Make all the constraints consistent until any domain is changed.
Algorithm AC-1

```
procedure AC-1(G)
        repeat
        CHANGED}\leftarrow\mathrm{ false
        for each arc (i,j) in G do
                CHANGED \leftarrowREVISE((i,j)) or CHANGED
            end for
        until not(CHANGED)
    end AC-1
```


Algorithm AC-2

A generalised version of the Waltz's labelling algorithm.
In every step, the arcs going back from a given vertex are processed (i.e. a sub-graph of visited nodes is AC)

Algorithm AC-2

- What is wrong with AC-1?

If a single domain is pruned then revisions of all the arcs are repeated even if the pruned domain does not influence most of these arcs.
What arcs should be reconsidered for revisions?
\square The arcs whose consistency is affected by the domain pruning,
i.e., the arcs pointing to the changed variable.
\square We can omit one more arc!

- Omit the arc running out of the variable whose domain has been changed
(this arc is not affected by the domain change).

Re-revisions can be done more elegantly than in AC-2

1) one queue of arcs for (re-)revisions is enough
2) only the arcs affected by domain reduction are added to the queue (like AC-2)

Algorithm AC-3
procedure AC-3(G)
$\mathrm{Q} \leftarrow\{(\mathrm{i}, \mathrm{j}) \mid(\mathrm{i}, \mathrm{j}) \in \operatorname{arcs}(\mathrm{G}), \mathrm{i} \neq \mathrm{j}\} \quad \%$ queue of arcs for revision while Q non empty do
select and delete (k, m) from Q
if REVISE $((k, m))$ then
$Q \leftarrow Q \cup\{(i, k) \mid(i, k) \in \operatorname{arcs}(G), i \neq k, i \neq m\}$
end if end while
end AC-3
AC-3 schema is the most widely used consistency algorithm but it is still not optimal (time complexity is $\mathrm{O}\left(\mathrm{ed}^{3}\right)$).

Observation (AC-3):

\square Many pairs of values are tested for consistency in every arc revision.
\square These tests are repeated every time the arc is revised.

1. When the $\operatorname{arc} \mathrm{V}_{2}, \mathrm{~V}_{1}$ is revised, the value a is removed from domain of V_{2}.
2. Now the domain of V_{3}, should be explored to find out if any value a, b, c, d loses the support in V_{2}.

Observation:

The values a, b, c need not be checked again because they still have a support in V_{2} different from a .

The support set for $a \in D_{i}$ is the set $\left\{<j, b>\mid b \in D_{j},(a, b) \in C_{i, j}\right\}$ Cannot we compute the support sets once and then use them during re-revisions?

Complouting suppori sets

A set of values supported by a given value (if the value disappears then these values lost one support), and a number of own supports are kept.

Mohr, Henderson (1986)
 Algorithm AC-4

The algorithm AC-4 has optimal worst case time complexity O(ed ${ }^{2}$)!
The algorithm AC-4 has optimal worst case time complexity $\mathbf{O}\left(\right.$ ed $\left.^{2}\right)$!
Algorithm AC-4
end AC-4

```
```

```
procedure AC-4(G)
```

```
procedure AC-4(G)
        Q}\leftarrowINITIALIZE(G
        Q}\leftarrowINITIALIZE(G
        while Q non empty do
        while Q non empty do
        select and delete any pair <j,b> from Q
        select and delete any pair <j,b> from Q
            for each <i,a> from }\mp@subsup{S}{j,b}{}\mathrm{ do
            for each <i,a> from }\mp@subsup{S}{j,b}{}\mathrm{ do
                counter[(i,j),a] \leftarrow counter[(i,j),a]-1
                counter[(i,j),a] \leftarrow counter[(i,j),a]-1
                if counter[(i,j),a]=0& "a" is still in D}\mp@subsup{D}{i}{}\mathrm{ then
                if counter[(i,j),a]=0& "a" is still in D}\mp@subsup{D}{i}{}\mathrm{ then
                        delete "a" from Di
                        delete "a" from Di
                        Q}\leftarrowQ\cup{<i,a>
                        Q}\leftarrowQ\cup{<i,a>
                end if
                end if
            end for
            end for
    end while
```

 end while
    ```

Unfortunately the average time complexity is not so good ... plus there is a big memory consumption!

Using support sets
Situation:
we have just processed the arc ( \(\mathrm{i}, \mathrm{j}\) ) in INITIALIAZE


Using the support sets:
Let \(b 3\) is deleted from the domain of \(j\) (for some reason).
Look at \(S_{i, b 3}\) to find out the values that were supported by b3
(i.e. <i, a2 \(\gg,<i, a 3>\) ).

Decrease the counter for these values (i.e. tell them that they lost one support).
If any counter becomes zero (a3) then delete the value and repeat the procedure with the respective value (i.e., go to 1 ).
 <i,a1>,<i,a2> <i,a1> <i,al>,

\section*{Other AC algorithms}
- AC-5 (Van Hentenryck, Deville, Teng, 1992)
\(\square\) generic AC algorithm covering both AC-4 and AC-3
- AC-6 (Bessière, 1994)
\(\square\) improves AC-4 by remembering just one support
- AC-7 (Bessière, Freuder, Régin, 1999)
\(\square\) improves AC- 6 by exploiting symmetry of the constraint
- AC-2000 (Bessière \& Régin, 2001)
\(\square\) an adaptive version of AC-3 that either looks for a support or propagates deletions
- AC-2001 (Bessière \& Régin, 2001)
\(\square\) improvement of AC-3 to get optimality (queue of variables)
- AC-3.1 (Zhang \& Yap, 2001)
\(\square\) improvement of AC-3 to get optimality (queue of constraints) ...

\section*{generic AC algorithm covering both AC-4 and AC-3}
\(\qquad\)


AC has a directio

\section*{Observation 2:}

AC has to repeat arc revisions; the total number of revisions depends on the number of arcs but also on the size of domains (while cycle).
Is it possible to weaken AC in such a way that every arc is revised just once?

\section*{Definition:}

CSP is directional arc consistent using a given order of variables iff every arc ( \(i, j\) ) such that \(i<j\) is arc consistent.
Again, every arc has to be revised, but revision in one direction is enough now.

\section*{Algorithm DAC-1}
1) Consistency of an arc is required just in one direction.
2) Variables are ordered
\(\stackrel{4}{4}\) there is no directed cycle in the graph!


If arcs are explored in a „good" order, no revision has to be repeated!

Algorithm DAC-1
```

procedure DAC-1(G)
for j = |nodes(G)| to 1 by -1 do
for each arc (i,j) in G such that i<j do
REVISE((i,j))
end for
end for
end DAC-1

```

\section*{- Relation between DAC and AC}

\section*{Observation:}

CSP is arc consistent iff for some order of the variables, the problem is directional arc consistent in both directions.
Is it possible to achieve AC by applying DAC in both primal and reverse direction?
In general NO, but ...

\section*{Example:}
\(X\) in \(\{1,2\}, Y\) in \(\{1\}, Z\) in \(\{1,2\}\),
using the order \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\)
there is no domain change

\[
2
\]
using the order \(Z, Y, X\), the domain of \(Z\) is changed but the graph is not AC


However if the order \(\mathrm{Z}, \mathrm{Y}, \mathrm{X}\) is used first then we get AC

\section*{How to use DAC?}

AC visibly covers DAC (if CSP is AC then it is DAC as well)
So, is DAC useful?
\(\square\) DAC-1 is surely much faster than any AC-x
\(\square\) there exist problems where DAC is enough
Claim:
If the constraint graph forms a tree then DAC is enough to
solve the problem without backtracks.
\(\square\) How to order the vertices for DAC?
\(\square\) How to order the vertices for search?

1. Apply DAC in the order from the root to the leaf nodes.
2. Label vertices starting from the root.
DAC guarantees that there is a value for the child node compatible with all the parents
- -s-arc consistency enough?

By using AC we can remove many incompatible values
\(\square\) Do we get a solution?
\(\square\) Do we know that there exists a solution?
Unfortunately, the answer to both above questions is NO!
Example:


CSP is arc consistent but there is no solution

So what is the benefit of AC?
Sometimes we have a solution after AC
- any domain is empty \(\rightarrow\) no solution exists
- all the domains are singleton \(\rightarrow\) we have a solution

In general, AC prunes the search space.

\section*{Path consistency (PC)}

How to strengthen the consistency level?
More constraints are assumed together!

\section*{Definition:}
\(\square\) The path \(\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}\right)\) is path consistent iff for every pair of values \(x \in D_{0}\) a \(y \in D_{m}\) satisfying all the binary constraints on \(V_{0}, V_{m}\) there exists an assignment of variables \(\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}-1}\) such that all the binary constraints between the neighbouring variables \(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}+1}\) are satisfied.
\(\square\) CSP is path consistent iff every path is consistent.
Some notes:

\(\square\) only the constraints between the neighboring variables must be satisfied
\(\square\) it is enough to explore paths of length 2 (Montanary, 1974)
- ruabrion between PC and AC

Does PC subsume AC (i.e. if CSP is PC, is it AC as well)?
\(\square\) the \(\operatorname{arc}(i, j)\) is consistent (AC) if the path ( \(\mathbf{i}, \mathbf{j}, \mathbf{i}\) ) is consistent (PC)
\(\square\) thus PC implies AC
Is PC stronger than AC (is there any CSP that is AC but it is not PC)?
Example:
\(X\) in \(\{1,2\}, Y\) in \(\{1,2\}, Z\) in \(\{1,2\}, \quad X \neq Z, X \neq Y, Y \neq Z\)
- it is AC , but not \(\mathrm{PC}(\mathrm{X}=1, \mathrm{Z}=2\) cannot be extended to \(\mathrm{X}, \mathrm{Y}, \mathrm{Z})\)

AC removes incompatible values from the domains, what will be done in PC?
\(\square\) PC removes pairs of values
\(\square\) PC makes constraints explicit ( \(A<B, B<C \Rightarrow A+1<C\) )
\(\square\) a unary constraint \(=a\) variable's domain

\section*{Path revision}

Constraints represented extensionally via matrixes Path consistency is realized via matrix operations

\section*{Example:}


\section*{Influenced paths}

Because \(Y_{\mathrm{ji}}=\mathrm{Y}_{\mathrm{ij}}\) it is enough to revise only the paths ( \(\mathrm{i}, \mathrm{k}, \mathrm{j}\) ) where \(\mathrm{i} \leq \mathrm{j}\). Let the domain of the constraint ( \(\mathrm{i}, \mathrm{j}\) ) be changed when revising ( \(\mathrm{i}, \mathrm{k}, \mathrm{j}\) ):

\section*{Situation a: i<j}
all the paths containing ( \(\mathrm{i}, \mathrm{j}\) ) or ( \(\mathrm{j}, \mathrm{i}\) ) must be re-revised but the paths ( \(\mathrm{i}, \mathrm{j}, \mathrm{j}\) ), ( \(\mathrm{i}, \mathrm{i}, \mathrm{j}\) ) are not revised again (no change)
\(S_{a}=\quad\{(i, j, m) \mid i \leq m \leq n \& m \neq j\}\)
\(\cup \quad\{(m, i, j) \mid 1 \leq m \leq j \& m \neq i\}\)
\(\cup \quad\{(j, i, m) \mid j<m \leq n\}\)
\(\cup \quad\{(\mathrm{m}, \mathrm{j}, \mathrm{i}) \mid 1 \leq \mathrm{m}<\mathrm{i}\}\)
\(\left|S_{a}\right|=2 n-2\)


Situation b: \(\mathbf{i = j}\)
all the paths containing \(i\) in the middle of the path are re-revised but the paths ( \(\mathrm{i}, \mathrm{i}, \mathrm{i}\) ) and ( \(\mathrm{k}, \mathrm{i}, \mathrm{k}\) ) are not revised again
\(\mathrm{S}_{\mathrm{b}}=\)
\(\{(p, i, m) \mid 1 \leq m \leq n \& 1 \leq p \leq m\}-\{(i, i, i),(k, i, k)\}\)
\(\left|S_{b}\right|=n^{*}(n-1) / 2-2\)

\section*{Algorithm PC-2}

Paths in one direction only (attention, this is not DPC!) After every revision, the affected paths are re-revised

Algorithm PC-2

\section*{procedure PC-2(G) \\ \(n \leftarrow|\operatorname{nodes}(G)|\)}
\(\mathrm{Q} \leftarrow\{(\mathrm{i}, \mathrm{k}, \mathrm{j}) \mid 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{n} \& \mathrm{i} \neq \mathrm{k} \& \mathrm{j} \neq \mathrm{k}\}\)
while \(Q\) non empty do
select and delete ( \(\mathrm{i}, \mathrm{k}, \mathrm{j}\) ) from Q if REVISE_PATH ( \((i, k, j))\) then \(\mathrm{Q} \leftarrow \mathrm{Q} \cup\) RELATED_PATHS( \((\mathrm{i}, \mathrm{k}, \mathrm{j}))\)

\section*{end while}
end PC-2

> procedure RELATED_PATHS \(((i, k, j))\)
> if \(\mathrm{i}<\mathrm{j}\) then return \(\mathrm{S}_{\mathrm{a}}\) else return \(\mathrm{S}_{\mathrm{b}}\) end RELATED_PATHS

\section*{Other PC algorithms}
- PC-3 (Mohr, Henderson 1986)
\(\square\) based on computing supports for a value (like AC-4)
- If the pair \((a, b)\) at the arc \((i, j)\) is not supported by another variable, then \(a\) is removed from \(D_{i}\) and \(b\) is removed from \(D_{j}\).
this algorithm is not sound!
- PC-4 (Han, Lee 1988)
\(\square\) correction of the PC-3 algorithm
\(\square\) based on computing supports of pairs (b,c) at arc (i,j)
- PC-5 (Singh 1995)
\(\square\) uses the ideas behind AC-6
\(\square\) only one support is kept and a new support is looked for when the current support is lost

because PC eliminates pairs of values, we need to keep all the f compatible pairs extensionally, e.g. using \(\{0,1\}\)-matrix
- bad ratio strength/ efficiency
\(\square\) PC removes more (or same) inconsistencies than AC, but the strength/efficiency ratio is much worse than for AC
- modifies the constraint network
\(\square \mathrm{PC}\) adds redundant arcs (constraints) and thus it changes connectivity of the constraint network
\(\square\) this complicates using heuristics derived from the structure of the constraint network (like density, graph width etc.)
- PC is still not a complete technique \(\square A, B, C, D\) in \(\{1,2,3\}\)
\(A \neq B, A \neq C, A \neq D, B \neq C, B \neq D, C \neq D\)
is PC but has no solution


\section*{- Half way between AC and PC}

\section*{Can we make a consistency algorithm:}
\(\square\) stronger than AC,
\(\square\) without drawbacks of PC (memory consumption, changing the constraint network)?

\section*{Restricted path consistency (Berlandier 1995)}
\(\square\) based on AC-4 (uses the support sets)
\(\square\) as soon as a value has only one support in another variable, PC is evoked for this pair of values


\section*{k-consistency}

Is there a common formalism for \(\mathbf{A C}\) and \(\mathbf{P C}\) ?
\(\square A C\) : a value is extended to another variable
\(\square \mathrm{PC}\) : a pair of values is extended to another variable
\(\square\)... we can continue
Definition:
CSP is \(\mathbf{k}\)-consistent iff any consistent assignment of ( \(k-1\) ) different variables can be extended to a consistent assignment of one additional variable.



Definition:
CSP is strongly k -consistent iff it is j -consistent for every \(\mathrm{j} \leq \mathrm{k}\).
Visibly: \(\quad\) strong \(k\)-consistency \(\Rightarrow \mathbf{k}\)-consistency
Moreover: \(\quad\) strong \(\mathbf{k}\)-consistency \(\Rightarrow \mathbf{j}\)-consistency \(\forall \mathbf{j} \leq \mathbf{k}\)
In general: \(\quad \neg \mathbf{k}\)-consistency \(\Rightarrow\) strong \(\mathbf{k}\)-consistency
- \(\mathrm{NC}=\) strong 1 -consistency \(=1\)-consistency
- \(A C=\) (strong ) 2 -consistency
- \(P C=\) (strong ) 3 -consistency
\(\square\) sometimes we call NC + AC + PC together strong path consistency


\section*{- Régin (1994) \\ Inside all-different}
- a set of binary inequality constraints among all variables \(X_{1} \neq X_{2}, X_{1} \neq X_{3}, \ldots, X_{k-1} \neq X_{k}\)
- all_different \(\left(\left\{X_{1}, \ldots, X_{k}\right\}\right)=\left\{\left(d_{1}, \ldots, d_{k}\right) \mid \forall i d_{i} \in D_{i} \& \forall i \neq j \quad d_{i} \neq d_{j}\right\}\)
- better pruning based on matching theory over bipartite graphs


Initialisation:
1) compute maximum matching
2) remove all edges that do not belong to any maximum matching


Propagation of deletions ( \(X_{1} \neq a\) ):
1) remove discharged edges
2) compute new maximum matching
3) remove all edges that do not belong to any maximum matching


\section*{How to solve CSPs?}

So far we have two separate methods:
\(\square\) depth-first search
- complete (finds a solution or proves its non-existence)
- too slow (exponential)
- explores "visibly" wrong valuations
\(\square\) consistency techniques
- usually incomplete (inconsistent values stay in domains)
- pretty fast (polynomial)

Share advantages of both approaches - combine them!
\(\square\) label the variables step by step (backtracking)
\(\square\) maintain consistency after assigning a value
Do not forget about traditional solving techniques!
\(\square\) Linear equality solvers, simplex ...
\(\square\) such techniques can be integrated to global constraints!
There is also local search.



Backjumping \& comp. uses information about the violated constraints.

\section*{Forward checking}

It is better to prevent failures than to detect them only!
Consistency techniques can remove incompatible values for future ( \(=\) not yet labelled) variables.
Forward checking ensures consistency between the currently labelled variable and the variables connected to it via constraints.

Forward consistency checks

\section*{procedure \(\mathrm{AC}-\mathrm{FC}(\mathrm{G}, \mathrm{cv})\)}
\(\mathrm{Q} \leftarrow\left\{\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{cv}}\right)\right.\) in \(\left.\operatorname{arcs}(\mathrm{G}), \mathrm{i}>\mathrm{CV}\right\} \quad \%\) arcs to future variables consistent \(\leftarrow\) true
while consistent \& Q non empty do select and delete any arc \(\left(V_{k}, V_{m}\right)\) from \(Q\) if REVISE \(\left(V_{k}, V_{m}\right)\) then consistent \(\leftarrow\) not empty \(D\)
 end while end \(A C-F C\)

We can extend the consistency checks to more future variables!
The value assigned to the current variable can be propagated to all future variables.
Partial lookahead consistency checks
procedure DAC-LA(G,cv)
procedure DAC-LA(G,cv)
        for i=cv+1 to n do
        for i=cv+1 to n do
            for each arc ( }\mp@subsup{V}{i}{},\mp@subsup{V}{j}{})\mathrm{ ) in arcs(G) such that i>j & j }\geq\textrm{Cv}\mathrm{ do
            for each arc ( }\mp@subsup{V}{i}{},\mp@subsup{V}{j}{})\mathrm{ ) in arcs(G) such that i>j & j }\geq\textrm{Cv}\mathrm{ do
                if REVISE(}\mp@subsup{V}{i}{},\mp@subsup{V}{j}{})\mathrm{ then
                if REVISE(}\mp@subsup{V}{i}{},\mp@subsup{V}{j}{})\mathrm{ then
                    if empty }\mp@subsup{D}{i}{}\mathrm{ then return fail
                    if empty }\mp@subsup{D}{i}{}\mathrm{ then return fail
                end for
                end for
            end for
            end for
            return true
            return true
        end DAC-LA
        end DAC-LA
Notes:
\(\square\) In fact DAC is maintained (in the order reverse to the labelling order). - Partial Look Ahead or DAC - Look Ahead
\(\square\) It is not necessary to check consistency of arcs between the future variables and the past variables (different from the current variable)!

\section*{Full look ahead}

Knowing more about far future is an advantage
Instead of DAC we can use a full AC (e.g. AC-3).
Full look ahead consistency checks
```

procedure AC3-LA(G,cv)
Q \leftarrow{(\mp@subsup{V}{i}{},\mp@subsup{V}{cv}{}) in arcs(G),i>cv} % start with arcs going to cv
consistent }\leftarrow\mathrm{ true
while consistent \& Q non empty do
select and delete any arc (}\mp@subsup{V}{k}{},\mp@subsup{V}{m}{})\mathrm{ from Q
if REVISE (V }\mp@subsup{V}{k}{},\mp@subsup{V}{m}{})\mathrm{ then

```

```

 consistent }\leftarrow\mathrm{ not empty }\mp@subsup{D}{\textrm{k}}{
 end if
 end end if
 return consistent
 end AC3-LA
 Notes:
    ```
        \(\square\) The arcs going to the current variable are checked exactly once.
    \(\square\) The arcs to past variables are not checked at all.
    \(\square\) It is possible to use other than AC-3 algorithms (e.g. AC-4)


\section*{- - Consistency and Search}

\section*{Consistency techniques are (usually) incomplete.}
* We need a search algorithm to resolve the rest!

\section*{Labeling}


In general, search algorithm resolves remaining disjunctions!
\begin{tabular}{ll}
\(\square X=1 \vee X \neq 1\) & (step labeling) \\
\(\square X<3 \vee X \geq 3\) & (bisection) \\
\(\square X<Y \vee X \geq Y\) & (variable ordering)
\end{tabular}


\section*{Variable ordering}

Variable ordering in labelling influence significantly efficiency of solvers (e.g. in a tree-structured CSP).
What variable ordering should be chosen in general? FAI L-FI RST principle
"select the variable whose instantiation will lead to a failure"
it is better to tackle failures earlier, they can be become even harder \(\square\) prefer the variables with smaller domain (dynamic order)
- a smaller number of choices ~ lower probability of success
- the dynamic order is appropriate only when new information appears during solving (e.g., in look ahead algorithms)

\section*{,„solve the hard cases first, they may become even harder later"} \(\square\) prefer the most constrained variables
- it is more complicated to label such variables (it is possible to assume complexity of satisfaction of the constraints)
- this heuristic is used when there is an equal size of the domains \(\square\) prefer the variables with more constraints to past variables
- a static heuristic that is useful for look-back techniques
- Backtrack-free search

\section*{Definition:}

CSP is solved using backtrack-free search if for some order of variables we can find a value for each variable compatible with the values of already assigned variables.


How to find out a sufficient consistency level for a given graph? Some observations:
\(\square\) variable must be compatible with all the "former" variables i.e., across the „backward" edges
\(\square\) for \(k\) „backward" edges we need ( \(k+1\) )-consistency
\(\square\) let \(m\) be the maximum of backward edges for all the vertices,
then strong \((\mathrm{m}+1)\)-consistency is enough
\(\square\) the number of backward edges is different for different variable order
\(\square\) of course, the order minimising \(m\) is looked for


\section*{Value ordering}

Order of values in labelling influence significantly efficiency (if we choose the right value each time, no backtrack is necessary).

\section*{What value ordering for the variable should be chosen in general?} SUCCEED FI RST principle
„prefer the values belonging to the solution"
\(\square\) if no value is part of the solution then we have to check all values
\(\square\) if there is a value from the solution then it is better to find it soon
Note: SUCCEED FIRST does not go against FIRST-FAIL!
\(\square\) prefer the values with more suppors
- this information can be found in AC-4
\(\square\) prefer the value leading to less domain reduction
- this information can be computed using singleton consistency
\(\square\) prefer the value simplifying the problem
- solve approximation of the problem (e.g. a tree)

Generic heuristics are usually too complex for computation.
It is better to use problem-driven heuristics that propose the value!




\section*{Constraint solvers}
- It is not necessary to program all the presented techniques from scratch
- Use existing constraint solvers (packages)!
\(\square\) provide implementation of data structures for modeling variables' domains and constraints
provide a basic consistency framework (AC-3)
\(\square\) provide filtering algorithms for many constraints (including global constraints)
provide basic search strategies
usually extendible (new filtering algorithms, new search strategies)

Some systems with constraint satisfaction packages:
Prolog: CHIP, ECLiPSe, SICStus Prolog, Prolog IV, GNU Prolog, Pr/Prolog
C/ C++: CHIP++, ILOG Solver
Java: JCK, JCL, Koalog
\(\square\) Mozart

\section*{Resources}
- Books
\(\square\) P. Van Hentenryck: Constraint Satisfaction in Logic Programming, MIT Press, 1989
E. Tsang: Foundations of Constraint Satisfaction, Academic Press, 1993
K. Marriott, P.J. Stuckey: Programming with Constraints: An Introduction, MIT Press, 1998
T. Frühwirth, S. Abdennadher: Essentials of Constraint Programming Springer Verlag, 2003
R. Dechter: Constraint Processing, Morgan Kaufmann, 2003

\section*{- J ournal}

Constraints, An International Journal. Kluwer Academic Publishers (Springer)
- On-line materials

On-line Guide to Constraint Programming (tutorial) http://kti.mff.cuni.cz/ ~bartak/ constraints/
Constraints Archive (archive and links)
http://4c.ucc.ie/web/archive/index.jsp
Constraint Programming online (community web)
```

