PLANNING (SEARCH) IN GAMES

The Real and Virtual Worlds and a Not-so-optimistic Account on Planning

Martin Černý cerny.m@gmail.com

OUTLINE

- Planning in the real world
 - What is NOT so simple
- Using planners
 - What I learned using planners in practice
- Planning as A*
- o HTN
- Adversarial search
- o <u>http://aigamedev.com/open/review/planning-in-games/</u>

PLANNING IN THE REAL WORLD WHAT IS NOT SIMPLE

• Multiple problems:

- Continous worlds
- Dynamicity
- Non-determinism
- Unknown domains
- Partial observability
- Goals
- Reasoning about time
- Speed of planning
- Meta reasoning

PLANNING IN THE REAL WORLD PLANNING SPEED

- We are still in PSPACE!
- o IPC limit 30min
- Games can offer only fractions of seconds
- Contemporary STRIPS planners can handle approximately hundreds of predicates and/or action within a second (using a whole core)
- Anytime planning
 - But how do you do that?

PLANNING IN THE REAL WORLD METAREASONING

- When to plan/replan
 - Opportunism
- How much time do I have?
- When to stop planning?
 - Optimal plans are usually unnecessary
- Commitment
- Requires tight integration of the planner

PLANNING IN GAMES WHAT DO THEY USE INSTEAD?

• Reactive techniques still prevalent

- FSM
- Hierarchical FSMs
- Behaviour trees
- At some level, reactive techniques are indispensable

USING PLANNERS

- Modelling, modelling, modelling
- There are bugs.
 - Typically caused by too simple or "nonsensical" problems
 - Not so many (compared to other academical SW)
- Using planners from Java: Planning4J
 - Universal API for IPC planners nad JSHOP2
 - http://code.google.com/p/planning4j/

USING PLANNERS OTHER NOTES

Recent IPC are quite opposed to realtime planning

- 30 minute timeout
- Fast Downward
- Issues with PDDL:
 - Except for BlackBox all planners I ever used (and a majority of planners in general) translate PDDL to statevariables (and it takes time)
- No possibility to alter the course of planning, interrupt prematurely etc.

PLANNING AS A*

- Easy to understand
- State-of-the art IS heuristic forward search
- Procedural effects, procedural preconditions
 - Gravity, shooting....

GOAP

- Goal oriented action planning
- o Jeff Orkin, F.E.A.R. (2005)
- The only documented system in games that uses the word "planning"
 - Used in other games as well
 - S.T.A.L.K.E.R.: Shadow of Chernobyl
 - Fallout 3
 - o Deus Ex
 - **o** ...
- Positive reception by players
- o STRIPS-based
- o http://web.media.mit.edu/~jorkin/goap.html

GOAP THE BASICS

- The world is represented by state variables (a bit like CSP formalism)
 - Variables may point directly to in-game entities
- Procedural preconditions and effects
- Action costs
- A*
- Separate system for goal selection

GOAP

ADVANTAGES AND DISADVANTAGES

- Advantages
 - Smarter Al
 - Separation of actions and goals from the implementation
 - Easier to maintain than FSM
- Disadvantages
 - No direct control over agent behaviour difficult debugging
 - Many details to tweak
- Reportedly, HTN and behaviour trees are favored now over GOAP
 - More at <u>http://aigamedev.com/open/review/planning-in-games/</u>

THE SIMS IV

- Sims interact with objects
 - Autonomously
 - User-directed
- We do not want to stop interactions when not necessary

THE SIMS IV

- Let's skip to Peter Ingebretson's slides from GDC (slide 116)
- o <u>http://www.gdcvault.com/play/1020190/Concurrent-Interactions-in-The-Sims</u>

BUILD-ORDER PLANNING

- Starcraft BroodWar
- Depth-first branch & bound (no PDDL model!)
 - Saves memory in comparison to A*
 - Depth-first is FAST
- o https://www.skatgame.net/mburo/ps/aiide11-bo.pdf

HIERARCHICAL TASK NETWORKS (HTN)

HTN – SEARCH

Suppose: Is_flankable(mala_strana, kampa)

HTN PROPERTIES

- Variables + bindings...
- o Undecidable in the worst case!
- May be considered an extension of POP
- Better at modeling parallel actions
 - Often employed in team planning
- Good at capturing domain-dependent knowledge
- Tasks that are "puzzle-like" (e.g. Sudoku) are hard to express

HTN – APPLICATIONS

- o Killzone 2
 - <u>http://www.slideshare.net/guerrillagames/killzone-2-</u> <u>multiplayer-bots</u>
- o Dark Souls, Max Payne 3, ...
- Non-industry
 - Teams of bots in UT
 - o <u>http://www.aaai.org/Papers/AIIDE/2005/AIIDE05-011.pdf</u>
 - Winner of the AlGameDev Capture the flag tournament
 - o <u>http://aigamedev.com/insider/interview/ctf-win-secrets/</u>

Adversarial Search

- Planning is just not enough!
- Rock-paper-scissors mechanics.

Adversarial Search in StarCraft

- Simplified combat model
- AlphaBeta considering durations
 - <u>http://webdocs.cs.ualberta.ca/~cdavid/pdf/aiide12-</u> <u>combat.pdf</u>
- Portfolio search
 - https://www.skatgame.net/mburo/ps/combat13.pdf
- Hierarchical adversarial search
 - <u>https://www.skatgame.net/mburo/ps/HierarchicalSearch-AIIDE-2014.pdf</u>

MONTE-CARLO TREE SEARCH

- Highly recommended read
 - http://en.wikipedia.org/wiki/Monte_Carlo_tree_search
- Tested in RTS (Wargus) combat
 - <u>http://www.aaai.org/ocs/index.php/IJCAI/IJCAI-</u> 09/paper/%20viewPDFInterstitial/632/587
 - But outperformed by the approaches on previous slide
- Used in Total War: Rome II (strategic level), Fable Legends (real time)

OUR WORK IN KINGDOM COME: DELIVERANCE

- Situations find suitable NPC combinations with CSP
 - In 0.1ms...
- Monte Carlo Tree Search for Combat

SUMMARY

- Planning is good, BUT....
- IPC results do not correspond to performance in real time
- There are other techniques than STRIPS and they have their strengths
- In games you absolutely need procedural effects
- Contact me
 - cerny.m@gmail.com
 - Theses, projects: <u>http://pogamut.cuni.cz/prace</u>