
Constraint Programming

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

2

• Logic-based puzzle, whose
goal is to enter digits 1-9 in
cells of 9´9 table in such a way,
that no digit appears twice
or more in every row, column,
and 3´3 sub-grid.

A bit of history
1979: first published in New York

under the name „Number Place“
1986: became popular in Japan

Sudoku – from Japanes "Sudji wa dokushin ni kagiru"
"the numbers must be single" or "the numbers must occur once"

2005: became popular in the western world

Sudoku?

Solving Sudoku

How to find out which digit to fill in?
• Use information that each

digit appears exactly once
in each row and column.

What if this is not enough?
• Look at columns

or combine information
from rows and columns

Sudoku – One More Step

• If neither rows and columns
provide enough information,
we can note allowed digits in
each cell.

• The position of a digit cand
be infereed from positions of
other digits and resrictions
of Sudoku that each digit
appears one in a column
(row, sub-grid)

Sudoku in General

We can see every
cell as a variable
with possible values
from domain {1,…,9}.

There is a binary inequality constraint
between all pairs of variables in every
row, column, and sub-grid.

Such formulation of the problem is called
a constraint satisfaction problem.

Course Content

Constraint Satisfaction Algorithms
• Local search techniques

– HC, MC, RW, Tabu, GSAT, Genet
• Search algorithms

– GT, BT, BJ, BM, DB, LDS
• Consistency techniques

– NC, AC, DAC, PC, DPC, RPC, SC
• Consistency techniques in search

– FC, PLA, LA
• Constraint Optimisation

– B&B
• Over-constrained problems

– PCSP, ProbCSP, FuzzyCSP, VCSP, SCSP, constraint hierarchies
Constraint Modelling

– Tips and tricks, Constraint Logic Programming

Resources

• Books
– P. Van Hentenryck: Constraint Satisfaction in Logic Programming, MIT

Press, 1989
– E. Tsang: Foundations of Constraint Satisfaction, Academic Press, 1993
– K. Marriott, P.J. Stuckey: Programming with Constraints: An

Introduction, MIT Press, 1998
– R. Dechter: Constraint Processing, Morgan Kaufmann, 2003
– Handbook of Constraint Programming, Elsevier, 2006

• Journals
– Constraints, An International Journal. Springer Verlag
– Constraint Programming Letters, free electronic journal

• On-line resources
– Course Web (transparencies)

http://ktiml.mff.cuni.cz/~bartak/podminky/
– On-line Guide to Constraint Programming (tutorial)

http://ktiml.mff.cuni.cz/~bartak/constraints/
– Constraints Archive (archive and links)

http://4c.ucc.ie/web/archive/index.jsp
– Constraint Programming online (community web)

http://www.cp-online.org/

A Bit of History

• Artificial Intelligence
– Scene labelling (Waltz 1975)
– How to help the search algorithm?

• Interactive Graphics
– Sketchpad (Sutherland 1963)
– ThingLab (Borning 1981)

• Logic Programming
– unification ® constraint solving

(Gallaire 1985, Jaffar, Lassez 1987)

• Operations Research and Discrete Mathematics
– NP-hard combinatorial problems

Scene Labelling

inferring 3D meaning of lines in a 2D drawing
• convex (+), concave (-) and border (¬) edges
• we are looking for a physically feasible interpretation

+
-

-
+

+ +

-
+

-

+

+
+ +

+

+

Interactive Graphics
manipulating graphical objects described via constraints

http://ktiml.mff.cuni.cz/~bartak/diploma/downloads.html

http://www.cs.washington.edu/research/constraints/

Graph Colouring

Assign colours (red, blue, green)
to states, such that neighbours
have different colours.

CSP Model
• variables: {WA, NT, Q, NSW, V, SA, T}
• domains: {r, b, g}
• constraints: WA ≠ NT, WA ≠ SA etc.

Can be described as a constraint
network (nodes=variables,
edges=constraints)

Solution
WA = r, NT = g, Q = r, NSW = g,
V = r, SA = b, T = g

A Letter Puzzle

Assign digits 0,…,9 to letters S,E,N,D,M,O,R,Y in such a way that:
q SEND + MORE = MONEY
q different letters are assigned to different digits
q S and M are different from 0

Model 1:
E,N,D,O,R,Y in 0..9, S,M in 1..9

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
= 10000*M + 1000*O + 100*N + 10*E + Y

Model 2:
using „carry“ 0-1 variables
E,N,D,O,R,Y in 0..9, S,M in 1..9, P1,P2,P3 in 0..1

D+E = 10*P1+Y
P1+N+R = 10*P2+E
P2+E+O = 10*P3+N
P3+S+M = 10*M +O

a
l
l
_
d
i
f
f
e
r
e
n
t
(
S
,
E
,
N
,
D
,
M
,
O
,
R
,
Y
)

N Queens Problem

allocate N queens to a chess board of size N´N in a such way that no
two queens attack each other

the core decision: each queen is located in its own column
variables: N variables r(i) with the domain {1,…,N}
constraints: no two queens attack each other

"i¹j r(i)¹r(j) ∧ |i-j| ¹ |r(i)-r(j)|

´
´
´

´

´ ´ ´
´
´
´

´

´
´

´ ´ ´
´
´
´
´ ´

´

´ ´ ´
´
´

´ ´

Some Real Applications

Bioinformatics
• DNA sequencing (Celera

Genomics)
• deciding the 3D structure of

proteins from the sequence
of amino acids

Planning and Scheduling
n automated planning of

spacecraft activities (Deep
Space 1)

n manufacturing scheduling

NP
CP and Others

Floating point
variables

Integer
variables

Li
ne

ar
co

ns
tr

ai
nt

s
C

om
bi

na
to

ria
l

co
ns

tr
ai

nt
s

Linear
Programming

Mixed Integer
Programming

Discrete
Mathematics

Constraint
Programming

• various domains
• arbitrary constraints
• heterogeneous problems

Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP) consists of:
– a finite set of variables

• describe attributes of the solution
for example a location of a queen in the chess board

– domains – finite sets of possible values for variables
• describe options that we need to decide

for example, rows for queens
• sometimes, there is a common super domain for all the variables

and individual variables‘ domains are defined via unary constraints

– a finite set of constraints
• constraint is a relation over a subset of variables

for example locationA ¹ locationB
• constraint can be defined in extension (a set of compatible value

tuples) or using a formula (see above)

A Solution to a CSP

A feasible solution of a constraint satisfaction problem is a
complete consistent assignment of values to variables.
– complete = each variable has assigned a value
– consistent = all constraints are satisfied

Sometimes we may look for all the feasible solutions or for the
number of feasible solutions.

An optimal solution of a constraint satisfaction problem is a
feasible solution that minimizes/maximizes a value of some
objective function.
– objective function = a function mapping feasible solutions to real

numbers

The Core Topics

Problem Modelling
How to describe a problem as a constraint satisfaction
problem?

Solving Techniques
How to find values for the variables satisfying all the
constraints?

Properties of Constraints

• express partial information
– X is greater than 3, but the exact value of X is not given

• provide a local view of the problem
– connect only a few variables (not all of them)

• can be heterogeneous
– domains can be different (numbers, strings etc.)

• are non-directional (functions)
– X = Y+2 can be used to compute both X and Y

• are declarative
– do not determine the procedure for satisfaction

• are additive
– the order of constraints is not important, their conjunction is

crucial
• are rarely independent

– share variables

Advantages of CP

• close to real-life problems
– we all use constraints when formulating problems
– many real world features can be captured as constraints

• declarative manner
– focus on problem description rather than on problem solving

• co-operative problem solving
– a uniform framework for integration of various solving approaches
– simple (search) and sophisticated (inference) techniques

• semantic foundations
– clean and elegant modelling languages
– roots in logic programming

• applications
– not just academic exercise but already used to solve real-life

problems

Limitations of CP

• efficiency
– combinatorial explosion
– many problems are in the NP-complete class

• hard-to-predict behaviour
– the efficiency is not known until the model is tried on real data

• model stability
– new data = new problem

• too local
– through the individual constraints, the complete problem is not

“visible” (can be solved via global constraints)
– distributed computations

• weak co-operation of solvers
– integrating various solving techniques is hard, usually done via

shared variables only

Representation of a CSP

Representation of constraints:
– intentional (algebraic/logic formulae)
– in extension (a set of compatible value tuples, 0-1 matrix)

Representation of a CSP as a (hyper)graph
– nodes = variables
– (hyper)egdes = constraints

Example:
– variables x1,…,x6

with domain {0,1}
– c1: x1+x2+x6=1
– c2: x1-x3+x4=1
– c3: x4+x5-x6>0
– c4: x2+x5-x6=0

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

c2

x1 x2 x3 x4 x6x5

c1

c3

c4

Binary Constraints

The world is not binary ...
but it can be transformed to a binary one!

Binary CSP
CSP + all the constraints are binary

Note: unary constraints can be easily encoded in the domain of a
variable

Equivalence of CSPs
Two constraint satisfaction problems are equivalent if they have the
same sets of solutions.

Extended Equivalence of CSPs
Problem solutions can be syntactically transformed between the
problems.

Can any CSP be transformed to an (extended) equivalent
binary CSP?

Binary Constraints

The world is not binary ...
but it can be transformed to a binary one!

Binary CSP
CSP + all the constraints are binary

Note: unary constraints can be easily encoded in the domain of a
variable

Equivalence of CSPs
Two constraint satisfaction problems are equivalent if they have the
same sets of solutions.

Extended Equivalence of CSPs
Problem solutions can be syntactically transformed between the
problems.

Can any CSP be transformed to an (extended) equivalent
binary CSP?

x1

x2

x3

Projection (Montanary 1974):

• Straightforward, but
does not give an equivalent problem
• Bounds consistency

• better efficiency
• weaker domain filterin

Dual Encoding

Swapping variables and constraints.
• k- ary constraint c is converted to a dual variable vc with the domain

consisting of compatible tuples

• for each pair of constraints c a c‘ sharing some variables there is
a binary constraint between vc a vc’ restricting the dual variables
to tuples in which the original shared variables take the same value

Example:
– variables x1,…,x6

with domain {0,1}

– c1: x1+x2+x6=1
– c2: x1-x3+x4=1
– c3: x4+x5-x6>0
– c4: x2+x5-x6=0

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

R21 & R33

R11 R22 & R33

R31

R33

Hidden Variable Encoding

New dual variables for (non-binary) constraints.

• k- ary constraint c is translated to a dual variable vc with the
domain consisting of compatible tuples

• for each variable x in the constraint c there is a constraint between
x a vc restricting tuples of dual variable to be compatible with x

Example:
– variables x1,…,x6

with domain {0,1}

– c1: x1+x2+x6=1
– c2: x1-x3+x4=1
– c3: x4+x5-x6>0
– c4: x2+x5-x6=0

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

r1

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

r1

r3 r1
r2

r2 r3 r1
r2

r3

r3r2
x1 x2 x3 x4 x6x5

Transformation Between Encodings

A hidden variable encoding can be transformed to a dual encoding:
– Paths of length 2 between any pair of dual variables are

substituted by a binary constraint that combines both relations
over the path (r1 and r1 form R11); beware of edges shared
between more paths!

– If the original variable becomes isolated (or is connected to a
single constraint), then remove the variable.

Example:

In each transformation step we
obtain an equivalent CSP

Þ „hybrid“ encoding

The transformation can also
be done in the reverse direction.

Network after removing the variables x2 a x3

R11

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

0, 1 0, 1 0, 1

r3 r1
r2

r3

r3r2
x4 x6x5

R21 & R33

r3
r1

r1

x1
0, 1

Double Encoding

Hidden variable encoding can be extended by
the dual encoding.

Example:
– Variables x1,…,x6

with domain {0,1}

– c1: x1+x2+x6=1
– c2: x1-x3+x4=1
– c3: x4+x5-x6>0
– c4: x2+x5-x6=0

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

r1

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

r1

r3 r1
r2

r2 r3 r1
r2 r3

r3r2
x1 x2 x3 x4 x6x5

R21 & R33

R33

R31

R22 & R33R11

Final Notes on Binarisation

• Why do we do binarisation?
– a unified form of a CSP
– many solving approaches are formulated for binary CSPs
– tradition (historical reasons)

• Which encoding is better?
– hard to say ;-)
– dual encoding:

better propagation but constraints in extension
– hidden variable encoding:

keeps original variables but weaker propagation

• Binary vs non-binary constraints
– more complex propagation algorithms for non-binary constraints
– exploiting semantics of constraints for more efficient and

stronger domain filtering

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

