Planning & Scheduling

Classical planning
— search nodes correspond to partial plans

— a solution plan reachable from a given search node contains
all the actions from the partial plan

* state-space planning
* plan-space planning

Neoclassical planning
— search nodes correspond to several partial plans

— not all actions from the partial plans appear in the solution
plan reachable from the search node

e planning-graph planning



Problems of existing techniques

— choice of bad action, that is discovered late, causes
exploration of large search space

— large branching factor is the source of such mistakes
because it gives too many options

How to discover “promising” actions for the plan?

— solve a ,relaxed” problem, whose solution set contains all
solutions of the original problem

* relaxed problem = remove some constraints from the original
problem (for example negative effects)

— use only the actions from the solution of the relaxed
problem when selecting actions for the original problem

What do we need?

* a compact representation of several plans such that not all the
actions has to be used in the solution plan

* Instead of the least-commitment strategy we will use
a strong-commitment strategy:

— actions are fully instantiated
— and their order in the plan is fixed

* Planning-graph planning is based on two techniques:

— reachability analysis
* we find if a given world state is reachable from the initial state in
a given number of steps
— disjunctive refinement

* flaws are repaired by disjunctive refinement and maintaining
interference between the refinements using constraints



move(r, I, I') ;; robot r at location I moves to a connected location I’
precond: at(r, I), adjacent(l, I')
effects:  at(r,l'),—at(r, 1)

load(c, r, 1) ;; robot r loads container c¢ at location /
precond: at(r, I),in(c, 1), unloaded(r)
effects:  loaded(r, c), —in(c, 1), = unloaded(r)

loct loc2

unload(c, 1, I) ;; robot r unloads container c¢ at location /
precond: af(r, I), loaded(r, c)
effects:  unloaded(r),in(c, 1), — loaded(r, c)

We will work with fully instantiated atoms and actions:

Atoms:
ry 'y Oy, 0, — robot positions
a3, 3, 3, g, b,, b,, b, bq — container positions
u,u, — robot is empty
The initial state is {rl,qz,al,bz,ur,uOI L.
Actions:
* Mrl2, Mr21, Mql12, Mq21 - robot moves
* larl, Lar2, Laql, Lag2, Lbr1, Lbr2, Lbgl, Lbg2 — loading container to robot

* Uarl, Uar2, Uaql, Uag2, Ubrl, Ubr2, Ubql, Ubg2 — unloading container from
robot

Nodes correspond to states and arcs to transitions

— root — initial state s

— Reachability tree of depth d with
the root s, contains all solution
plans for problems, where the
goal is reachable from s, with at
most d actions.

* A plan exists if any goal state is in
the reachability tree!

Problem:
The reachability tree contains O(k9) nodes, where k is #applicable
actions per state.



* Some nodes are repeated in the reachability tree (are
reachable by different plans). They can be assumed just
once!

We get a reachability graph
— Problem

* A reachability graph is still too
large.

—its size can be equal to the size
of the state space

— What can we do with it?

* Let us relax the reachability
analysis!
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Reachability graph gives sufficient and necessary conditions for a
reachability of a given state.

— astate is reachable if any only if it appears in the reachability graph

Planning graph will give only the necessary condition of
reachability.
— if a state is reachable than it can be found in the planning graph
— however, not all the states in the planning graph are reachable

How to exploit a planning graph?

— If we can construct the planning graph fast with small memory
consumption, it gives an estimate which actions are necessary to reach
the goal state

— from the planning graph we still need to extract the solution plan



How to relax the reachability tree/graph?

— The nodes describe approximations of states at a given level
of the reachability tree.

How to approximate the state?

Recall that a state is represented as a set of propositions.

— we can approximate all states at the same level by union of
propositions from these states

— OK, but how to do it in practice?

* Apply all applicable actions in parallel to a given state and ignore
negative effects of these actions.

* Consequence: the number of propositions in approximated states
will never decrease

* Remember which actions provide a given proposition and which
actions want to delete it

Planning graph is a directed layered graph, where
— each layer contains (exclusively)
* instantiated propositions (a state layer) or
* instantiated actions (an action layer)
— state and action layers interleave
* the zero layer describes the initial state
* the next layer describes all actions applicable to the initial state
* the next layer contains positive effects of these actions
— an action layer with the following state layer forms a level
— arcs are between

Mr21
* propositions and actions that use a2
them as preconditions -
* actions and propositions that are Uar
effects of the action
— special arcs for negative effects
— negative effects are not deleted!




Where are the plans in the planning graph?

* Instead of a single sequence of actions we will use a sequence
of sets of actions — a layered plan.

— a set of actions at position j will be a subset of actions
from j-th action layer

* The sequential plan is obtained from the layered plan by using
any permutation of actions from each set.

Example:
A layered plan ({al,a2},{a3,a4},{a5,a6,a7}) gives 2x2x6=24
sequential plans.

* How to ensure that actions selected to a layered plan can be
ordered without influencing the final states?

— Such actions must be independent!

* When is a pair of actions (a,b) dependent?
— When different orders of the actions give different states, in particular:
* adeletes some precondition of b (hence a cannot be right before b)

* adeletes some positive effect of b (hence the result depends on the
order)

* symmetrically for b

* A pair of actions (a,b) is independent if and only if:
— effects(a) N (precond(b) U effects*(b)) = &
— effects(b) N (precond(a) U effects*(a)) = &
Note:

Independence of actions is given by the planning domain and it is not
influenced by a particular planning problem!



Let it be a set of pairwise independent actions, then

* mis applicable to a state s if and only if
— preconditions of all actions from st are satisfied by s
— precond(r) = U {precond(a) | Va&n}Cs

* The result of applying = to state s is a state
— Y(s,m) = (s - effects(r)) U effects*(m)
* effects”/*(m) is a union of effects from ©t

Claim:

— If m consists of pairwise indepedent actions and it is applicable to state
s, then for any permutation of actions (a,,a,,...,a,) from T we get

Y(s,m)=y(...y(y(s,a;),a,)...a,)-
This claims makes using layered graphs practical!

* A layered plan I1=(x,,7,,...,7, ) is a solution plan for
problem (O,s,,g) if and only if:
— each set &, consists of pairwise independent actions,
— a set m, is applicable to state s, m, is applicable to state
Y(sq,7T;) and so on,

— 8 S y(..y(y(sg,my),70,) .71, ).

Claim:

If IT is solution plan for (O,s,,g), then any sequence of
actions consisting from a permutations of actions
from &, followed by action permutation from s, and
so on transfers the state s, to a state satisfying g.



How to do planning with the planning graph?

* First build a planning graph in such a way that the last
propositional layer satisfies the goal condition.

— More precisely, we will require that all the goal propositions can be
used together in the last propositional layer.

* From the action layers select subsets of independent actions
in such a way that they cover the goal propositions.

— This is realised by a backward run from the last level, where actions
giving the goal are selected and then, in the previous level, we select
actions giving preconditions of actions selected from the last level etc.

— Some goal proposition can be satisfied in the previous level (not the
last one).

We ensure that each proposition is an effect of some action from the
previous layer.
* Using a no-op action for each proposition: a,, is a no-op action for p, iff
precond(a,)=effect*(o,)={p}, ef‘fect'(ap)=@

How to find if two propositions can be together in the same
layer?

* All propositions can be together at the zero layer (this is the
initial state).

* Two dependent actions cannot be used together in the first
action layer so their positive effects cannot appear together in
the next state unless they are given by another pair of
independent actions.

* Two propositions cannot be together if they are positive and
negative effects of a single action (again, unless they are given
by another pair of independent actions).

— No-op actions are treated as other actions in these conditions (if b
deletes p, then o, and b are dependent).

* An incompatible pair of propositions is called a propositional
mutex (mutual exclusion).
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Two actions a and b are mutex at level A, if:
— a and b are dependent, or

— precondition of a has a mutex with some precondition of b at
level P, ;.

The set of action mutexes for level A, is denoted uA,.

Two propositions p and g are mutex at level P,, if:

— each action A, giving p as its positive effect has a mutex with
any action giving g as a positive effect, and

— there is no action in A, having both p and g and as positive
effects.

The set of propositional mutexes for level P; is denoted uP,.



Mutex is a symmetric relation.

Sets of mutexes in the planning graph are decreasing:

— if p.and q are from P;; and (p,q)#uP;, then (p,q)#uP;
— if aand b are from A_; and (a,b)&uA,.;, then (a,b)EuA,

Proof:

— If two propositions are not mutex then their no-op actions are not
mutex and hence they give these propositions in the next layer.

— If two actions are not mutex then they are independent and their
preconditions are not mutex. As the preconditions will not become
mutex in the next layer (see above) the actions will not be mutex in
the next layer.

Note:
Sets of actions and propositions in the planning graph
are increasing (P,_; € P,a A_; C A).

Graphplan is a planning system based on planning graph.

* |t repeats graph expansion and plan extraction until a solution
plan is found.

* Expansion:

— First construct a planning graph till the layer where there are all goal
propositions and no pair of them is mutex (this is a necessary
condition for plan existence).

— If plan extraction fails, add a new level (stop if some final condition
holds, then no plan exists).

* Extraction:

— Extract a layered plan from the planning graph in such a way that the
plan gives all the goal propositions.

A technical restriction:
we only assume actions with positive preconditions (can be
ensured by modifying the planning domain)



* Planning graph is seen as a sequence of levels and mutex sets
G =(Pg,A;, WAL,Py, UPy,. A, UA, P, UP)
* Planning graph depends only on the planning operators O and

on the initial state s, (encoded in P,), but it does not depend on
the goal g!

* The procedure Expand(G) adds one level to the graph:

Expand((-PO)Al’ WAL P, uPy, .. Ajs A1, Pieyg,s ﬂpi—l»
A; < {a € A| precond(a) C P;—; and precondz(a) N uP;—y = B}
P; < {p|3a € A;: p € effects™(a)}
wA; < {(a,b) € Al?, a # b | effects™(a) N [precond(b) U effects™ (b)] # @
or effects™(b) N [precond(a) U effectst(a)] # @
or A(p, q) € wP;_1 : p € precond(a), q € precond(b)}
uP; < {(p,q) € PZp#q|Va,be Aj,a#b:
p € effectst(a), q € effectsT(b) = (a,b) € nA;}
for each a € A; do: link a with precondition arcs to precond(a) in P;_;
positive arcs to effectst(a) and negative arcs to effects™(a) in P;
return((Pg, A1, wA1, ..., Pi—1, WPi—1, Ai, LAi, Pi, wP;))
end

* The number of different levels in the planning graph
is restricted. Starting with some level, the graph is
not changing — a fixed-point level.

* A fixed-point level in the planning graph G is such a
level ¥ that Vi, i>x levels i are identical to it, i.e.,
P=P., uP=uP_, A=A, uUA=uA..

— Each planning graph G has a fixed-point level k, where K is
the smallest number such that
[Peal=1Pc] and [uP, ;[=[uP,][.
Proof is based on monotony and finiteness of the levels and mutex
sets.

— This claim also gives an efficient method how to detect the
fixed-point level!



Level

* Plan extraction is done in a backward direction from
level P, containing all the non-mutex goal
propositions (gZNuP.=J).

— First, find a set of non-mutex actions &, € A, that give all the
goal propositions.

— Preconditions of actions from m; form a new goal for the
previous level P, ;.

— If the goal for a level P, cannot be covered by actions then
go back to level j+1 and explore an alternative set r,,.

— If level O is reached, the sequence (rt;,7,,...,7,) is a solution.

* This is basically AND/OR search:
— OR branches represent alternative actions giving the goal

proposition

— AND branches connect the preconditions with actions

Mutex elements
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{Lbr2} x {Ubr2,Ubq2,Lbq2,Uar1,Uar2,Ubq1*}
{Laql} x {Uar1,Uaq1,Ubq1,Ubq2,Lbq2,Uar2*}
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let {a,,b,} be the goal atoms
bold actions are selected to the layered plan
We get the layered plan

({Lar1,Lbg2}, {Mr12,Mq21}, {Uar2,Ubq1})



* Mutex can capture incompatible pairs.

* We may find that a given goal cannot be satisfied at a given
level. Then the set of propositions forming the goal is
together incompatible.

— If we explore the same level later with the same (or
larger) goal, then we already know that such a goal
cannot be satisfied and the algorithm can immediately
backtrack.

* Unsatisfied goals can be remembered for each each level in
the form of a nogood table V.

— A goal that is nogood immediately fails and the algorithm
can backtrack.

Extract(G, ¢, ) Extract tries to cover a goal
if i = 0 then return (()) at Ievel i
if ¢ € V(i) then return(failure)
o Plearcn(Gig ) « Uses and updates the
if 7r; # failure then return(m;
YO e U le) nogood table v
return(failure)
end

GPSearch looks for a Psemch(G g
set m; of actions o= thendo
covering the goal. T ey« i
« incrementally adds (T i)
actions to m; such that | eectany e
the actions are non- el
m UteX nondeterministically choose a e+ resolvers
. turn(GP-Search(G, g — effects (a), ; U {a}, 1))
- after covering the ad
goal continues to the

previous level



Graphplan(4, 59, 9)
i<0, V<@, Py«
G < (Po)
until [g € P; and g2 N wP; = @] or Fixedpoint(G) do d// * ggggﬂns%t?s%?nngnggal
i<—i+1
6 < Expand(G) condition g .
if g & P; or g2 N uP; # 1 then return(failure) «—— ¢ If it does not exist then
IT < Extract(G, g, 7) *  stop (no solution)
if Fixedpoint(G) then n « [V (k)| — « otherwise extract a
else p <0 layered plan
while T1 = failure do < - if not successful
’G‘:_’EJ; ptnd(G) « - add one more layer
T < Extract(6,g,1) «— + and again extract a
if I1 = failure and Fixedpoint(G) then Yy P )
if n = |V (k)| then return(failure) <  stop when ple_m is found
n < V()| : or no plan exists.
return(IT)
end

Graphplan is sound, complete, and always finishes.

Proof:
— if the algorithm returns a plan, then it is a solution plan

— if the algorithm fails, then no plan exists
* Fixedpoint(G) and (gZP, or g2NuP=J)

— If there is no level satisfying the goal before reaching the fixed point
then no other level can cover the goal

* |Vi-1(K)| = |v|(K)|

— nogood tables only increase — so we get V (k) = V (k)

— If the nogood table in the fixed point does not change then the goals
from the fixed point cannot be ever satisfied — the nogood table just
propagates to next levels in next steps V (k)= V(k+1)

— The algorithm always stops thanks to monotony and a finite
number of atoms and actions (some layers start to repeat
and the nogood tables become full).



* Memory management

— The planning graph works with fully instantiated propositions and
actions which is memory consuming.

— Thanks to monotony we do not need to store levels and mutex sets
separately — it is enough for each atom/action to remember the first
level when it appeared and similarly for mutex pairs.

e Search

— first try to cover propositions with a smaller number of supporting
actions or that appeared later in the graph

— for action selection, prefer no-ops or actions that appeared earlier in
the graph

— after selecting an action, verify that all remaining goal propositions still
have some support actions (forward checking))

The idea of planning graph brought a small revolution to
planning as it significantly increased efficiency of planning
techniques and allowed solving much larger problems.
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