Constraint Programming

Practical Exercises

* For each variable we define its domain.
— we will be using discrete finite domains only
— such domains can be mapped to integers

* We define constraints/relations between the variables.

?-domain ([X,Y],0,100) ,3#=X+Y,¥Y#>=2,X#>=1.

* This is called a constraint satisfaction problem.

* We want the system to find the values for the variables
in such a way that all the constraints are satisfied.

X=1, Y=2

Recall: We would like to have:

?-3=1+2.
no
?-X=1+2
X=1+2;
no
?-3=X+1
no

What is the problem?
Term has no meaning (even if it
consists of numbers), it is just a
syntactic structure!

?-X=1+2.
X=3

?-3=X+1.
X=2

?2-3=X+Y,¥=2.
x=1

2-3=X+Y,Y>=2,X>=1.
X=1
Y=2

Assign different digits to letters such that SEND+MORE=MONEY

holds and S=0 and M=0.

Idea:

generate assignments with different digits and check the constraint

solve naive([S,E,N,D,M,0,R,Y]) :~-
pigitsl 9 = [1,2,3,4,5,6,7,8,9],
Digits0_9 = [0|Digitsl_9],
member (S, Digitsl 9),
member (E, Digits0~9), E\=S,
member (N, Digits0_9), N\=S, N\=E,
member (D, Digits0 9), D\=S, D\=E,
member (M, Digitsl”9), M\=S, M\=E,
member (O, Digits0_9), O\=S, O\=E,
member (R, Digits0_9), R\=S, R\=E,
member (Y, Digits0_9), Y\=S, Y\=E,
1000*S + 100*E + 10*N +
1000*M + 100*O + 10*R +

% P

D\=N,

M\=N, M\=D,

O\=N, O\=D, O\=M,

R\=N, R\=D, R\=M, R\=0,
Y\=N, Y\=D, Y\=M, Y\=0, Y\=R,

D
E

+

10000*M + 1000*0 + 100*N + 10*E + Y.
equality of arithmetic
expressions

solve better([S,E,N,D,M,O,R,Y]):-
Dig_:'l.tsl_9 = [1,2,3,4,5,6,7,8,9],
Digits0_9 = [0|Digitsl 9],

% D+E = 10*P1l+Y

member (D, Digits0 9),

member (E, Digits0_9), E\=D,

Y is (D+E) mod 10, ¥Y\=D, Y\=E,
Pl is (D+E) // 10, % carry bit

% N+R+P1 = 10*P2+E Q%
member (N, Digits0_9), N\=D, N\=E, N\=Y, 3
R is (10+E-N-P1) mod 10, R\=D, R\=E, R\=Y, R\=N,
P2 is (N+R+P1l) // 10,

Some letters can be
computed from other
letters and invalidity
of the constraint can
be checked before all
letters are kno'

$ E+04+P2 = 10*P3+N
O is (104N-E-P2) mod 10, O\=D, O\=E, O\=Y, O\=N, O\=R,
P3 is (E+0+P2) // 10,

$ S+M+P3 = 10*M+O
member (M, Digitsl 9), M\=D, M\=E, M\=Y, M\=N, M\=R, M\=0,
S is 9*M+O-P3,

§>0,8<10, S\=D, S\=E, S\=Y, S\=N, S\=R, S\=0, S\=M. *;;,

* A typical structure of CLP programs:

constraints and solvers

:-use _module (library (clpfd)) ﬁ Definition of CLP operators,

solve (Sol) : -

declare variables(Variables)7— Defintion ofvariables

post constraints(Variables), Definition of
- constraints

labeling(Variables).

Declarative model

Control part

« exploration of space of assignments

- assigning values to variables

- looking for one, all, or optimal solution

Domain filtering can take care about computing values for
letters that depend on other letters.

:-use _module (library (clpfd)) . *
solve (Sol) : - ‘

Sol=[S,E,N,D,M,0,R, Y],
domain([E,N,D,0O,R,Y],0,9),
domain([S,M],1,9),
1000*sS + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E #=
10000*M + 1000*O0 + 100*N + 10*E + Y,
all different([S,E,N,D,M,O,R,Y]),

1ab€ling ([1,S01) ﬁassign values (from domains) to J
variables — depth first search

Note: It is also possible to use a model with carry bits.

Domain in SICStus Prolog is a set of integers
— other values must be mapped to integers
— integers are naturally ordered

frequently, domain is an interval

— domain (ListOfVariables,MinVal,A MaxVal)

— defines variables with the initial domain
{Minval,...,MaxVal}

For each variable we can define a separate domain

(it is possible to use union, intersection, or
complement)

— X in MinVal. .MaxVal
—X in (1..3) \/ (5..8) \/ {10}

« Each domain is represented as a list of
disjoint intervals
— [[Min,|Max,],[Min,|Max,],...,[Min,|Max]]
— Min, < Max, < Min,,,; — 1

« Domain definition is like a unary constraint
— if there are more domain definitions for a single
variable then their intersection is used (like the
conjunction of unary constraints)
?-domain([X],1,20), X in 15..30.
X in 15..20

How is constraint satisfaction realized?
— For each variable the system keeps its actual domain.

— When a constraint is added, the inconsistent values are
removed from the domain.

Example:
X Y
inf..sup inf..sup
domain([X,Y¥],0,100) 0..100 0..100
3#=X+Y 0..3 0..3
Y#>=2 0..1 2..3
X#>=1 1 2

« Classical arithmetic constraints with operations
+,-, *, /, abs, min, max,... all operations are
built-in

« It is possible to use comparison to define a
constraint #=, #<, #>, #=<, #>=, #\=

?-A+B #=< C-2.

« What if we define a constraint before defining
the domains?

— For such variables, the system assumes initially the
infinite domain inf..sup

Arithmetic (reified) constraints can be connected using
logical operations:

#\ :Q negation
:P #/\ :Q conjunction
:P #\ :Q exklusive disjunction (,,exactly one")
:P #\/ :Q dijunction
* :P #=> :Q implication
:Q #i<= :P implication
 :P #<=> :Q equivalence

?- X#<5 #\/ Xi>8.
X in inf. .sup

Let us start with a simple example

:-use_module (library (clpfd)) . s ‘._V}.‘

'
-
a(X):- X#<5. o= ald)-
a(x):- X#>7.

X in inf..4 ? ;
X in 8..sup ? ;

What is the problem? no

The constraint model is disjunctive, i.e., we need to backtrack to
get the model where X>7!

-]
:-use_module (library (clpfd)) . SIe
= ?- a(X).

a(X):- X#<5 #\/ X#>7.

X in inf..sup ? ;

no
The propagator waits until all but one
component of the disjunction are ?- a(X), X#>5.
proved to fail and then it propagates X in 8..sup ? ;

through the remaining component.

no

 Constraints alone frequently do not set the
values to variables. We need instantiate
the variables via search.

* indomain (X)
— assign a value to variable X (values are tried

in the increasing order upon backtracking)

* labeling (Params,Vars)

— instantiate variables in the list Vars

—algorithm MAC — maintaining arc consistency
during backtracking

an - |

= ?- a(X).

:-use_module (library (clpfd)) .

(7]

a(X):- X in (inf..4) \/ (8..sup).

X in (inf..4)\/(8..sup) ? ;
Constructive disjunction no

How does it work in general?
a;(X) v ay(X) v ... a,(X)

— propagate each constraint a,(X) separately A
— union all the restricted domains for X
This could be an expensive process! ./

Actually, it is close to singleton consistency:
* Xinl.5=X=1v X=2v X=3vX=4vX=5

We can still write special propagators for particular
disjunctive constraints!

« Find all solutions to the equality
A+B=10forA,Be{l,2,...,10}

:- use_module (library (clpfd)) .
aritmetika (A,B) :-
domain([A,B], 1, 10),
A+ B #= 10,
labeling([],[A,B]).

« Find all solutions to the Pythagoras theorem
A2+B2=C2(A,B,Ce{l,...,20})

:=- use_module (library(clpfd)) .
pythagoras (A,B,C) :-
domain([A,B,C], 1, 20),
A*A + B*B #= C*C,
A #=< B, % remove symmetrical solutions
labeling([],[A,B,C]).

© 2013 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

« Write a program to solve the letter puzzle
DONALD + GERARD = ROBERT. Use the
constraint model with carry bits.

