
1

&
Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Constraint Constraint pproropagationpagation
backtrackingbacktracking--basedbased searchsearch

2

„„Constraint programming represents Constraint programming represents
one of the closest approaches one of the closest approaches
computer science has yet made to computer science has yet made to
the Holy Grail of programming: the the Holy Grail of programming: the
user states the problem, the user states the problem, the
computer solves it.computer solves it.““

Eugene C. Eugene C. FreuderFreuder, Constraints, April 1997, Constraints, April 1997

3

today reality

a Star Trek view

HollyHolly GrailGrail ofof ProgrammingProgramming
> Computer, solve the SEND, MORE, MONEY problem!

> Here you are. The solution is
[9,5,6,7]+[1,0,8,5]=[1,0,6,5,2]

> Sol=[S,E,N,D,M,O,R,Y],
domain([E,N,D,O,R,Y],0,9), domain([S,M],1,9),

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E #=

10000*M + 1000*O + 100*N + 10*E + Y,
all_different(Sol),
labeling([ff],Sol).

> Sol = [9,5,6,7,1,0,8,2]

4

Tutorial outlineTutorial outline
Introduction

history, applications, a constraint satisfaction problem

Depth-first search
backtracking, backjumping, backmarking

incomplete and discrepancy search

Consistency
node, arc, and path consistencies

k-consistency and global constraints

Combining search and consistency
look-back and look-ahead schemes

variable and value ordering

Conclusions
constraint solvers, resources

IntroductionIntroduction

6

A bit of historyA bit of history
Scene labelling (Waltz 1975)

feasible interpretation of 3D lines in a 2D drawing

Interactive graphics (Sutherland 1963, Borning 1981)
geometrical objects described using constraints

Logic programming (Gallaire 1985, Jaffar, Lassez 1987)
from unification to constraint satisfaction

+
+ +

+

+
+

+ +

+

+

- -

-

-

2

7

Application areasApplication areas
All types of hard combinatorial problems:

molecular biology
DNA sequencing
determining protein structures

interactive graphic
web layout

network configuration
assignment problems

personal assignment
stand allocation

timetabling
scheduling
planning

8

Constraint technologyConstraint technology

based on declarative problem description via:
variables with domains (sets of possible values)
e.g. start of activity with time windows
constraints restricting combinations of variables
e.g. endA < startB

constraint optimization via objective function
e.g. minimize makespan

Why to use constraint technology?
understandable
open and extendible
proof of concept

9

CSPCSP

Constraint satisfaction problem consists of:
a finite set of variables
domains - a finite set of values for each variable
a finite set of constraints

constraint is an arbitrary relation over the set of
variables
can be defined extensionally (a set of compatible
tuples) or intentionally (formula)

A solution to a CSP is a complete consistent
assignment of variables.

complete = a value is assigned to every variable
consistent = all the constraints are satisfied

10

Two or more?Two or more?

Binary constraint satisfaction
only binary constraints
any CSP is convertible to a binary CSP

dual encoding (Stergiou & Walsh, 1990)
swapping the role of variables and constraints

Boolean constraint satisfaction
only Boolean (two valued) domains
any CSP is convertible to a Boolean CSP

SAT encoding
Boolean variable indicates whether a given value is
assigned to the variable

variables x1,…,x6
with domain {0,1}

c1: x1+x2+x6=1
c2: x1-x3+x4=1
c3: x4+x5-x6>0
c4: x2+x5-x6=0

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

R21 & R33

R11 R22 & R33

R31

R33

11

Two or more?Two or more?

Binary constraint satisfaction
only binary constraints
any CSP is convertible to a binary CSP

dual encoding (Stergiou & Walsh, 1990)
swapping the role of variables and constraints

Boolean constraint satisfaction
only Boolean (two valued) domains
any CSP is convertible to a Boolean CSP

SAT encoding
Boolean variable indicates whether a given value is
assigned to the variable

Depth-first searchDepth-first search

3

13

Basic ideaBasic idea
We are looking for a complete consistent assignment!

start with a consistent assignment (for example, empty one)

extend the assignment towards a complete assignment

Depth-first search is a technique of searching solution by
extending a partial consistent assignment towards a
complete consistent assignment.

assign values gradually to variables
after each assignment test consistency of the constraints over the
assigned variables
and backtrack upon failure

Backtracking is probably the most widely used complete
systematic search algorithm.

complete = guarantees finding a solution or proving its non-existence

14

CChronological backtrackinghronological backtracking
A recursive definition

Consistency procedure checks satisfaction of constraints whose
variables are already assigned.

procedure BT(X:variables, V:assignment, C:constraints)
if X={} then return V
x ← select a not-yet assigned variable from X
for each value h from the domain of x do

if consistent(V+{x/h}, C) then
R ← BT(X-{x}, V+{x/h}, C)
if R≠fail then return R

end for
return fail

end BT

call BT(X, {}, C)

15

Weaknesses of backtrackingWeaknesses of backtracking
thrashing

throws away the reason of the conflict
Example: A,B,C,D,E:: 1..10, A>E

BT tries all the assignments for B,C,D before finding that A≠1
Solution: backjumping (jump to the source of the failure)

redundant work
unnecessary constraint checks are repeated
Example: A,B,C,D,E:: 1..10, B+8<D, C=5*E

when labelling C,E the values 1,..,9 are repeatedly checked for D
Solution: backmarking, backchecking (remember (no-)good
assignments)

late detection of the conflict
constraint violation is discovered only when the values are known
Example: A,B,C,D,E::1..10, A=3*E

the fact that A>2 is discovered when labelling E
Solution: forward checking (forward check of constraints)

16

BackjumpingBackjumping
Backjumping is a technique for removing thrashing from backtracking.
How?

1) identify the source of the conflict (impossibility to assign a value)
2) jump to the past variable in conflict

The same forward run like in backtracking, only the back-jump can be
longer, and hence irrelevant assignments are skipped!

How to find a jump position? What is the source of the conflict?
select the constraints containing just the currently assigned variable
and the past variables
select the closest variable participating in the selected constraints

Graph-directed backjumping

Enhancement: use only the violated constraints
conflict-directed backjumping

x
1 2 3 4 5

17

ConflictConflict--directed directed backjumpingbackjumping
in practicein practiceN-queens problem

1

2

3

4

5

6

7

8

A B C D E F G H
Queens in rows are allocated
to columns.

1. Write a number of conflicting
queens to each position.

1 3,4 2,5 4,5 3,5 1 2 3 2. Select the farthest conflicting
queen for each position.

3. Select the closest conflicting
queen among positions.

Note:
Graph-directed backjumping has no effect here (due to the complete graph)!

6th queen cannot be allocated!

18

CConflictonflictinging variablevariable
How to find out the conflicting variable?
Situation:

assume that the variable no. 7 is being assigned (values are 0, 1)
the symbol • marks the variables participating the violated
constraints (two constraints for each value)

Neither 0 nor 1 can be assigned to
the seventh variable!

conflict
with value 0

conflict
with value 1

•
•

•

•

•

•

•

•

•

•

•

•

1
2
3
4
5
6
7

O
rd

er
 o

f a
ss

ig
nm

en
t

1. Find the closest variable in each
violated constraint (o).

2. Select the farthest variable from
the above chosen variables for each
value ().

3. Choose the closest variable from
the conflicting variables selected for
each value and jump to it.

4

19

Consistency Consistency check (BJ)check (BJ)
In addition to the test of satisfaction of the constraints, the closest

conflicting level is computed

procedure consistent(Labeled, Constraints, Level)
J ← Level % the level to which we will jump
NoConflict ← true % indicator of a conflict
for each C in Constraints do

if all variables from C are Labeled then
if C is not satisfied by Labeled then

NoConflict ← false
J ← min {J, max{L | X in C & X/V/L in Labeled & L<Level}}

end if
end if

end for
if NoConflict then return true

else return fail(J)
end consistent

20

Algorithm Algorithm backjumpingbackjumping
procedure BJ(Unlabeled, Labeled, Constraints, PreviousLevel)

if Unlabelled = {} then return Labeled
pick first X from Unlabelled
Level ← PreviousLevel+1
Jump ← 0
for each value V from DX do

C ← consistent({X/V/Level} ∪ Labeled, Constraints, Level)
if C = fail(J) then

Jump ← max {Jump, J}
else

Jump ← PreviousLevel
R ← BJ(Unlabeled-{X},{X/V/Level} ∪ Labeled,Constraints, Level)
if R ≠ fail(Level) then return R % success or backjump

end if
end for
return fail(Jump) % jump to the conflicting variable

end BJ

call BJ(Variables,{},Constraints,0)

Gaschnig (1979)

21

Weakness of Weakness of backjumpingbackjumping
When jumping back the in-between assignment is lost!

Example:
colour the graph in such a way that the connected vertices have different
colours

During the second attempt to label C superfluous work is done
- it is enough to leave there the original value 2, the change of B
does not influence C.

1
2
1 2
1 2 3
1 2 3

A
C

B
D

E

node vertex
A
B
C
D
E

backjump

1
21
1 2
1 2
1 2 3

22

Dynamic backtrackingDynamic backtracking
exampleexampleThe same graph (A,B,C,D,E), the same colours (1,2,3)

but a different approach.

AC B

D

E

node 1 2 3
A •
B A •
C A •
D A B •
E A B D

node 1 2 3
A •
B A •
C A •
D A B AB
E A B

node 1 2 3
A •
C A •
B • A
D A •
E A B •

jump back
+ carry the conflict source

jump back
+ carry the conflict source
+ change the order of B, C

Backjumping
+ remember the source of the conflict
+ carry the source of the conflict
+ change the order of variables

= DYNAMIC BACKTRACKING

The vertex C (and the possible sub-graph connected to C) is
not re-coloured.

• selected colour
AB a source of the conflict

Ginsberg (1993)

23

Algorithm dynamic Algorithm dynamic BTBT
procedure DB(Variables, Constraints)

Labelled ← {}; Unlabelled ← Variables
while Unlabelled ≠ {} do

select X in Unlabelled
ValuesX ← DX - {values inconsistent with Labelled using Constraints}
if ValuesX = {} then

let E be an explanation of the conflict (set of conflicting variables)
if E = {} then failure
else

let Y be the most recent variable in E
unassign Y (from Labelled) with eliminating explanation E-{Y}
remove all the explanations involving Y

end if
else

select V in ValuesX
Unlabelled ← Unlabelled - {X}
Labelled ← Labelled ∪ {X/V}

end if
end while
return Labelled

end DB

Ginsberg (1993)

24

Redundant workRedundant work
What is redundant work in chronological backtracking?

repeated computation whose result has already been obtained

Example:
A,B,C,D :: 1..10, A+8<C, B=5*D

B

B=1 B=2 B=3 B=4 B=5

A
A=1

C
C=1 C=10 C=10 C=10 C=10

D
D=1 D=10 D=10 D=10 D=10

C=1

C

D=1

D
C=1

C

D=1

D

C=1
C

D=1
D

C=1
C

D=1
D

... C=10... ... … ...

Redundant computations:
it is not necessary to repeat them
because the change of B
does not influence C.

Redundant computations:
it is not necessary to repeat them
because the change of B
does not influence C.

5

25

BackmarkingBackmarking
Removes redundant constraint checks by memorizing negative and
positive tests:

Mark(X,V) is the farthest (instantiated) variable in conflict with
the assignment X=V
BackTo(X) is the farthest variable to which we backtracked since the
last attempt to instantiate X

Now, some constraint checks can be omitted:

Mark<BackTo Mark≥BackTo

Y

X=a

Y=b

X

Y=b

Y/b is inconsistent
with X/a (and
consistent with all
variables above X)

Y/b is still in conflict
with X/a, hence we do
not need to check it

Mark(Y,b)

BackTo(Y)

Y/b is inconsistent with
X/a (and consistent with
all variables above X)

Mark(Y,b)

BackTo(Y)

Y=b

X=?

Y/b is OK
here

Y/b must be
checked with
these variables

X=a

Y=b

X

Y

Haralick, Elliot (1980)

26

BackmarkingBackmarking
in practicein practiceN-queens problem

1

2

3

4

5

6

7

8

A B C D E F G H
1. Queens in rows are allocated to
columns.

3. Farthest conflict queen at each
position (MarkTo). At beginning 1s.

1 3 2 4 3 1 2 3

2. Latest choice level is written next to
chessboard (BackTo). At beginning 1s.

5. Backtrack to 5, change BackTo.

Note:
Backmarking can be combined with backjumping (for free).

4. 6th queen cannot be allocated!

1 1

1 2 1 2

1

1 4 2

1

1

1

1

1

1

1

1
6. When allocating 6th queen, all the
positions are still wrong
(MarkTo<BackTo).

1 2 3

5

27

procedure consistent(X/V, Labeled, Constraints, Level)
for each Y/VY/LY in Labeled such that LY≥BackTo(X) do

% only possible changed variables Y are explored
% in the increasing order of LY (first the oldest one)

if X/V is not compatible with Y/VY using Constraints then
Mark(X,V) ← LY
return fail

end if
end for
Mark(X,V) ← Level-1
return true

end consistent

Consistency check Consistency check (BM)(BM)
Only the constraints where any value is changed are re-checked,

and the farthest conflicting level is computed.

It is not necessary
to test it again
(it is satisfied)

It is not necessary
to test it again
(it is satisfied)

BackTo 1

2

1 2 3 4 5 6

28

Algorithm Algorithm backmarkingbackmarking
procedure BM(Unlabeled, Labeled, Constraints, Level)

if Unlabelled = {} then return Labeled
pick first X from Unlabelled % fix order of variables
for each value V from DX do

if Mark(X,V) ≥ BackTo(X) then % re-check the value
if consistent(X/V, Labeled, Constraints, Level) then

R ← BM(Unlabeled-{X}, Labeled ∪{X/V/Level}, Constraints, Level+1)
if R ≠ fail then return R % solution found

end if
end if

end for
BackTo(X) ← Level-1 % jump will be to the previous variable
for each Y in Unlabelled do % tell everyone about the jump

BackTo(Y) ← min {Level-1, BackTo(Y)}
end for
return fail % return to the previous variable

end BM

29

Incomplete searchIncomplete search

A cutoff limit to stop exploring a (sub-)tree
some branches are skipped → incomplete search

When no solution found, restart with enlarged cutoff limit.

Bounded Backtrack Search (Harvey, 1995)
restricted number of backtracks

Depth-bounded Backtrack Search (Cheadle et al., 2003)
restricted depth where alternatives are explored

Iterative Broadening (Ginsberg and Harvey, 1990)
restricted breadth in each node
still exponential!

Credit Search (Beldiceanu et al., 1997)
limited credit for exploring alternatives
credit is split among the alternatives

30

BBS(8)

1 2 3 4 5 6 7 8 9

DBS(3)

1 3 5 72 4 6 8

IB(2)

1 3 5 72 4 6 8

CS(7)

1 3 5 72 4 6

4 3

2 2 2 1

1 1 1 1 1 1

Incomplete searchIncomplete search

creditcredit

6

31

Heuristics in searchHeuristics in search
Observation 1:
The search space for real-life problems is so huge that it cannot be
fully explored.

Heuristics - a guide of search
they recommend a value for assignment
quite often lead to a solution

What to do upon a failure of the heuristic?
BT cares about the end of search (a bottom part of the search tree)
so it rather repairs later assignments than the earliest ones
thus BT assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search
tree (as search proceeds, more information is available).

Observation 3:
The number of heuristic violations is usually small.

32

DiscrepanciesDiscrepancies
Discrepancy

= the heuristic is not followed

Basic principles of discrepancy search:
change the order of branches to be explored

prefer branches with less discrepancies

prefer branches with earlier discrepancies

heuristic = go left

heuristic = go left

is before

is before

33

Limited Discrepancy Search (Harvey & Ginsberg, 1995)
restricts a maximal number of discrepancies in the iteration

Improved LDS (Korf, 1996)
restricts a given number of discrepancies in the iteration

Depth-bounded Discrepancy Search (Walsh, 1997)
restricts discrepancies till a given depth in the iteration

…

Discrepancy searchDiscrepancy search

1 2345

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

678910

* heuristic = go left

ConsistencyConsistency

35

Introduction to Introduction to consistencconsistenciesies
So far we used constraints in a passive way (as a test) …

…in the best case we analysed the reason of the conflict.

Cannot we use the constraints in a more active way?

Example:
A in 3..7, B in 1..5 the variables’ domains
A<B the constraint

many inconsistent values can be removed
we get A in 3..4, B in 4..5
Note: it does not mean that all the remaining combinations of the

values are consistent (for example A=4, B=4 is not consistent)

How to remove the inconsistent values from the
variables’ domains in the constraint network?

36

Node consistency (NC)Node consistency (NC)
Unary constraints are converted into variables’ domains.

Definition:
The vertex representing the variable X is node consistent iff every
value in the variable’s domain Dx satisfies all the unary constraints
imposed on the variable X.
CSP is node consistent iff all the vertices are node consistent.

Algorithm NC

procedure NC(G)
for each variable X in nodes(G) do

for each value V in the domain DX do
if unary constraint on X is inconsistent with V then

delete V from DX
end for

end for
end NC

7

37

Arc consistency (AC)Arc consistency (AC)
Since now we will assume binary CSP only

i.e. a constraint corresponds to an arc (edge) in the constraint network.

Definition:
The arc (Vi,Vj) is arc consistent iff for each value x from the domain Di
there exists a value y in the domain Dj such that the assignment Vi =x and
Vj = y satisfies all the binary constraintson Vi, Vj.

Note: The concept of arc consistency is directional, i.e., arc consistency
of (Vi,Vj) does not guarantee consistency of (Vj,Vi).

CSP is arc consistent iff every arc (Vi,Vj) is arc consistent (in both
directions).

Example:

3..7 1..5
A<B

no arc is consistent

A B 3..4 1..5
A<B

(A,B) is consistent

A B 3..4 4..5
A<B

(A,B) and (B,A) are consistent

A B

38

AArcrc revisionsrevisions
How to make (Vi,Vj) arc consistent?

Delete all the values x from the domain Di that are
inconsistent with all the values in Dj (there is no value y
in Dj such that the assignment Vi = x, Vj = y satisfies all
the binary constrains on Vi a Vj).

Algorithm of arc revision

procedure REVISE((i,j))
DELETED ← false
for each X in Di do

if there is no such Y in Dj such that (X,Y) is consistent, i.e.,
(X,Y) satisfies all the constraints on Vi, Vj then

delete X from Di
DELETED ← true

end if
end for
return DELETED

end REVISE

The procedure also
reports the deletion
of some value.

The procedure also
reports the deletion
of some value.

39

Algorithm ACAlgorithm AC--11
How to establish arc consistency among the constraints?

Doing revision of every arc is not enough!

Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X<Y
X in [4,5]
Y in [2,..,6]
Z in [1,2]

X in [4,5]
Y in [2,..,6]
Z in [1,2]

Z<X-2
X in [4,5]
Y in [5,6]
Z in [1,2]

X in [4,5]
Y in [5,6]
Z in [1,2]

X<Y

Make all the constraints consistent until any domain is changed.

Algorithm AC-1

procedure AC-1(G)
repeat

CHANGED ← false
for each arc (i,j) in G do

CHANGED ← REVISE((i,j)) or CHANGED
end for

until not(CHANGED)
end AC-1

Mackworth (1977)

40

What is wrong with ACWhat is wrong with AC--1?1?
If a single domain is pruned then revisions of all the arcs are

repeated even if the pruned domain does not influence most
of these arcs.

What arcs should be reconsidered for revisions?

The arcs whose consistency is affected by the domain
pruning,
i.e., the arcs pointing to the changed variable.

We can omit one more arc!

Omit the arc running out of
the variable whose domain
has been changed
(this arc is not affected by
the domain change).

Variable with
pruned domain

The arc whose
revision caused

the domain reduction

The arc whose
revision caused

the domain reduction

×

41

Algorithm ACAlgorithm AC--22
A generalised version of the Waltz’s labelling algorithm.
In every step, the arcs going back from a given vertex are

processed (i.e. a sub-graph of visited nodes is AC)
Algorithm AC-2

procedure AC-2(G)
for i ← 1 to n do % n is a number of variables

Q ← {(i,j) | (i,j)∈arcs(G), j<i} % arcs for the base revision
Q’ ← {(j,i) | (i,j)∈arcs(G), j<i} % arcs for re-revision
while Q non empty do

while Q non empty do
select and delete (k,m) from Q
if REVISE((k,m)) then

Q’ ← Q’ ∪ {(p,k) | (p,k)∈arcs(G), p≤i, p≠m }
end while
Q ← Q’
Q’ ← empty

end while
end for

end AC-2

Mackworth (1977)

42

Algorithm ACAlgorithm AC--33
Re-revisions can be done more elegantly than in AC-2.
1) one queue of arcs for (re-)revisions is enough
2) only the arcs affected by domain reduction are added

to the queue (like AC-2)
Algorithm AC-3

procedure AC-3(G)
Q ← {(i,j) | (i,j)∈arcs(G), i≠j} % queue of arcs for revision
while Q non empty do

select and delete (k,m) from Q
if REVISE((k,m)) then

Q ← Q ∪ {(i,k) | (i,k)∈arcs(G), i≠k, i≠m}
end if

end while
end AC-3

AC-3 schema is the most widely used consistency algorithm
but it is still not optimal (time complexity is O(ed3)).

Mackworth (1977)

8

43

Looking for Looking for aa supportsupport
Observation (AC-3):

Many pairs of values are tested for consistency in every
arc revision.
These tests are repeated every time the arc is revised.

a
b
c
d

a
b
c
d

a
b
c
d
V1 V2 V3

1. When the arc V2,V1 is revised, the
value a is removed from domain of V2.

2. Now the domain of V3, should be
explored to find out if any value
a,b,c,d loses the support in V2.

Observation:
The values a,b,c need not be checked again because they
still have a support in V2 different from a.

The support set for a∈Di is the set {<j,b> | b∈Dj , (a,b)∈Ci,j}

Cannot we compute the support sets once and then use them
during re-revisions?

×1

×2

44

Computing support setsComputing support sets
A set of values supported by a given value (if the value disappears then

these values lost one support), and a number of own supports are kept.

procedure INITIALIZE(G)
Q ← {} , S ← {} % emptying the data structures
for each arc (Vi,Vj) in arcs(G) do

for each a in Di do
total ← 0
for each b in Dj do

if (a,b) is consistent according to the constraint Ci,j then
total ← total + 1
Sj,b ← Sj,b ∪ {<i,a>}

end if
end for
counter[(i,j),a] ← total
if counter[(i,j),a] = 0 then

delete a from Di
Q ← Q ∪ {<i,a>}

end if
end for

end for
return Q

end INITIALIZE

Sj,b - a set of pairs <i,a> such that
<j,b> supports them

counter[(i,j),a] - number of supports
for the value a from Di
in the variable Vj

Sj,b - a set of pairs <i,a> such that
<j,b> supports them

counter[(i,j),a] - number of supports
for the value a from Di
in the variable Vj

45

UsingUsing supportsupport setssets
Situation:

we have just processed the arc (i,j) in INITIALIAZE

Using the support sets:
1. Let b3 is deleted from the domain of j (for some reason).
2. Look at Sj,b3 to find out the values that were supported by b3

(i.e. <i,a2>,<i,a3>).
3. Decrease the counter for these values (i.e. tell them that they lost

one support).
4. If any counter becomes zero (a3) then delete the value and repeat

the procedure with the respective value (i.e., go to 1).

counter(i,j),_
2
2
1

Sj,_
<i,a1>,<i,a2>
<i,a1>
<i,a2>,<i,a3>

i
a1
a2
a3

j
b1
b2
b3

counter(i,j),_
2
2
1

Sj,_
<i,a1>,<i,a2>
<i,a1>
<i,a2>,<i,a3>

i
a1
a2
a3

j
b1
b2
b3×1×2

1
00

46

Algorithm ACAlgorithm AC--44
The algorithm AC-4 has optimal worst case time complexity O(ed2)!

Algorithm AC-4
procedure AC-4(G)

Q ← INITIALIZE(G)
while Q non empty do

select and delete any pair <j,b> from Q
for each <i,a> from Sj,b do

counter[(i,j),a] ← counter[(i,j),a] - 1
if counter[(i,j),a] = 0 & "a" is still in Di then

delete "a" from Di
Q ← Q ∪ {<i,a>}

end if
end for

end while
end AC-4

Unfortunately the average time complexity is not so good
… plus there is a big memory consumption!

Mohr, Henderson (1986)

47

Other AC algorithmsOther AC algorithms

AC-5 (Van Hentenryck, Deville, Teng, 1992)
generic AC algorithm covering both AC-4 and AC-3

AC-6 (Bessière, 1994)
improves AC-4 by remembering just one support

AC-7 (Bessière, Freuder, Régin, 1999)
improves AC-6 by exploiting symmetry of the constraint

AC-2000 (Bessière & Régin, 2001)
an adaptive version of AC-3 that either looks for a support or
propagates deletions

AC-2001 (Bessière & Régin, 2001)
improvement of AC-3 to get optimality (queue of variables)

AC-3.1 (Zhang & Yap, 2001)
improvement of AC-3 to get optimality (queue of constraints)

…
48

Directional arc consistency (DAC)Directional arc consistency (DAC)
Observation 1:

AC has a directional character but a CSP is not directional.

Observation 2:
AC has to repeat arc revisions; the total number of revisions
depends on the number of arcs but also on the size of
domains (while cycle).

Is it possible to weaken AC in such a way that every arc
is revised just once?

Definition:
CSP is directional arc consistent using a given order of
variables iff every arc (i,j) such that i<j is arc consistent.

Again, every arc has to be revised, but revision in one direction
is enough now.

9

49

Algorithm DACAlgorithm DAC--11
1) Consistency of an arc is required just in one direction.
2) Variables are ordered

there is no directed cycle in the graph!

If arcs are explored in a „good“ order, no revision
has to be repeated!

Algorithm DAC-1

procedure DAC-1(G)
for j = |nodes(G)| to 1 by -1 do

for each arc (i,j) in G such that i<j do
REVISE((i,j))

end for
end for

end DAC-1

1 2 3 4 5

1

2

6

5

4

3

50

How to use DACHow to use DAC??
AC visibly covers DAC (if CSP is AC then it is DAC as well)
So, is DAC useful?

DAC-1 is surely much faster than any AC-x
there exist problems where DAC is enough

Claim:
If the constraint graph forms a tree then DAC is enough to
solve the problem without backtracks.

How to order the vertices for DAC?
How to order the vertices for search?

1. Apply DAC in the order from
the root to the leaf nodes.

2. Label vertices starting from
the root.
DAC guarantees that there is a
value for the child node
compatible with all the parents.

51

Relation between DAC and ACRelation between DAC and AC
Observation:

CSP is arc consistent iff for some order of the variables, the
problem is directional arc consistent in both directions.

Is it possible to achieve AC by applying DAC in both
primal and reverse direction?

In general NO, but …

Example:
X in {1,2}, Y in {1}, Z in {1,2}, X≠Z,Y<Z

using the order X,Y,Z
there is no domain
change

using the order Z,Y,X, the
domain of Z is changed but
the graph is not AC

However if the order Z,Y,X is used first then we get AC!
{1,2}

X Y

Z
{1,2}

{1}

X≠Z Y<Z

{1,2}
X Y

Z
{2}

{1}

X≠Z Y<Z

52

Is arc consistency enough?Is arc consistency enough?
By using AC we can remove many incompatible values

Do we get a solution?
Do we know that there exists a solution?

Unfortunately, the answer to both above questions is NO!

Example:
X

Y
Z

X≠ZX≠Y

Y≠Z

{1,2}

{1,2} {1,2}

CSP is arc consistent
but there is no solution

So what is the benefit of AC?
Sometimes we have a solution after AC

• any domain is empty → no solution exists
• all the domains are singleton → we have a solution

In general, AC prunes the search space.

53

Path consistency (PC)Path consistency (PC)
How to strengthen the consistency level?

More constraints are assumed together!

Definition:
The path (V0,V1,…, Vm) is path consistent iff for every pair of
values x∈D0 a y∈Dm satisfying all the binary constraints on V0,Vm
there exists an assignment of variables V1,…,Vm-1 such that all the
binary constraints between the neighbouring variables Vi,Vi+1 are
satisfied.

CSP is path consistent iff every path is consistent.

Some notes:
only the constraints between the neighboring
variables must be satisfied
it is enough to explore paths of length 2 (Montanary, 1974)

V0
V1

V2 V3

V4

???

54

Relation between PC and ACRelation between PC and AC
Does PC subsume AC (i.e. if CSP is PC, is it AC as well)?

the arc (i, j) is consistent (AC) if the path (i,j,i) is consistent (PC)
thus PC implies AC

Is PC stronger than AC (is there any CSP that is AC but
it is not PC)?
Example:

X in {1,2}, Y in {1,2}, Z in {1,2}, X≠Z, X≠Y, Y≠Z

it is AC, but not PC (X=1, Z=2 cannot be extended to X,Y,Z)

AC removes incompatible values from the domains,
what will be done in PC?

PC removes pairs of values
PC makes constraints explicit (A<B,B<C ⇒ A+1<C)
a unary constraint = a variable’s domain

10

55

Path revisionPath revision
Constraints represented extensionally via matrixes.
Path consistency is realized via matrix operations

Example:
A,B,C in {1,2,3}, B>1
A<C, A=B, B>C-2

B>C-2
A=B

B>1

A<C C

A

& * *
011
001
000

100
010
001

000
010
001

110
111
111

=
000
001
000

56

Algorithm PCAlgorithm PC--11
How to make the path (i,k,j) consistent?

Rij ← Rij & (Rik * Rkk * Rkj)

How to make a CSP path consistent?
Repeated revisions of paths (of length 2) while any domain changes.

procedure PC-1(Vars,Constraints)
n ← |Vars|, Yn ← Constraints
repeat

Y0 ← Yn

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
Yk

ij ← Yk-1
ij & (Yk-1

ik * Yk-1
kk * Yk-1

kj)
until Yn=Y0

Constraints ← Y0

end PC-1

Mackworth (1977)

If we use
Yk

ii ← Yk-1
ii & (Yk-1

ik * Yk-1
kk * Yk-1

ki)
then we get AC-1

If we use
Yk

ii ← Yk-1
ii & (Yk-1

ik * Yk-1
kk * Yk-1

ki)
then we get AC-1

57

How to improve PCHow to improve PC--1?1?
Is there any inefficiency in PC-1?

just a few „bits“
it is not necessary to keep all copies of Yk

one copy and a bit indicating the change is enough
some operations produce no modification (Yk

kk = Yk-1
kk)

half of the operations can be removed (Yji = YT
ij)

the grand problem
after domain change all the paths are re-revised
but it is enough to revise just the influenced paths

Algorithm of path revision

procedure REVISE_PATH((i,k,j))
Z ← Yij & (Yik * Ykk * Ykj)
if Z=Yij then return false
Yij ← Z
return true

end REVISE_PATH

If the domain is pruned
then the influenced

paths will be revised.

If the domain is pruned
then the influenced

paths will be revised.

58

IInfluenced nfluenced pathspaths
Because Yji = Yt

ij it is enough to revise only the paths (i,k,j) where i≤j.
Let the domain of the constraint (i,j) be changed when revising (i,k,j):

Situation a: i<j
all the paths containing (i,j) or (j,i) must be re-revised
but the paths (i,j,j), (i,i,j) are not revised again (no change)
Sa = {(i,j,m) | i ≤ m ≤ n & m≠j}

∪ {(m,i,j) | 1 ≤ m ≤ j & m≠i}
∪ {(j,i,m) | j < m ≤ n}
∪ {(m,j,i) | 1 ≤ m < i}

| Sa | = 2n-2

Situation b: i=j
all the paths containing i in the middle of the path are re-revised
but the paths (i,i,i) and (k,i,k) are not revised again
Sb = {(p,i,m) | 1 ≤ m ≤ n & 1 ≤ p ≤ m} - {(i,i,i),(k,i,k)}
| Sb | = n*(n-1)/2 - 2

i j

59

Algorithm PCAlgorithm PC--22
Paths in one direction only (attention, this is not DPC!)
After every revision, the affected paths are re-revised

Algorithm PC-2

procedure PC-2(G)
n ← |nodes(G)|
Q ← {(i,k,j) | 1 ≤ i ≤ j ≤ n & i≠k & j≠k}
while Q non empty do

select and delete (i,k,j) from Q
if REVISE_PATH((i,k,j)) then

Q ← Q ∪ RELATED_PATHS((i,k,j))
end while

end PC-2

procedure RELATED_PATHS((i,k,j))
if i<j then return Sa else return Sb

end RELATED_PATHS

Mackworth (1977)

60

Other Other PCPC algorithmsalgorithms
PC-3 (Mohr, Henderson 1986)

based on computing supports for a value (like AC-4)
If the pair (a,b) at the arc (i,j) is not supported by
another variable, then a is removed from Di and b is
removed from Dj.

this algorithm is not sound!

PC-4 (Han, Lee 1988)
correction of the PC-3 algorithm
based on computing supports of pairs (b,c) at arc (i,j)

PC-5 (Singh 1995)
uses the ideas behind AC-6
only one support is kept and a new support is looked for
when the current support is lost

11

61

Drawbacks of Drawbacks of PCPC
memory consumption

because PC eliminates pairs of values, we need to keep all the
compatible pairs extensionally, e.g. using {0,1}-matrix

bad ratio strength/efficiency
PC removes more (or same) inconsistencies than AC, but the
strength/efficiency ratio is much worse than for AC

modifies the constraint network
PC adds redundant arcs (constraints) and thus it changes
connectivity of the constraint network
this complicates using heuristics derived from the structure of the
constraint network (like density, graph width etc.)

PC is still not a complete technique
A,B,C,D in {1,2,3}
A≠B, A≠C, A≠D, B≠C, B≠D, C≠D
is PC but has no solution

1,2,3 1,2,3

1,2,3 1,2,3

≠

≠

≠

≠
≠ ≠

62

Half way between AC and PCHalf way between AC and PC
Can we make a consistency algorithm:

stronger than AC,
without drawbacks of PC (memory consumption,
changing the constraint network)?

Restricted path consistency (Berlandier 1995)
based on AC-4 (uses the support sets)
as soon as a value has only one support in another
variable, PC is evoked for this pair of values

e f

a
b c

d

e f

a
b c

d

×
×

×

63

kk--consistencyconsistency
Is there a common formalism for AC and PC?

AC: a value is extended to another variable
PC: a pair of values is extended to another variable
… we can continue

Definition:
CSP is k-consistent iff any consistent assignment of
(k-1) different variables can be extended to a consistent
assignment of one additional variable.

1,2,3 1,2,3 1,2,3 4

≠

≠

≠ ≠ ≠

4-consistent graph
64

Strong kStrong k--consistencyconsistency

Definition:
CSP is strongly k-consistent iff it is j-consistent for every j≤k.

Visibly: strong k-consistency ⇒ k-consistency
Moreover: strong k-consistency ⇒ j-consistency ∀j≤k
In general: ¬ k-consistency ⇒ strong k-consistency

NC = strong 1-consistency = 1-consistency
AC = (strong) 2-consistency
PC = (strong) 3-consistency

sometimes we call NC+AC+PC together strong path
consistency

1,2 1,2 1,2,3= =

=

3-consistent graph

but not 2-consistent graph!

65

What kWhat k--consistency is enough?consistency is enough?
Assume that the number of vertices is n. What level of
consistency do we need to find out the solution?
Strong n-consistency for graphs with n vertices!

n-consistency is not enough - see the previous example
strong k-consistency where k<n is not enough as well

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

≠

≠

≠
≠

≠

≠ ≠

≠

…

…

graph with n vertices
domains 1..(n-1)

It is strongly k-consistent for k<n
but it has no solution

1,2 1,2,3=

<

<

1,2,31,2,3

And what about this graph?

(D)AC is enough!
Because this a tree..

66

Think globallyThink globally
CSP describes the problem locally:

the constraints restrict small sets of variables
+ heterogeneous real-life constraints
- missing global view

weaker domain filtering

Global constraints
global reasoning over a local sub-problem
using semantic information to improve efficiency

Example:
local (arc) consistency deduces
no pruning
but some values can be
removed

a b

a b

a b c

≠

≠

≠

X1

X2

X3XX

12

67

a set of binary inequality constraints among all variables
X1 ≠ X2, X1 ≠ X3, …, Xk-1 ≠ Xk

all_different({X1,…, Xk}) = {(d1,…, dk) | ∀i di∈Di & ∀i≠j di ≠ dj}
better pruning based on matching theory over bipartite graphs

Inside allInside all--differentdifferent

a

b

c

X1

X2

X3

Initialisation:
1) compute maximum matching
2) remove all edges that do not

belong to any maximum matching

Propagation of deletions (X1≠a):
1) remove discharged edges
2) compute new maximum matching
3) remove all edges that do not

belong to any maximum matching

××

X1

X2

X3

a

b

c

×

×

Régin (1994)

Search and
Propagation

Search and
Propagation

69

How to solve How to solve CSPsCSPs??
So far we have two separate methods:

depth-first search
complete (finds a solution or proves its non-existence)
too slow (exponential)

explores “visibly” wrong valuations
consistency techniques

usually incomplete (inconsistent values stay in domains)
pretty fast (polynomial)

Share advantages of both approaches - combine them!
label the variables step by step (backtracking)
maintain consistency after assigning a value

Do not forget about traditional solving techniques!
Linear equality solvers, simplex …
such techniques can be integrated to global constraints!

There is also local search.
70

Core search procedure Core search procedure -- DFSDFS
The basic constraint satisfaction technology:

label the variables step by step
the variables are marked by numbers and labelled in a given order

ensure consistency after variable assignment

A skeleton of search procedure
procedure Labelling(G)

return LBL(G,1)
end Labelling

procedure LBL(G,cv)
if cv>|nodes(G)| then return nodes(G)
for each value V from Dcv do

if consistent(G,cv) then
R ← LBL(G,cv+1)
if R ≠ fail then return R

end if
end for
return fail

end LBL

A „hook“ for consistency
procedure

71

Look back techniquesLook back techniques
“Maintain” consistency among the already labelled variables.

„look back“ = look to already labelled variables
What’s result of consistency maintenance among labelled variables?

a conflict (and/or its source - a violated constraint)
Backtracking is the basic look back method.

Backward consistency checks
procedure AC-BT(G,cv)

Q ← {(Vi,Vcv) in arcs(G),i<cv} % arcs to labelled variables.
consistent ← true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
consistent ← not REVISE(Vk,Vm)

end while
return consistent

end AC-BT

Backjumping & comp. uses information about the violated constraints.

When a value is deleted,
the domain is empty

When a value is deleted,
the domain is empty

72

Forward checkingForward checking
It is better to prevent failures than to detect them only!
Consistency techniques can remove incompatible values for future

(=not yet labelled) variables.
Forward checking ensures consistency between the currently labelled

variable and the variables connected to it via constraints.

Forward consistency checks

procedure AC-FC(G,cv)
Q ← {(Vi,Vcv) in arcs(G),i>cv} % arcs to future variables
consistent ← true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
if REVISE(Vk,Vm) then

consistent ← not empty Dk
end if

end while
return consistent

end AC-FC

Empty domain implies
inconsistency

Empty domain implies
inconsistency

13

73

Partial look aheadPartial look ahead
We can extend the consistency checks to more future variables!
The value assigned to the current variable can be propagated to all

future variables.
Partial lookahead consistency checks

Notes:
In fact DAC is maintained (in the order reverse to the labelling order).

Partial Look Ahead or DAC - Look Ahead
It is not necessary to check consistency of arcs between the future
variables and the past variables (different from the current variable)!

procedure DAC-LA(G,cv)
for i=cv+1 to n do

for each arc (Vi,Vj) in arcs(G) such that i>j & j≥cv do
if REVISE(Vi,Vj) then

if empty Di then return fail
end for

end for
return true

end DAC-LA

74

Full look aheadFull look ahead
Knowing more about far future is an advantage!
Instead of DAC we can use a full AC (e.g. AC-3).

Full look ahead consistency checks

procedure AC3-LA(G,cv)
Q ← {(Vi,Vcv) in arcs(G),i>cv} % start with arcs going to cv
consistent ← true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
if REVISE(Vk,Vm) then

Q ← Q ∪ {(Vi,Vk) | (Vi,Vk) in arcs(G),i≠k,i≠m,i>cv}
consistent ← not empty Dk

end if
end while
return consistent

end AC3-LA

Notes:
The arcs going to the current variable are checked exactly once.
The arcs to past variables are not checked at all.
It is possible to use other than AC-3 algorithms (e.g. AC-4)

75

ComparisonComparison
4 queens4 queens

Backtracking is not very good
19 attempts

Forward checking is better
3 attempts

And the winner is Look Ahead
2 attempts

76

Constraint propagation at glanceConstraint propagation at glance

Propagating through more constraints remove more inconsistencies
(BT < FC < PLA < LA), of course it increases complexity of the step.
Forward Checking does no increase complexity of backtracking, the
constraint is just checked earlier in FC (BT tests it later).
When using AC-4 in LA, the initialisation is done just once.
Consistency can be ensured before starting search

Algorithm MAC (Maintaining Arc Consistency)
AC is checked before search and after each assignment

It is possible to use stronger consistency techniques (e.g. use them once
before starting search).

1 2 3 4 5 6 7 8

Past (already labelled) variables Future (free) variablescv

backtracking forward checking look ahead

77

Consistency and SearchConsistency and Search
Consistency techniques are (usually) incomplete.

We need a search algorithm to resolve the rest!

LabelingLabeling
depth-first search

assign a value to the variable
propagate = make the problem
locally consistent
backtrack upon failure

X in 1..3 ≈ X=1 ∨ X=2 ∨ X=3 (enumeration)

In general, search algorithm resolves remaining disjunctions!
X=1 ∨ X≠1 (step labeling)
X<3 ∨ X≥3 (bisection)
X<Y ∨ X≥Y (variable ordering)

78

Variable orderingVariable ordering
Variable ordering in labelling influence significantly efficiency of

solvers (e.g. in a tree-structured CSP).
What variable ordering should be chosen in general?
FAIL-FIRST principle

„select the variable whose instantiation will lead to a failure“
it is better to tackle failures earlier, they can be become even harder

prefer the variables with smaller domain (dynamic order)
a smaller number of choices ~ lower probability of success
the dynamic order is appropriate only when new information appears
during solving (e.g., in look ahead algorithms)

„solve the hard cases first, they may become even harder later“
prefer the most constrained variables

it is more complicated to label such variables (it is possible to
assume complexity of satisfaction of the constraints)
this heuristic is used when there is an equal size of the domains

prefer the variables with more constraints to past variables
a static heuristic that is useful for look-back techniques

14

79

BacktrackBacktrack--free searchfree search
Definition:

CSP is solved using backtrack-free search if for some order of
variables we can find a value for each variable compatible with the
values of already assigned variables.

How to find out a sufficient consistency level for a given graph?

Some observations:
variable must be compatible with all the “former” variables
i.e., across the „backward“ edges
for k „backward“ edges we need (k+1)-consistency
let m be the maximum of backward edges for all the vertices,

then strong (m+1)-consistency is enough
the number of backward edges is different for different variable
order
of course, the order minimising m is looked for

1, 2 1, 2=

<

<

1, 2, 31, 2, 3
1 2 3 4

80

Value orderingValue ordering
Order of values in labelling influence significantly efficiency (if we choose the

right value each time, no backtrack is necessary).
What value ordering for the variable should be chosen in general?
SUCCEED FIRST principle

„prefer the values belonging to the solution“
if no value is part of the solution then we have to check all values
if there is a value from the solution then it is better to find it soon

Note: SUCCEED FIRST does not go against FIRST-FAIL !
prefer the values with more suppors

this information can be found in AC-4
prefer the value leading to less domain reduction

this information can be computed using singleton consistency
prefer the value simplifying the problem

solve approximation of the problem (e.g. a tree)
Generic heuristics are usually too complex for computation.
It is better to use problem-driven heuristics that propose the value!

ExampleExample

82

GolombGolomb rulerruler
A ruler with M marks such
that distances between any
two marks are different.

The shortest ruler is the
optimal ruler.

Hard for M≥16, no exact
algorithm for M ≥ 24!

Applied in radioastronomy.

Solomon W. Golomb
Professor
University of Southern California
http://csi.usc.edu/faculty/golomb.html

0 1 4 9 11

83

GolombGolomb rulerruler
CSP modelCSP modelA base model:

Variables X1, …, XM with the domain 0..M*M

X1 = 0 ruler start
X1< X2<…< XM no permutations of variables
∀i<j Di,j = Xj – Xi difference variables
all_different({D1,2, D1,3, … D1,M, D2,3, … DM,M-1})

Model extensions:

D1,2 < DM-1,M symmetry breaking
better bounds (implied constraints) for Di,j

Di,j = Di,i+1 + Di+1,i+2 + … + Dj-1,j

so Di,j ≥ Σj-i = (j-i)*(j-i+1)/2 lower bound
XM = XM – X1 = D1,M = D1,2 + D2,3 + … Di-1,i + Di,j + Dj,j+1 + … + DM-1,M

Di,j = XM – (D1,2 + … Di-1,i + Dj,j+1 + … + DM-1,M)

so Di,j ≤ XM – (M-1-j+i)*(M-j+i)/2 upper bound

0 1 4 9 11

0 2 7 10 11

84

What is the effect of different constraint models?

What is the effect of different search strategies?

GolombGolomb rulerruler
some resultssome results

11

10

9

8

7

size

time in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM

2 480 216

120 363

13 690

1 462

220

base model

985 237

49 971

5 438

611

80

base model
+ symmetry

170 495

7 011

1 001

190

30

base model
+ symmetry
+ implied constraints

leftmost firstfail firstsize

11

10

9

8

7

906 323

17 545

2 384

370

60

step

1 004 515

20 870

2 664

390

40

enum

779 851

14 982

2 113

350

40

bisect

170 495

7 011

1 001

190

30

step

209 251

8 782

1 182

220

30

enum

159 559

6 430

921

200

30

bisect

time in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM

15

ConclusionsConclusions

86

Constraint solversConstraint solvers
It is not necessary to program all the presented
techniques from scratch!
Use existing constraint solvers (packages)!

provide implementation of data structures for modeling
variables’ domains and constraints
provide a basic consistency framework (AC-3)
provide filtering algorithms for many constraints (including
global constraints)
provide basic search strategies
usually extendible (new filtering algorithms, new search
strategies)

Some systems with constraint satisfaction packages:
Prolog: CHIP, ECLiPSe, SICStus Prolog, Prolog IV, GNU Prolog,
IF/Prolog
C/C++: CHIP++, ILOG Solver
Java: JCK, JCL, Koalog
Mozart

87

ResourcesResources
Books

P. Van Hentenryck: Constraint Satisfaction in Logic Programming, MIT
Press, 1989
E. Tsang: Foundations of Constraint Satisfaction, Academic Press, 1993
K. Marriott, P.J. Stuckey: Programming with Constraints: An
Introduction, MIT Press, 1998
T. Frühwirth, S. Abdennadher: Essentials of Constraint Programming,
Springer Verlag, 2003
R. Dechter: Constraint Processing, Morgan Kaufmann, 2003

Journal
Constraints, An International Journal. Kluwer Academic Publishers (Springer)

On-line materials
On-line Guide to Constraint Programming (tutorial)
http://kti.mff.cuni.cz/~bartak/constraints/

Constraints Archive (archive and links)
http://4c.ucc.ie/web/archive/index.jsp

Constraint Programming online (community web)
http://www.cp-online.org/

88

SummarySummary
Constraints

arbitrary relations over the problem variables
express partial local information in a declarative way

Basic constraint satisfaction framework:
local consistency connecting filtering algorithms for individual constraints
depth-first search resolves remaining disjunctions
local search can also be used

Problem solving using constraints:
declarative modeling of problems as a CSP
dedicated algorithms can be encoded in constraints
special search strategies

It is easy to state combinatorial problems in terms of a CSP
… but it is more complicated to design solvable models.

We still did not reach the Holy Grail of computer programming (the user
states the problem, the computer solves it) but CP is close.

