Planning & Scheduling

* Planning deals with causal relations between
actions and solves the problem which actions are
necessary to reach a goal.

* Scheduling focuses on allocation of actions to
time and space (resources).

What to do? How and when to do it?

Set of Scheduled
Goal == = cenons = =

* Sometimes both tasks are better to be solved together.

— For example, when there are many plans but only a
few of them can be scheduled.

Scheduling deals with optimal allocation of a given set of
actions to time and resources.

Example (construction of a bicycle by two workers):
— tasks have a fixed duration and are non-interruptible
— there are precedence constraints between the tasks

;[task duration]
7

the schedule minimizing makespan (the time of last task)

E 2 |7 |

[4]s 6|3 8]9 | 10 |

0 32

There exists a widely accepted classification of
scheduling problems*, so called Graham notation.

al?lv

* unary resources assumed

/ \

resource description task description objectives
Describes resource Describes restrictions Describes criteria to be
allocation on tasks optimized
¢ unique resource e pre-emption
e alternative resources e precedence relations

e identical e release time

e uniform e deadline

e arbitrary e batch processing
e multi-operation mode

* job-shop,

e open-shop

» flow-shop

Usually we look for time allocation of tasks:
— start time s(a)
* there can be an earliest possible start time (release date)
— end time e(a)
* there can be a latest possible end time (deadline)
* there can be a recommended end time §(a) (due date)
— duration p(a)

* it can be constant or dependent on a resource (if resource
allocation is part of the problem)

* Let us assume that at most one task can be processed be a
resource at any time (unary/disjunctive resource)
— the task can run without interruption (non-preemptive tasks)
* p(a) =e(a) -s(a)
— or the task can be interrupted by other tasks (preemptive tasks)

* p(a) =2 p(a) = efa) - s(a)

|a|b|a|c|d|c| a

The scheduling problem is usually an optimisation problem.

Typical objectives are based on the following notions:

— makespan C max{e(a) |aEA}

— lateness L e(a)-d(a)

— earliness E max(0,0(a)-e(a))
— tardinesst max(0,e(a)-d(a))
— absolute deviation D |e(a)-6(a)|

— square deviation S (e(a)-6(a))?

— late tasks U 0, for e(a)=<d(a)

1, otherwise

Other typical objectives:
— minimization of resource reconfiguration
— minimization of the number of used resources
— minimization of maximal resource load
— maximization of the number of scheduled tasks

Qm | 7i | Cmaz Lawler et al. [133]
Qm || SwiCi Lawler et al. [133]
Qm || Swili Lawler et al. [133]

Table 5.2: Pseudopolynomially solvable parallel o Pm I

out preemption.

1] rj | Lax |

P Crax Garey & Johnson (86]
P|p;=1;intree; i | Cpas

*

Brucker et al. [29]
Ullman [187)
Du et al. [74]
Kubiak [117]

% P|p;=1;prec| Cmaz
P2 | chains | Conaz
* Q| pi=1;chains] Cmnvn

« P|p;=1;outtree

x Plpi=lprec|},

% P2|chains | Y C; Du et al. [74]

* P2|ri| G Single-machine problem
P2 || ZwiCi Bruno et al. [48]

+ Pl X wC Lenstra [138]

P2 | pi = 1chains | S wiCi Timkovsky [185]
« P2|p; =1;chains | L U;
« P2|pi=1ichains | LT,

Single-machine problem

Single-machine problem

Table 5.3: NP-hard parallel machine problems without preemption.

P | pmtn | Cax

P | outtree; pmin; ri | Cinaz

P | tree; pmtn | Conaz

McNau ghton [152)
511 O(n;

Lawler [121]
0(n?)
Gonzalez & Johnson [92]
O(nlogm)
[121]

prec | Cpax i

Q2| prec; pmtn; | Limaz

Q2| prec; pmtn; 1 | Linaz

P | pmtn | Lnax

Q| pmtn | Lz
Q| pmtn, ri;d; | —
R| pmtn;1; | Limaz

P|pi=pipmtn | ZwCi

Qm | pmtn | DU

Pm | pi = pipmtn | S wil;

Table 5.4: Polynomially solvable preemptive parallel machine pi

Perest

Oin)

Lawler [127]
O(n?)

Lawlcr (127)
O(n®

Lawler & L Labetoulle [130]

cke et al [au
#)

- Pm] preempt | Cma

x.muemulle et al. [121]
Ofnlogn +mn)

MeNaug hton [152)

Lawler [1:
é“;:;f; S J 2 | n; 52 | Cma

Bapite, [17 Baptiswe 10)
o(n®

J2m <2|C T T
rin-ic JIM | | C
J2 [p =1n max
J2|n=k| Cm Brucker [28]] (r*‘*)
72| pij = 1| Linas Timkovsky [183] o(m?
J | prec;pij = 1;7‘,;71 =k | fmax Brucker & Krimer [42] O(k*2*mrk+1)
J2 | pii=113C: Kubiak & Tim- O(nlogn)
kovsky [119]
U Kravchenko [114] 0(n%)
Brucker et al. [44] O(r!5(k+k))
Sotskov [174], 0(rlogr)
Brucker [27)
6.4.2
J | prec;rin=2pmtn | f Sotskov [174] 0(r3)
6.4.2

J | pree; pi; = Lirin = k | ¥ f; Brucker & Kramer [39] O(k?2¢mrk+1)

Table 6.6: Polynomially solvable job shop problems.

o s v Timkovsky [154]
J2 |p, -1 | S wil; Kravchenko [115]

J | precirisn = k| S wT; Middendorf & Timkovsky [154]
J | prec;ri;n = k; pmin | ¥ w;U; Middendorf & Timkovsky [154)
J | prec;ri;n = k; pmin | ¥ wiT; Middendorf & Timkovsky [154]

Table 6.7: Pseudopolynomially solvable job shop problems.

Peter Brucker: Scheduling Algorithms, Third
Edition, Springer Verlag, 2001

Single resource scheduling problem with release dates
and due dates. The objective is to minimize lateness.

In general, this is an NP-hard problem.

Adding further constraints (such as identical release
dates or identical due dates) or by relaxing some
constraints (allowing pre-emption) give a tractable

problem (solvable in polynomial time)

* alltasks have identical release date (r; = r)
— we will use the earliest due date (EDD) rule
* tasks are ordered in ascending order by due dates

* all tasks have identical due date (9, = 0)
— tasks are ordered in ascending order by release dates

* tasks are pre-emptible

— we will use again the EDD rule in the following way

¢ select tasks with the earliest release date and if there are more such tasks then
select the task with earliest due date

* if the scheduled task finishes or some other task becomes available (we reach

its release date) then continue with the task that can run at that time and has
earliest due date

Example
task p; r; 8
1 @ 2 g E ENNNNNEERRNZZ
2 0O 6 0 7
3 N 5 1 6

1| r; | L.y is @an NP-hard problem

We will exploit the branch-and-bound method .
— in general, the time complexity is exponential

— the schedule is built from left to right by exploring tasks
* branching corresponds to tasks selected to be scheduled first
Only tasks j are assumed such that
there is no task i that can be
completed before j without shifting
the start time of task j.

1’—’—’— | 2’—’—’— | 3’—’—’— | 4’—'—’— |

* we will exploit a lower bound for lateness in each sub-tree
— if the lower bound is greater than the best-so-far solution (bound) then
we do not need to explore the sub-tree (no better solution is there)
— the lower bound is obtained via relaxation to 1] rypreempt | L
» the optimal preemptive schedule will never have worse lateness
than the optimal non-preemptive schedule
— if we obtain a solution to the problem 1| r;, preempt | L, that is not

preemptive then we can use this solution (no need to continue in search)
as the best non-preemptive schedule

Lower bound is
greater than the
best so-far solution

/

Task 2 can be Tasks 1 or 2 can be
before task 3 before task 4

m

1’—'—'— 2’—'—'—
1 [04] L,=-4 2 [1,3] L,=-9
3 [4,5] 1 [37] L,=-1
4 [5,10] L,=0 4 [7,12] L,=2
3 [10,15] L;=4 3 [12,18] L;=7 task p r S
2 [1517] L,=5
1 4 0 8
2 2 1 12
3 6 3 11
1,2, ,_ 13, 4 5 5 10
1 [04] L,=-4 1 [04] L=-4
2 [46] L,=-6 3 [410] L,=-1
4 [6,11] L,=1 4 [10,15] L,=5 - .
3 [11,17] L:=6 2 [1517] L:=5 Final schedule: 1,3,4,2

We do not need to continue because:
« optimal pre-emptive solution does not use pre-emption
+ optimal value equals the lower bound from the parent node

Frequently, there may be alternative resources to process tasks:
— identical resources
* task duration does not depend on the resource allocated to the task

— uniform resources

* base task duration is multiplied by resource-speed co-efficient to get task
duration for the resource

» for example, if A is 3-times longer than B on machine R then A will be 3-
times longer on any other machine S, even if the duration of A on R may be
different from the duration of Aon S

— general resources
* task duration depends on the resource arbitrarily

* it may happen that duration of A is smaller than duration of B on machine R,
while B is shorter than A on machine S

Note:

— If there are alternative resources for preemptive tasks then during
preemption the task can migrate from one resource to another resource
(the only restriction is that parts of the task on different resource cannot
overlap in time).

Minimize makespan for preemptive tasks running on m
identical resources.

Lower bound for makespan:
— LB = max{max; p, (Z; p;)/m}

The schedule with makespan LB can be constructed in
time O(n), where n is the number of tasks:
— sequence tasks in any order on the first (any) resource

— when reaching time LB, then split the last task (that exceeds
LB) and put it to the next empty resource

— thanks to p, < LB the two parts of the split task will not
overlap in time

Minimize makespan for n non-preemptive tasks to
be allocated to m identical alternative resources.
There are precedence relations between the tasks.

duration

precedence
relation

 P.|prec|C,., ns=m use a critical-path method

* P_|prec|C.., 2=m<n NP-hard problem

Some terminology:
— free task — a task that can be delayed (a bit) without delaying makespan
— critical task — a task that cannot be delayed without delaying makespan
— critical path — a set of critical tasks

Solution approach
— forward stage finds the earliest start times (est) and earliest completion
times (ect) for all tasks and the value of makespan C, .,
* start with tasks that have no predecessor: est;=0, ect;=p,
* process tasks such that all their predecessors have been processed:
est=max;_; ect;, ect=est+p,

j<<i
* C.ax = Max; ect;
— backward stage finds the latest start times (Ist) and latest completion
times (Ict) for all tasks
e start with tasks that have no successor: Ict;=C,,, Ist;=C,,..-P;
* process tasks such that all their successors have been processed:
Ict;=min,_; Ist;, Ist=lct;-p,
* verify 0 = min, Ist;
— All tasks such that est=Ist; are critical tasks.

— The critical path is a task sequence starting at time 0 an finishing at time
C

max*

duration

est 0 4 0 3 6 13 24 12 24
ect 4 13 3 6 12 21 32 24 30
Ist 3 7 0 3 6 16 24 12 26
Ict 7 16 3 6 12 24 32 24 32

critical
path

* Job frequently consists of smaller operations. This is called a
shop problem.

— there can be precedence relations between the operations
— resource is pre-allocated to each operation

* Job-shop
— operations within a job are totally ordered
— different jobs may have different operations with different orders
— usually, each resource is visited at most once by each job

* Flow-shop
— a special case of job-shop
— all jobs have identical operations in the same order
— for example assembly line production
* Open-shop
— similar to flow-shop, but no precedence relations between operations
— for example product configuration problems

When minimizing makespan for the flowshop problem, there
exists an optimal schedule such that the order of operations on
the first (last) two resources is identical.

— let k be the number of jobs such that the order of their operations is
identical on the first two resources

— let us take an optimal schedule with maximal k

— if k is smaller than the number of jobs then the following situation
appears: :

o Te] o [o [s]

77

A,

— then we can put the operation of job B right after the operation of A
on the first resource and shift the operation of B on the second
resource to earlier time :

o Te e] = o]

[+ [e |

— this way the makespan will not enlarge so we still have an optimal
schedule, but with a larger value of k — this is a contradiction as k was
maximal (hence k equals the number of jobs)

Flow-shop problem with two resources and minimization of
makespan.

— each job consists of two operations, the first operation runs on the first
resource, the second operation runs on the second resource

— the goal is to minimize the end time of the last task (makespan)

Based on the previous theorem, it is enough to order the jobs on the first resource
(as the order of jobs on the second resource will be identical).

Solution approach:

1. distribute the jobs into two sets:
* jobs with operation on resource 1 shorter than the operation on resource 2
U={jlpy<py
* jobs with operation on resource 1 not shorter than the operation on resource 2
V={jlpy=py
order jobs in U in ascending order by p;
order jobs in V in descending order by p,,
add jobs from V after U, which fully determines the order of jobs

the schedule is constructed from left-to-right by allocating operations to
earliest possible start times in the above order

vk wnN

— |1 4 8
2 3 3
3 3 4
4 1 4
| - s 1
U: 4, 3, 1 V: 5 2
M, 4|3 1 5 2
M, 4 3 1 5 2

Job-shop problem consists of:
— a set of m resources

— a set of n jobs
* each job consists of a sequence of operations (different jobs may
have different number and different order of operations)
* resource and duration is given for each operation
* when processing the job, a resource can be visited once or more
times (re-circulation)

— objective function

Most job-shop scheduling problems belong among NP-
hard problems. Job-shop scheduling problems are the
most widely used classical scheduling problems.

Job-shop problem with two resources and at most two operations
in each job with the goal to minimize makespan.

* Thisis a tractable problem that can be reduced to the flow-shop
problems with two resources:

1. jobs are distributed into four sets:
* |, jobs with a single operation running on M,
* |, jobs with a single operation running on M,
* I, jobs with the first operation running on M, and second operation on M,
* 1,, Jjobs with the first operation running on M, and second operation on M,

2. find an optimal sequences of jobs R, , and R2 , for flow-shop problems
with job sets 1, , and I,

3. the final schedule is obtained as follows:

* allocate jobs I, , on resource M, according to schedule R, ,, then allocate jobs
l, in any order, and finally allocate jobs 1, ; according to schedule Ry1

. aIIocate jobs 1, ; on resource M, according to schedule R, ,, then allocate jobs
l, in any order, and finally allocate jobs 1, , according to schedule Ri,

Is it an optimal schedule?

* YES, because at least one of the resources will run without any interruption
and schedules R, , and R, ; are optimal

How to solve job-shop problemsJm | | C__, in general?

The problem and its solution can be encoded as a disjunctive graph:

— nodes describe operations
* each node is annotated by a weight equal to operation duration
* two additional nodes S and T with weights 0
— directed arcs
* conjunctive arcs describe precedence relations between operations in jobs
— there are arcs from S to operations having no predecessor
— there are arcs to T from operations without successors

* disjunctive arcs connecting operations of different jobs that are allocated to
the same resource (the arcs go in both directions)
— disjunctive arcs form cliques in the graph

— one arc from each disjunctive pair is to be selected to order operations so they do
not overlap on the machine

How to find a feasible schedule?

— one arc is selected from each pair of corresponding
disjunctive arcs to remove cycles from the graph
* acycle in the schedule means infeasible schedule

— makespan is equal to the longest path in the graph from S to
T (the path length equals the sum of weights of nodes in the
path)

* the goal is to select the arcs to minimize the length of the longest
path (the critical path)

Job-shopIm | | C,, is an NP-complete problem!

To solve the general job-shop problem we will exploit the
idea of non-linear programming:

— All but one variables are kept fixed and optimisation is done
via tuning the last variable (this is done for all the variables)
» for job-shop it means optimizing each resource separately

— to increase chances for a good solution the resources are
scheduled in the decreasing order of importance

Answers to two questions are critical for the algorithm:
— Which resource should be scheduled first (second, etc.)?

— How to find a schedule for a given resource (compatible
with other resources)?

 Let us start with a partial schedule — a disjunctive graph
with some selected disjunctive arcs.

 For each not-yet scheduled resource X, solve the problem
1] r; | Ly,ax With operations allocated to X, where:
— duration p; of operations is given by the original problem

— release dates r, are equal to the length of the longest path from S to
operation I

— due dates of operations are defined as follows
d; = length_of_longest_path(S, T) — length_of_longest_path(i,T) + p;
+ Resource with the largest lateness L., is called a
bottleneck and the schedule for this resource is added to
the partial schedule.

B, |C,

p 5 3
13| 24
o 21 | 27

The quality of obtained schedule can be further
improved by re-scheduling (re-ordering) already
scheduled resources.

— let us take any already-scheduled resource X (except
the last one, just scheduled) and remove its selected
disjunctive arcs from the partial schedule

— solve again the problem 1] r; | L,
with the operations of resource X

— add the new resource schedule for X to the partial
schedule

Algorithm Shifting Bottleneck at a glance

1. start with a graph with conjunctive arcs only (the initial partial
solution)

2. analyze non-yet scheduled resources
— by building and solving problems 1| r; | L

max

3. select the bottleneck resource and add its schedule (selection
of disjunctive arcs) to the graph

4. tryto reorder the already scheduled resources
5. repeat the process until all resources are scheduled

Note:

* This is an (greedy) heuristic algorithm that does not guarantee
optimality!

© 2014 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

