
Constraint Programming
Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Over-constrained problems

Dress a robot using minimal wardrobe and fashion rules.
Variables:

– shirt: {red, white}
– footwear: {cordovans, sneakers}
– trousers: {blue, denim, grey}

Constraints:
– shirt x trousers: {red-grey, white-blue, white-denim}
– footwear x trousers: {sneakers-denim, cordovans-grey}
– shirt x footwear: {white-cordovans}

red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

NO FEASIBLE SOLUTION
satisfying all the constraints

We call the problems where no feasible solution exists
over-constrained problems.

Motivation

There is no feasible solution, but the robot cannot stay naked!
1) buy new wardrobe

enlarge domain of some variable
2) use less elegant wardrobe

enlarge domain of some constraint
3) no matching shoes and shirt

remove some constraint
4) do not wear shoes

remove some variable

enlarged domain of
the constraint

enlarge domain of some constraint

domain is defined by a unary
constraint

all tuples satisfy the constraint

delete all constraints with
the variable

red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

First attempt: Partial CSP

First, let us define a problem space as a partially ordered set of CSPs
(PS,£), where P1£P2 iff the solution set of P2 is a subset of the solution set
of P1.

The problem space can be obtained by weakening the original problem.

Partial Constraint Satisfaction Problem (PCSP) is a quadruple
áP,(PS,£),M,(N,S)ñ

– P is the original problem
– (PS,£) is a problem space containing P
– M is a metric on the problem space defining the problem distance

• M(P,P‘) could be the number of different solutions of P a P‘
• or the number of different tuples in the constraint domains

– N is a maximal allowed distance of the problems
– S is a sufficient distance of the problems (S<N)

Solution to a PCSP is a problem P‘ and its solution such that P‘ÎPS and
M(P,P‘)<N. A sufficient solution is a solution s.t. M(P,P‘) £ S.
An optimal solution is a solution with the minimal distance to P.

Partial CSP

Partial constraint satisfaction in practice

When solving a PCSP we do not explicitly generate the
new problems

– an evaluation function g is used instead; it assigns a numeric value to
each (even partial) valuation

– the goal is to find assignments minimising/maximising g

PCSP is a generalisation of CSOP:
– g(x) = f(x), if the valuation x is a solution to CSP
– g(x) = ¥, otherwise

PCSP is used to solve:
– over-constrained problems
– too complicated problems
– problems using given resources (e.g. time)
– problems in real time (anytime algorithms)

PSCP can be solved using local search, branch and
bound, or special propagation algorithms.

Each constraint can be annotated by a weight describing
importance of satisfying the constraint.

The task is to minimize the sum of weights of violated constraints.
– shirt x trousers @ +¥
– footwear x trousers @ 5
– shirt x footwear @ 4

red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

The above problem is called a Weighted CSP.
The idea can be further generalised to a Valued CSP.

Second attempt: Valued CSP

The core idea:
– each constraint is annotated by a certain valuation
– then we aggregate valuations of violated constraints
– the instantiation with the least aggregated valuation is the solution

Valuation structure is (E,Ä,>,^,T), where:
– E is a set of valuations that is linearly ordered using >

with the minimal valuation element ^ and maximal valuation element T
– Ä is a commutative and associative binary operation on E

with a unary element ^ (^Äa=a) and absorbing element T (TÄa=T), that
preserves monotony (a ³ b Þ aÄc ³ bÄc)

Constraints C are mapped to valuations in E using j: C®E.

A solution is an instantiation A of variables that minimizes the
aggregated valuation v(A) given by:

)()(
c A violates

cAv
Cc

jÄ=
Î

Valued CSP

Valued CSP: frameworks

Framework E Ä > ^ T

Classical CSP {true,false} Ù > true false

Weighted CSP N È {+¥} + > 0 +¥

Probabilistic CSP á0,1ñ ´ < 1 0

Possibilistic CSP á0,1ñ max > 0 1

Lexicographic CSP Ná0,1) È {T} È >lex Æ T

Each value tuple is annotated by a preference of its satisfaction
describing how well the tuple satisfies the constraints.
The task is to maximize the product of preferences over all the
constraints.

shirt x trousers: red-grey (1), white-blue (1), white-denim (0.9)
footwear x trousers: sneakers-denim (1), cordovans-grey (1)
shirt x footwear: white-cordovans (0.8)
all other pairs have the value 0.1

red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

The above problem is called a Probabilistic CSP.
The idea can be generalized to a so called Semiring-based CSP.

Third attempt: Semiring-based CSP

The core idea:
– each value tuple is annotated by a preference describing how well

the tuple satisfies the constraint
– a given instantiation of variables is projected to each constraint

and the obtained preferences are aggregated
– the instantiation with the largest aggregated preference is the

solution
C-semi-ring is (A,+,´,0,1), where

– A is a set of preferences,
– + is a commutative, associative, and idempotent (a+a=a) binary

operation over A with a unit element 0 (0+a=a) and absorbing
element 1 (1+a=1)
this operation is used to define ordering a £ b Û a+b=b.

– ´ is a commutative and associative binary operation over A
with a unit element 1 (1´a=a) and absorbing element 0 (0´a=0),
that is distributive over +.

A solution is an instantiation V of variables giving the largest aggregated
preference p(V) given by: ())()(cvarsVVp cCc

¯d´=
Î

Semiring-based CSP

Semiring-based CSP: frameworks

Framework A + ´ 1 0

Classical CSP {false,true} Ú Ù true false

Weighted CSP N È {+¥} min + 0 +¥

Probabilistic CSP á0,1ñ max ´ 1 0

Possibilistic CSP á0,1ñ min max 0 1

Fuzzy CSP á0,1ñ max min 1 0

Lexicographic CSP Ná0,1) È {T} maxlex È Æ T

Constraints can be annotated by preferences describing which
constraints are preferred to be satisfied.
Now, the preferences are strict! Satisfaction of a stronger constraint
is preferred to satisfaction of any weaker constraint.

– shirt x trousers @ required
– footwear x trousers @ strong
– shirt x footwear @ weak

red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

The above model is called a constraint hierarchy – constraints
with the same preference form a layer in this hierarchy.

Forth attempt: constraint hierarchies

Each constraint is annotated by a symbolic preference (preferences
are linearly ordered).

– there is a specific preference required to denote constraints
that must be satisfied – hard constraints

– other constraints may be violated – soft constraints

Constraint hierarchy H is a finite (multi)set of constraints.
– H0 is a set of required constraints (without the preference)
– H1 is a set of the most preferred constraints
– …

A solution is an instantiation of variables satisfying all hard
constraints and satisfying soft constraints as well as possible.

– SH,0 = {s | "cÎH0 , cs holds}
– SH = {s | sÎSH,0 Ù "wÎSH,0 ¬ better(w,s,H) }

Constraint hierarchies

How to compare instantiations with respect to a hierarchy?
– anti-reflexive, transitive comparison relation respecting the hierarchy
– if some instantiation satisfies all constraints up to level k, then any better

instantiation has the same property

Error function e(c,s) – describes how well the constraint is satisfied
– predicate error function (satisfied/violated)
– metric error function – measures a distance from solution, e(X³5,{X/3}) = 2

Local comparators
– compare errors of individual constraints

locally_better(w,s,H) º $k>0
"i<k "cÎHi e(c,w)=e(c,s) Ù "cÎHk e(c,w) £ e(c,s) Ù $cÎHk e(c,w)<e(c,s)

Global comparators
– aggregate all errors for constraints in the level using the function

globally_better(w,s,H) º $k>0 "i<k g(Hi,w)=g(Hi,s) Ù g(Hk,w)<g(Hk,s)
• we can use weighted sum, sum of squares, worst case, etc.

Constraint hierarchies: comparators

DeltaStar uses a method of refining the set of candidate instantiations.
We need a “flat” constraint solver with function filter:

instantiations ´ constraints® instantiations
– from a set of instantiations select those instantiations that best satisfy the

constraints (this implements the comparator)
– instantiations can be represented in an implicit form

Algorithm DeltaStar
procedure DeltaStar(H: constraint hierarchy)

i ¬ 1
Solution ¬ all solutions of required constraints from H
while not unique Solution and i<number of levels do

Solution ¬ filter(Solution,Hi)
i++

endwhile
return Solution

end DeltaStar

• filter can be implemented using simplex
• constraints from the next level are part

of the error function

Constraint hierarchies: DeltaStar

We can incrementally satisfy the constraints.
– each constraint is described by a set of methods for its

satisfaction by propagating values between variables
A+B = C A ¬ C-B, B ¬ C-A, C ¬ A+B,

– for each variable we need one method computing its value
– then the computed value is used as input to other methods

advantages:
– changed values can be propagated through the network
– we can compile methods

drawbacks:
– works only for functional constraints (such as equalities)
– no cycle of methods in the network
– finds a single solution
– works with locally predicate comparators only

Constraint hierarchies: local propagation

The algorithm works with single-output methods.
– first, select a method for each constraint (planning)
– then propagate values through the methods (execution)

Incremental planning – modify the network after adding a constraint
strong

weak

medium

weakest

required
required

strong

weak

medium

weakest

required
required

required

strong

weak

medium

weakest

required
required

strong

weak

medium

weakest

required
required

required

The algorithm uses walkabout strengths to guide the network planner.
Walkabout strength of the variable is the weakest preference among the
preference of the method outputting the variable and the walkabout strengths
of variables that are outputs of other (not selected) methods of the same
constraint.

strong

weak

medium

weakest

required
required

strong

weak

medium

weakest

required
required

required

strong

weak

weak

medium
weak

Constraint hierarchies: DeltaBlue ideas

Algorithm DeltaBlue
procedure AddConstraint(c: constraint)

select the potential output variable V of c with the weakest walkabout
strength
if walkabout strength of V is weaker than strength of c then

c‘¬ the constraint currently determining the variable V
make c' unsatisfied
select the method determining V in c
re-compute walkabout strengths of downstream variables
AddConstraint(c')

endif
end AddConstraint

• after adding a constraint, the
network is locally modified

• re-compute the walkabout
preferences

• try to add the removed
constraints back

Constraint hierarchies: Delta Blue

DeltaBlue works with functional constraints modelled using single-
output methods only.
SkyBlue generalises DeltaBlue to support multi-output methods.
Both algorithms construct an acyclic network of methods (if possible)
and do not support non-functional constraints such as A<B.

Algorithm Indigo was designed for acyclic networks with non-
functional constraints and locally metric comparator.

– uses bounds consistency
• always runs all the methods for a constraint

– incrementally adds constraints from strongest to weakest
• after adding a constraint, ensures bounds consistency
• by propagating the bounds to other variables

Constraint hierarchies: Indigo

c1: required a>=10
c2: required b>=20
c3: required a+b=c

c7: weak a=5
c8: weak b=5
c9: weak c=100
c10: weak d=200

action a b c d note
(-inf,inf) (-inf,inf) (-inf,inf) (-inf,inf) initial bounds

add c1 [10,inf) (-inf,inf) (-inf,inf) (-inf,inf)

add c2 [10,inf) [20,inf) (-inf,inf) (-inf,inf)
add c3 [10,inf) [20,inf) [30,inf) (-inf,inf)
add c4 [10,inf) [20,inf) [30,inf) [55,inf)

add c5 [10,inf) [20,inf) [30,inf) [55,100]
[10,inf) [20,inf) [30,75] [55,100] propagate bounds using c4

[10,55] [20,65] [30,75] [55,100] propagate bounds using c3
add c6 [50,50] [20,65] [30,75] [55,100]

[50,50] [20,25] [70,75] [55,100] propagate bounds using c3

[50,50] [20,25] [70,75] [95,100] propagate bounds using c4
add c7 [50,50] [20,25] [70,75] [95,100] c7 is unsatisfied
add c8 [50,50] [20,20] [70,75] [95,100] c8 is unsatisfied but its error is minimized

[50,50] [20,20] [70,70] [95,100] propagate bounds using c3
[50,50] [20,20] [70,70] [95,95] propagate bounds using c4

add c9 [50,50] [20,20] [70,70] [95,95] c9 is unsatisfied
add c10 [50,50] [20,20] [70,70] [95,95] c10 is unsatisfied

Constraint hierarchies: Indigo run
c4: required c+25=d
c5: strong d<=100
c6: medium a=50

Solving linear equalities and inequalities using Gauss and Fourier elimination.
• C(0,x) = constraints that do not contain x
• C(=,x) = equalities containing x
• C(+,x) = inequalities containing x, s.t. the constraint has a form x£e
• C(-,x) = inequalities containing x, s.t. the constraint has a form e£x

procedure project(C: set of constraints, x: variable)
if $cÎC(=,x) where c is x=e then

D ¬ C - {c} with every occurrence of x replaced by e
else

D ¬ C(0,x)
for each c in C(+,x) where c is x £ e+ do

for each c in C(-,x) where c is e- £ x do
D ¬ D È {e- £ e+}

endfor
endfor

endif
return D

end project

Projection algorithm

We first eliminate all variables by projection
and then via a backward run we calculate the values for variables.

2xm = xl+xr
xl+10 £ xr
0 £ xl,xm,xr
xl,xm,xr £ 100

xm+5 £ xr
2xm-100 £ xr
xr £ 2xm
xm,xr £ 100

5 £ xm
xm £ 95

5 £ 95

project to xr project to xmproject to xl

xm in 5..95
e.g. xm =50

xl=2xm-xr
i.e. xl = 30

xr in 55..100
e.g. xr =70

And what about supporting constraint hierarchies?
n for a locally metric comparator

¨ constraints “e?b @ pref” are transformed to “e?ve @ required”,
“ve=b @ pref“ (ve is a new variable, ? is any relation =, £, ³)

¨ variables from the required constraints are eliminated from strongest to
weakest

¨ a value closest to b from the strongest constraint is used

Projection algorithm in practice

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

