
Constraint Programming
Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Modelling Planning Problems

We will deal with classical AI planning
– looking for the (shortest) sequence of actions (a plan)

transferring the initial state of the world to a state
satisfying some goal condition

– state is described using a set of multi-valued
variables

– (grounded) action is specified by:
• precondition (required values of certain state variables

before action execution)
• effect (changed values of certain state variables after

action execution)

Planning Problem

State Variables
rloc Î {loc1,loc2} ;; robot’s location
cpos Î {loc1,loc2,r} ;; container’s position

Actions
move(r, loc1, loc2) ;; robot r at location loc1 moves to location loc2

Precond: rloc = loc1
Effects: rloc¬ loc2

move(r, loc2, loc1) ;; robot r at location loc2 moves to location loc1
Precond: rloc = loc2
Effects: rloc¬ loc1

load(r, c, loc1) ;; robot r loads container c at location loc1
Precond: rloc = loc1, cpos = loc1
Effects: cpos¬ r

load(r, c, loc2) ;; robot r loads container c at location loc2
Precond: rloc = loc2, cpos = loc2
Effects: cpos¬ r

unload(r, c, loc1) ;; robot r unloads container c at location loc1
Precond: rloc = loc1, cpos = r
Effects: cpos¬ loc1

unload(r, c, loc2) ;; robot r unloads container c at location loc2
Precond: rloc = loc2, cpos = r
Effects: cpos¬ loc2

Example Problem
Iterative extension of the plan length
Formulating the problem of finding a plan of a
given length as a CSP

Backward search
– instantiation of action variables
– only actions relevant to the (sub)goal are tried

A0

V01

An-1

V0n-1

… …

state transition constraints

V00

in
iti

al
 s

ta
te

go
al

 s
ta

te

pr
ec

on
di

tio
n

ef
fe

ct

frame

Core Modeling Approach

original formulation
– action constraints

As = act® Pre(act)s , "act Î Dom(As)
As = act® Eff(act)s+1, "act Î Dom(As)

– frame constraint
As Î NonAffAct(Vi) ® Vis = Vis+1, "i Î á0, v-1ñ

problems
– disjunctive constraints do no propagate well

Ä do not prune well the search space
– a huge number of constraints (depend on the

number of actions)
Ä the propagation loop takes a lot of time

Ghallab et al. (2004)

As = move21 ® rlocs = loc2
As = move21 ® rlocs+1 = loc1

As = move21® cposs = cposs+1

Straightforward Model
idea

– encapsulate the logical constraints into a table constraint
describing allowed tuples of values

– be careful about the size of the table!

reformulated straightforward model
– action constraint = a single table

– frame constraint
As Î NonAffAct(Vi) ® Vis = Vis+1, "i Î á0, v-1ñ

As rlocs cposs rlocs+1 cposs+1

move21 loc2 loc1
move12 loc1 loc2
load1 loc1 loc1 r
…

Barták & Toropila (2008) Model Reformulation

idea
– focus on modeling the reason for the value of a state

variable (effect and frame constraints are merged)

original model
– precondition constraint

As = act® Pre(act)s , "act Î Dom(As)
– successor state constraint

Vi
s = val« As-1 Î C(i,val) Ú (Vi

s-1 = val Ù As-1 Î N(i))
– C(i,val) = the set of actions containing Vi¬ val among their effects
– N(i) = NonAffAct(Vi)

reformulated model
– use a single table constraint to describe preconditions
– use ternary table constraints to describe successor state

constraints (one table per state variable)

Lopez & Bacchus (2003) CSP-PLAN
Table for precondition constraint

Tables for successor state constraints

CSP-PLAN Constraints

As rlocs cposs

1: move(r, loc1, loc2) loc1 {…}
2: move(r, loc2, loc1) loc2 {…}
3: load(r, c, loc1) loc1 loc1
4: load(r, c, loc2) loc2 loc2
5: unload(r, c, loc1)) loc1 r
6: unload(r, c, loc2) loc2 r

As rlocs rlocs+1

2 {…} loc1
1 {…} loc2
{3,4,5,6} loc1 loc1
{3,4,5,6} loc2 loc2

As cposs cposs+1

5 {…} loc1
6 {…} loc2
{3,4} {…} r
{1,2} loc1 loc1
{1,2} loc2 loc2
{1,2} r r

original reformulated

straightforward n(ap+ae+v) n(1+v)

GP-CSP n(ap+ae+3v) n(1+3v)

CSP-Plan n(ap+vd) n(1+v)

The total number of constraints

n - number of actions in the plan
a - number of grounded actions in the problem
v - number of multi-valued variables
p - average number of preconditions per action
e - average number of effects per action

Model Comparison

The runtime to solve selected problems from
IPC 1-5 (logarithmic scale)

drive
rlog-p1

mystery
-p1

pipesw
orld-p01

elev
ator-p-2-1

mystery
-p3

logistic
s-old-p4

sche
dule-p

-2-1

zeno
trav

el-p
2

blocks-p-4-1

sche
dule-p

-2-4
psr-p

14
tpp-p03

psr-p
10

sche
dule-p

-3-9

sche
dule-p

-3-7
rovers

-p02
psr-p

12

elev
ator-p-3-0

rovers
-p04

zeno
trav

el-p
3

elev
ator-p-3-2

depots-p1

elev
ator-p-3-1

blocks-p-5-1

rovers
-p01

psr-p
13

psr-p
11

tpp-p04

gripper-p
1

airp
ort-p03

blocks-p-5-0

sche
dule-p

-4-0
rovers

-p03

zeno
trav

el-p
4

blocks-p-6-1

blocks-p-5-2

logistic
s-old-p5

1E-3

0,01

0,1

1

10

100

1000

10000

Ti
m

e
(s

)

 Straightforward Model
 Straightforward Model: Refor.
 M. a la GP-CSP
 M. a la GP-CSP: Refor.
 M. a la CSP-PLAN
 M. a la CSP-PLAN: Refor.

Model Comparison

Planning can also be seen as synchronized changes of state variables.
Evolution of each variable is described using finite state automaton.
Planning is about finding synchronized paths in all automata.

move(r,loc1,loc2)

loc1 loc2

move(r,loc2,loc1)

no-op(loc2)

rloc

no-op(loc1) r

loc1 loc2

no-op(r)cpos

no-op(loc2)no-op(loc1)

load(r,c,loc2)

un
lo

ad
(r,

c,l
oc

1)
un

loa
d(

r,c
,lo

c2
)

load(r,c,loc1)

loc1
loc2

loc1
loc2
r

rloc

cpos

move(r,loc1,loc2)

no-op(loc2)

no-op(loc2)

load(r,c,loc2)

move(r,loc2,loc1)

unload(r,c,loc1)

no-op(r)

no-op(loc1)

Barták (2011)

no-op action
= value of state
variable is not
changed

initial value

goal value

Timelines

timeline model
state and action variables organized to „layers“

…
…

state variables action variables

action sequencingsequencing synchronisation
constraint

Barták (2011) PaP: Constraint Model

a more or less standard CP labeling procedure
instantiating (by the search algorithm) only the
action variables
– the state variables are instantiated by inference

• variable selection
– dom heuristic (only variables with real action in their

domain are assumed)

• value selection (in two steps)
– split the domain into no-op actions (explored first)

and real actions
– domains with real actions only are enumerated then

Barták (2011) Search Strategy

planning domain SeP PaP
airport (15) 4 6
blocks (16) 7 7
depots (10) 2 2
driverlog (15) 4 12
elevator (30) 30 27
freecell (10) 1 3
openstacks (7) 5 0
rovers (10) 4 6
tpp (15) 4 8
zenotravel (15) 6 11

problems from International Planning Competition, runtime limit 30 minutes

Barták (2011) Summary Results (#solved problems)

problem
plan length runtime (ms)

SeP PaP SeP PaPpar seq
zenotravel-p01 1 1 1 10 20
zenotravel-p02 6 5 6 60 50
zenotravel-p03 6 5 9 300 130
zenotravel-p04 8 5 11 970 130
zenotravel-p05 11 5 14 153 990 240
zenotravel-p06 11 5 12 530 390 510
zenotravel-p07 ³12 6 16 - 560
zenotravel-p08 ³10 5 15 - 1 690
zenotravel-p09 ³11 6 24 - 145 760
zenotravel-p10 ³12 6 24 - 252 040
zenotravel-p11 ³9 6 16 - 41 780

Barták (2011) Detailed Results (runtime)

timeline model
state and action variables organized to „layers“

…
…

state variables action variables

action sequencingsequencing synchronisation
constraint

Barták (2011) PaP: Constraint ModelPaP-2: Constraint Model

planning domain SeP PaP PaP-2
airport (15) 4 6 8
depots (10) 2 2 2
driverlog (15) 4 12 13
elevator (30) 30 27 30
freecell (10) 1 3 3
openstacks (7) 5 0 0
rovers (10) 4 6 7
tpp (15) 4 8 8
zenotravel (15) 6 11 12

Summary Results (#solved problems)

problem
plan length runtime (ms)

SeP PaP SeP PaP PaP-2par seq
zenotravel-p01 1 1 1 10 20 30
zenotravel-p02 6 5 6 60 50 60
zenotravel-p03 6 5 9 300 130 140
zenotravel-p04 8 5 11 970 130 160
zenotravel-p05 11 5 14 153 990 240 320
zenotravel-p06 11 5 12 530 390 510 350
zenotravel-p07 ³12 6 16 - 560 440
zenotravel-p08 ³10 5 15 - 1 690 1 340
zenotravel-p09 ³11 6 24 - 145 760 2 260
zenotravel-p10 ³12 6 24 - 252 040 8 400
zenotravel-p11 ³9 6 16 - 41 780 3 250
zenotravel-p12 ³11 6 24 - - 5 930

Detailed Results (runtime)

Take away messages:
– constraint modeling is critical for efficiency
– models that prune more values are (usually) better
– search strategies can describe specific solving

procedures

Can we do even better?
– Yes, definitely (for example see paper “Transition

Constraints for Parallel Planning”, AAAI 15)

Constraints elsewhere in planning?
– solving specific sub-problems
– temporal and resource reasoning

Conclusions Course summary

Constraint satisfaction is a technology for declarative
solving combinatorial (optimization) problems.
Constraint modeling

– describing problems as constraint satisfaction problems
(variables, domains, constraints)

Constraint satisfaction
– local search techniques
– combination of depth-first search with inference

(constraint propagation/consistency techniques)
– ad-hoc algorithms encoded in global constraints
– soft constraints to express preferences

It is easy to model problems in terms of a CSP
… but it is complicated to design solvable models.

