Constraint Programming

Practical Exercises

Roman Bartak

Department of Theoretical Computer Science and Mathematical Logic

Design of filtering algorithms

» We can set satisfaction/violation of certain constraints.
« Implemented via equivalence and a Boolean variable
Constraint #<=> B

Example:
X#>5 #<=> B //no change of domains
 after adding X#<3 we get X in inf..2 and B=0
- after adding x#>8 we get X in 9..sup and B=1
- after adding B=1 we get X in 6..sup

Constraint must be reifiable, i.e., it can be used in
logical constraints (arithmetical constraints are
reifiable while global constraints are usually not
reifiable).

We will look inside constraint solvers.

» Design of filtering algorithms

— reification:
design of meta-constraints

— indexicals:
design of primitive constraints

— global constraints:
design of complex constraints

exactly (N,List,X)

N is a FD variable, List is a list of FD variables, and X is
a FD variable

Semantics:
exactly N variables from the list List equals to X

Implementation using reification:

exactly (0, []1, _X).
exactly (N, [Y|L], X) :-
X #= Y #<=> B,
N #= M+B,
exactly (M, L, X).

News constraints are defined via the REVISE procedures.
How to do it?

- - 1) We need to decide the event for constraint invocation.
(\S’\é‘: g?I\’:a?';:&aegsatI'IGOItn]fl?;{ntitlgnneto a - when the domain of some variable is changed (suspensions)
| variable . + whenever the dpmaln changes
procedure GAC(G) » when the domain bounds are changed
Q < {Xs =Y | Xs =Y is a method for some constraint in G} « when the domain becomes singleton

while Q non empty do

— itis possible to use different suspensions for different variables
select and delete (As—B) from Q

: Example:
if REi\f/ISEigihBe)n“;%n with fail - 2<B is invoked when min(A) and max(B) change
Q 2 QU {Xs —>Yp| Xs —Y is a method s.t. BEXs} * This way we can even define directional consistency or forward
end if checking!
end while 2) We need to write the filtering procedure.
end GAC-3 (We can decide which change of the « the output is the suggestion of new domains
Ldomain of B will invoke constraint - there could be more filtering procedures for a single constraint
filtering. Example: A<B

— min(A): B in min(A)+1..sup
— max(B): A in inf..max(B)-1

* We can define new primitive constraints in a style .

similar to Prolog using “reactive” rules called Bounds consistency

indexicals plus(X,Y,T) +:
X in min(T) - max(Y) .. max(T) - min(Y),
Y in min(T) - max(X) .. max(T) - min(X),
T in min(X) + min(Y) .. max(X) + max(Y).

* There are rules for positive and negative version of
each constraint and for verification of satisfaction/
violation of the constraint:

— Head +: Indexicals.

. Arc consistency
— Head -: Indexicals.

. plusd(X,Y,T) +:
— Head +? Indexical. X in dom(T)) dom(Y),
— Head -? Indexical. Y in dom(T) - dom(X), X+Y #=T

* Such constraints are reifiable! T in dom(X) + dom(Y).

* Description of how the domain of the variable
is changed using the form X in R.

— processing domains
e dom(X), {T1,...,Tn}, T1..T2
* R1/\R2,R1\/R2,\R1, R1+R2, R1-R2

— using terms
* min(X), max(X), card(X)
e X (wait until X is bound), | (integer), inf, sup
 T1+T1, T14T2, T1*T2, T1 mod T2, T1 rem T2

How to access the values in variables' domains?

fd min(?X, °?Min)
— Min is unified with the smallest value in the domain of X (it could
be inf)
fd max(?X, ?Max)
— Max is unified with the largest values in the domain of X (it could
be sup)
fd_size(?X, ?Size)
— Size is unified with the number of values in the domain (it could
be sup)
fd set(?X, ?Set)
— Set is unified with the representation of the domain of X
fd degree (?X, ?Degree)
— Degree is unified with the number of constraints over X

x\=y’'(X,Y) +:
Xin \{Y}’ \[propagaﬁon for the satisfied

Yin \{X} constraint
*\\=y’(X,Y) -:
Xin dom(v),) Propataten or e vt
Y in dom(X).
IX\\:y’(X,Y) +? — —
X in \dom(Y). Zg::ltcraa‘;'lncln of the satisfied

x\=y'(X,Y) -?

Xin{Y}. verification of the violated
constraint

empty fdset(?Set)

fdset min(+Set, -Min)

fdset max(+Set, -Min)

fdset subset(+Setl, +Set2)
fdset disjoint(+Setl, +Set2)
fdset intersect(+Setl, +Set2)
fdset eqg(+Setl, +Set2)

fdset member (?Elt, +Set)

* fdset add element(+Setl, +Elt, -Set2)

e fdset del element(+Setl, +Elt, -Set2)

e fdset intersection(+Setl, +Set2,
-Intersection)

e fdset subtract(+sSetl, +Set2,-Difference)

e fdset union(+Setl, +Set2, -Union)

* fdset complement(+Set, -Complement)

 fdset parts(?Set, ?Min, ?Max, ?Rest)

* list to fdset(+List, -Set)
» fdset to list(+Set, -List)
* range to fdset(+Range, -Set)
e fdset to range(+Set, -Range)

How to describe a filtering procedure for A<B?
Note: bounds consistency is equivalent to AC for A<B!
less_then(A,B) : -

fd global (a2b(A,B) ,no_state, [min(A)]),
fd_global (b2a(A,B) ,no_state, [max(B)]) .

:-multifile clpfd:dispatch_global/4.
clpfd:dispatch global (a2b(A,B),S,S,Actions) : -
fd min(A,MinA), fd max(A,MaxA), fd _min(B,MinB),
(MaxA<MinB ->

Actions = [exit]
LowerBoundB is MinA+1,
Actions = [B in LowerBoundB..sup]) .

clpfd:dispatch _global (b2a(A,B),S,S,Actions) : -
fd max (A ,MaxA), fd min(B,MinB), fd max(B,MaxB),
(MaxA<MinB -> - -
Actions = [exit]
UpperBoundA is MaxB-1,

Actions = [A in inf. .UpperBoundA]) . A#<B

* Constraint initialization

— fd_global(:Constraint, +State, +Susp)
* Constraint — term describing the constraint
* State —an initial state for the filtering algorithm
* Susp — a list of suspensions

— dom(X), min(X), max(X), minmax(X), val(X)
* Constraint definition - filtering algorithm

— clpfd:dispatch_global(+Constraint, +StateO,
-State, -Actions)

* filtering algorithm describing how to modify the domains
— exit, fail, X=V, Xin R, Xin_set S, call(Goal)

How to describe a filtering procedure for A=B?

Idea: Constraint is consistent if domains of both variables
contain two or more values! Hence any filtering is useful only if
any domain becomes singleton.

diff(A,B):-
fd global (diff (A,B) ,no_state, [val(d)]),
fd global (diff (B,A) ,no_state, [val(B)])

:-multifile clpfd:dispatch global/4.
clpfd:dispatch global (diff (X,Y),S,S,Actions):-
(ground (X) ->
fd set(Y,SetY),
fdset_del element(SetY,X,6 NewSetY),
Actions = [exit, Y in set NewSetY]

4

Actions = []

How to find out that each variable in a list has a value different from all other All-diff for N variables can also be described using N.(N-1)/2

variables? . .
Idea: If we assign a value to some variable (its domain becomes singleton), constraints diff.

then this value is deleted from the domains of other variables.
Which approach is better?

— Filtering power

all diff(List):-
start_all diff(List,List).

start_all diff([],_).

start all diff([H|T],List):- .
fd global (all diff(H,T,List) ,no_state, [val(H)]), bOth O‘Ur mOdeIS remove eXaCtIy the same
start_all difE(T,List). - inconsistent values
:-multifile clpfd:dispatch_global/4. * all-distinct removes more inconsistencies by global
clpfd:dispatch_global (all_diff (X,Pointer,List),S,S,Actions):- reasonin
(ground (X) -> ¢ a value has been assigned to X g
filter diff (List,X,Pointer, Actions) _ Time efﬁCiency
Actions = [] epp - . .
). * all-diff is faster than a set of diff constraints
filter diff([],_X, Pointer, [exit]). Example:

1 . . Latin square of order N is
filling partial Latin square | amatof size NN filled

filter diff([Y|T],X,Pointer, Actions):-

e et - : A - 411(3|2
I etions = Resthctions. < 0°°° all_dlfferent(Lnst)J of order 20 with 8 Pt veles inenchron [114]2(3
at values in each row
; . d col different.
£d_set(Y,Sety), prefilled cells Gartios Latin square nes |23 |41
fdset del element (SetY,X,NewSetY), some cells pre-filled. 3214

Actions = [Y in_set NewSetY | RestActions] e all-diff 0.685, diff 1.43s

).
filter diff(T,X,Pointer, RestActions).

© 2013 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

