Artificial IntelligenceZ

Starting today we will design agents that can form
representations of a complex world, use a process
of inference to derive new information about the
world, and use that information to deduce what to
do.

They are called knowledge-based agents —
combine and recombine information about the-Ww

2
c—t
>
O
-
-
PR
@
=
—t
@
o
T,
0,
D)
<
Q
Tt
@
-
)]
—t
O
-
-
o,
@
<
®
_§
>
a
®
(L
0p)

We need to know:

— how to represent knowledge?
— how to reason over that knowledge?

A knowledge-based agent uses a knowledge base — a set
of sentences expressed in a given language — that can be
updated by the operation TELL and can be queried about
what is known using the operation ASK.

Answers to queries may involve inference — that is
deriving new sentences from old sentences (inserted using
the TELL operations).

function KB-AGENT(percept) returns an action

N SRR P . information about observations as
t, a counter, initially 0, indicating time well as about own actions

persistent: KB, a knowledge base 2 knowledge base contains

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action < ASK(KB, MAKE-ACTION-QUERY(?))

TELL(K B, MAKE-ACTION-SENTENCE(action, tﬁ inference will help the agent to

select an action even if information
t—t+1

about the world is incomplete
return action

A cave consisting of rooms connected by passageways, inhabited by the
terrible Wumpus, a beast that eats anyone who enters its room

containing rooms with bottoml

with a heap of gold.

SSSS
Stench

-~ Brégzg —
/\/

/_\/
- BfeeZe —

SSSS
Stench

Ny

~/Cod B~

~ Bregzg —|
/\/

SSSS
Stench

 Bregzg —
/\/

X

START

Z Bregzg —
/\/

-~ Bregzg —
/\/

1

ess pits that will trap anyone, and a room

The agent will perceive a Stench in the
directly (not diagonally) adjacent squares
to the square containing the Wumpus.

In the squares directly adjacent to a pit,
the agent will perceive a Breeze.

In the square where the gold is, the
agent will perceive a Glitter.

When an agent walks into a wall, it will
perceive a Bump.

The Wumpus can be shot by an agent,
but the agent has only one arrow.
 Killed Wumpus emits a woeful Scream

that can be perceived anywhere in the
cave.

Performance measure
— +1000 points for climbing out of the cave with the gold
— -1000 for falling into a pit or being eaten by the Wumpus
— -1 for each action taken
— -10 for using up the arrow

Environment

-4 xh4 grid of rooms, the agent starts at [1,1] facing to the
right

Sensors
— Stench, Breeze, Glitter, Bump, Scream

Actuators
— MoveForward, TurnLeft, TurnRight

— Grab, Shoot, Climb

Fully observable?

— NO, the agent perceives just its direct neighbour (partially
observable)

Deterministic?
— YES, the result of action is given

Episodic?
— NO, the order of actions is important (sequential)

Static?
— YES, the Wumpus and pits do not move

Discrete?
— YES

One agent?

— YES, the Wumpus does not act as an agent,
it is merely a property of environment

The Wumpus world: the quest for gold

some glitter there = I am
rich ©

g Z no stench, no wind = I am OK, let i, < there is some breeze = some
W us go somewhere b/ pit nearby, better go back
1,4 24 34 4.4 = Agent s [1,4 2,4 34 44
B =Breeze
G = Glitter, Gold
OK = Safe square
1,3 2,3 3,3 4,3 P =Pit 13 23 a2 43
S = Stench
V = Visited
W = Wumpus
1,2 2,2 3,2 4,2 1,2 2,2 3,2 4.2
P?
OK OK
1,1 2,1 3,1 41 1,1 2,1 Shl 4,1
P?
A\ B
OK OK OK OK
g some smell there = that
» must be the Wumpus - 5
15 25 3.4 4.4 not at [1,1], I was already
there
N —
13, |23 8,3 4,3 not at [2,2], I would smell
it when I was at [2,1]
\\
1,2 2,2 3,2 4,2 Wumus must be at [1,3] mus
S \ T,
OK OK no breeze = [2,2] will be
1,1 21 5 |31 5 |41 safe{ let us go there
. v (pitis at [3,1])
OK OK

g
[1.4 24 3.4 44
P?
R NEEHE
S G
B
12 |22 32 42
v v
OK OK
1.1 21, [31 5 |41
v v
OK OK

Assume a situation when there is
no percept at [1,1], we went right
to [2,1] and feel Breeze there.

?20?

mlm | ?

— For pit detection we have 8
(=23) possible models (states
of the neighbouring world).

— Only three of these models
correspond to our knowledge
base, the other models conflict
the observations:

« no percept at [1,1]
* Breeze at [2,1]

Let us ask whether the room
[1,2] is safe.

Is information a; = “[1,2] is safe”
entailed by our representation?

« we compare models for KB and
for o4

« every model of KB is also a
model for o, SO o, is entailed
by KB

And what about the room [2,2]?

we compare models for KB and
for a,

some models of KB are not
models of o,

a, is not entailed by KB and we

do not know for sure if room
[2,2] is safe

How to implement inference in general?

We will use propositional logic. Sentences are propositional
expressions and a knowledge base is a conjunction of these
expressions.

- Propositional variables describe the properties of the world
— P;; = trueif there is a pit at [i, j]
— B;; = true if the agent perceives Breeze at [i, j]

« Propositional formulas describe
— known information about the world
« — Py, nopitat[1, 1] (we are there)
— general knowledge about the world (for example, Breeze means a pit in
some neighbouring room)
* By & (P1,2 Vv P2,1)
* By ©(Py,1 VP33V P3,)
— observations
« —B;; noBreezeat[1, 1]
- B,; Breezeat[2, 1]

« We will be using inference for propositional logic.

Syntax defines the allowable sentences.

— a propositional variable (and constants true and false) is an
(atomic) sentence

— two sentences can be connected via logical connectives —, A,
v, =, < to get a (complex) sentence

Semantics defines the rules for determining the truth of
a sentence with respect to a particular model.

— model is an assignment of truth values to all propositional
variables

— an atomic sentence P is true in any model containing P=true
— semantics of complex sentences is given by the truth table

P Q -P PAQ PVvQ P = Q P < Q@

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

M is a model of sentence ¢, if a is true in M.
— The set of models for o is denoted M(a).
Entailment: KB |=oc
means that o is a logical consequence of KB
— KB entails a iff M(KB) < M(a)
We are interested in inference methods, that can

find/verify consequences of KB.

— KB | a means that algorithm i infers sentence o from
KB

— the algorithm is sound iff KB | o implies KB [o
— the algorithm is complete iff KB F o implies KB | o

There are basically two classes of inference
algorithms.
— model checking
« based on enumeration of a truth table

 Davis-Putnam-Logemann-Loveland (DPLL)
* local search (minimization of conflicts)

— inference rules
« theorem proving by applying inference rules
» a resolution algorithm

Enumeration

function TT-ENTAILS?(KB,) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
a, the query, a sentence in propositional logic

symbols <— a list of the proposition symbols in KB and «
return TT-CHECK-ALL(KB, a, symbols, { })

function TT-CHECK-ALL(KB, o, symbols, model) returns true or false
if EMPTY ?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(c, model)
else return true // when KB is false, always return true I:‘i “(\ﬁ'g‘]p;i;?:rlzd“
elsep<_ FIRST(symbols) —Py ," is entailed by KB, as
rest < REST(g{symbols) P, » is always false for models
return (TT-CHECK-ALL(KB, a, rest, model U {P = true}) gii’tléli FPCZI]hence there is no
and /

TT-CHECK-ALL(KB, a, rest, model U {P = false }))

N

« We simply explore all the | 5w Bu P fPo | B Bo Ba] KB | o

false | false | false | false | false | false | false | false | true

mOdels USIng the false | false | false | false | false| false| true | false | true
generate and teSt fa.lse tr;txe fa.lse fa-lse fa.lse fa.lse fa.lse fa.lse trz.ze

mEthOd false | true | false | false | false | false | true | true | true
° Each model Of KB mUSt be false | true | false | false| false | true | false | true | true

false | true | false | false | false| true | true | true | true

aISO d mOdE| fOI‘ Cl. false | true | false | false | true | false| false | false | true

true | true | true | true | true | true | true | false | false

Sentence (formula) is satisfiable if it is true in, or satisfied by, some model.
Example: Av B, C

Sentence (formula) is unsatisfiable if it is not true in any model.
Example: A A —A

Entailment can then be implemented as checking satisfiability as follows:
KB |=oc if and only if (KB A —a) is unsatisfiable.

— proof by refutation
— proof by contradiction

Verifying if o is entailed by KB can be implemented as the satisfiability problem
for the formula (KB A —a).
Usually the formulas are in a conjunctive normal form (CNF)
— literal is an atomic variable or its negation
— clause is a disjunction of literals
— formula in CNF is a conjunction of clauses

Example: (A v —B) A (B v —C v —D) Bi, < (PisvPyy)

(Bi,1 = (P12 v P21)) A (P12 v Py1) = By)

(ﬁBm Vv P1,2 Vv P2,1) A (_‘(PI,Z Vv P2,1) Vv B1,1)

(ﬁBm Vv P1,2 Vv P2,1) A ((ﬁpl,z N\ —'Pz,l) Vv B1,1)
(ﬁBm % P1,2 \% P2,1) A (—'P1,z \% B1,1) A (—'P2,1 \% B1,1)

Each propositional sentence (formula) can be
represented in CNF.

Davis, Putnam, Logemann, Loveland

— a sound and complete algorithm for verifying
satisfiability of formulas in a CNF (finds its model)

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of s
symbols <— a list of the proposition symbols in s
return DPLL(clauses, symbols,{ })

Early termination for partial models
e clause is true if any of its literals is true

e formula is not true if any of its clauses is not

function DPLL(clauses, symbols, model) returns true or false frue

+

if every clause in clauses is true in model then return true - .-

.) . . Pure symbol heuristics

if some clause in clauses is false in model then return false « 2 pure svmbol alwavs apbears with the
P, value < FIND-PURE-SYMBOL (symbols, clauses, model) P y ys app

.) same " sign” in all clauses
if P is non-null then return DPLL(clauses, symbols — P, model U { P=value}) L :

e the corresponding literal is set to true
P, value <~ FIND-UNIT-CLAUSE(clauses, model)

if P is non-null then return DPLL(clauses, symbols — P, model U { P=value})

P < FIRST(symbols); rest <— REST(symbols) Unit cllause hguristics -
return DPLL(clauses, rest, model U { P=true}) or * a unit clause is a clause with just one
DPLL(clauses, rest, model U { P=false})) literal

k e the corresponding literal is set to true

branching for backtracking

Hill climbing merged with random walk
— minimizing the number of conflict (false) clauses
— one local step corresponds to swapping a value of the selected variable
— sound, but incomplete algorithm

function WALKS AT (clauses, p, mazx _flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move, typically around 0.5
mazx _flips, number of value flips allowed before giving up

model < a random assignment of true/false to the symbols in clauses
for each : = 1 to mazx_flips do

if model satisfies clauses then return model

clause <— a randomly selected clause from clauses that is false in model

if RANDOM(0, 1) < p then

flip the value in model of a randomly selected symbol from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

WalkSAT vs. DPLL

The phase transition

1 4 the area between satisfiable and unsatisfiable formulas
#clauses / #variables= 4.3
0.8 A
S 06 - %andom 3-SAT problem with 50
£ 4] variables
x — each clause consists of three
0.2 1 different variables
S SR — probability of using a negated
0 1 2 3 4 5 6 7 8 symbol is 50%
Clause/symbol ratio m/n
2000 7 pprg The graph shows medians of
1800 {WalkSAT —-%—- runtime necessary to solve the
el problems (for 100 problems)
2 1200 - — DPLL is pretty efficient
g 1000 - — WalkSAT is even faster
Z 800 -
600 1
400 - é)‘\x
208 _a===1=aa52* S \,.“*".“"".‘

o 1 2 3 4 5 6 7 8

Clause/symbol ratio m/n

The resolution algorithm proves unsatisfiability of the formula (KB A —at)
converted to a CNF. It uses a resolution rule that resolves two clauses with
complementary literals (P and —P) to produce a new clause:

L V..V kg

m Vv ..

AV /A

LV ..V EIVELY oV NV m VLN MgV Mg Ve Vo,

where £ and m; are the complementary literals

The algorithm stops

— no other clause can be derived (then — KB |=0c)
— an empty clause was obtained (then KB |=oc)

when

Sound and complete algorithm

B1,1 - (P1,2 \4 P2,1)

2,4

3,4

44

2,3

33

4,3

242

3,2

4,2

21

OK

3,1

41

=P, VB “Bij vPiy vPy, —Pi, vB) —By
ﬁBu VP1,2 VBl,l Pl,z Vv P2,1 Vv _'P2,l _'Bl,l Vv P2,1 VBl,1 P1,2 N Pz,l VﬁP1,2 _1P2,1 =P,

Resolution algorithm

function PL-RESOLUTION(KB,) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
a, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB A -«

ne?f) \ { } For each pair of clauses with complementary
while true do literals produce all possible resolvents. They
for each pair of clauses C;, C; in clauses do are added to KB for next resolution.
resolvents <— PL-RESOLVE(C;, C}) '

if resolvents contains the empty clause then return true

new < new U resolvents
if new C clauses then return false an empty clause corresponds to false (an

clauses < clauses U new empty disjunction) _ o
— the formula is unsatisfiable

we reached a fixed point (no new clauses added)
— formula is satisfiable and we can find its model
How to find a model?
take the symbols P; one be one

if there is a clause with — P; such that the other literals are false
with the current instantiation of Py,...,P..;, then P, = false

otherwise P; = true

Many knowledge bases contain clauses of a special form — so
called Horn clauses.
— Horn clause is a disjunction of literals of which at most one is positive
Example: C A (—B vA) A (—C v =D v B)

— Such clauses are typically used in knowledge bases with sentences in
the form of an implication (for example Prolog without variables)

Example: C A (B = A) A (CAD = B)

We will solve the problem if a given propositional symbol —
query — can be derived from the knowledge base consisting of
Horn clauses only.

— we can use a special variant of the resolution algorithm running in
linear time with respect to the size of KB

— forward chaining (from facts to conclusions)
— backward chaining (from a query to facts)

From the known facts we derive all possible consequences
using the Horn clauses until there are no new facts or we

prove the query.
This is a data-driven method.

function PL-FC-ENTAILS?(K B, q) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses
q, the query, a proposition symbol

count < a table, where count|c] is initially the number of symbols in clause c’s premise

inferred <— a table, where inferred[s] is initially false for all symbols
queue <— a queue of symbols, initially symbols known to be true in KB

while queue is not empty do
p < POP(queue)
if p = ¢ then return true
if inferred[p] = false then
inferred[p] < true
for each clause c in KB where p is in c.PREMISE do
decrement count|c]
if count[c] = 0 then add c.CONCLUSION to queue
return false

For each clause we keep the humber
of not yet verified premises that is
decreased when we infer a new fact.
The clause with zero unverified
premises gives a new fact (from the
head of the clause).

—

e sound and complete algorithm
for Horn clauses

¢ linear time complexity in the
size of knowledge base

The count of not-yet verified premises

Forward chaining in example

Knowledge base with a graphical representation

0o

P=Q

LAM = P P

BAL = M

AANP = L M

AANB = L

A IL,

B
A B

Backward chaining

The query is decomposed (via the Horn clause) to sub-queries
until the facts from KB are obtained.

Goal-driven reasoning.

Knowledge base with a graphical

representation
P = Q
LAM = P
BAL = M
AAP = L
AAB = L
A
B

For simplicity we will represent only the “physics” of the Wumpus world.
— we know that

IP]’]_
¢ _IW]_,]_

— we also know why and where breeze appears
* Bx,y = (Px,y+1 \% I:)x,y—l Vv I:)x+1,y \% Px—l,y)

— and why a smell is generated
* Sx,y = (Wx,y+1 \% Wx,y—l \% Wx+1,y \% Wx—l,y)

— andlzilnally one “hidden” information that there is a single Wumpus in the
wor

* Wi, VW, v..vW,,
¢ _IW]_,]_ V _IW1’2
¢ _IW]_,]_ V _IW1’3

We can also include information about the agent.
— where the agent is e 4
° |_1,1 4
* FacingRight!
— and what happens when agent performs actions
* L, A FacingRight' A Forward! = L*,,, ,

* we need an upper bound for the number of steps and still it will lead
to a huge number of formulas

function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze,glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”

t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(K B, MAKE-PERCEPT-SENTENCE(percept, t))
TELL the KB the temporal “physics” sentences for time ¢

safe < {[z,y] : ASK(KB, OK;,y) = true}

Add information about current
observation

]
if ASK(KB, Glitter') = true then
plan < [Grab] + PLAN-ROUTE(current, {[1,11}, safe) + [Climb] %

if plan is empty then

unvisited < {[z, y] : ASK(KB,Lg,y) = false forall ¢’ < t}t

plan < PLAN-ROUTE(current, unvisited N safe, safe)
if plan is empty and ASK(KB, HaveArrow') = true then

possible_wumpus < {[z,y] : ASK(KB,—~ W;,) = false} —

plan <~ PLAN-SHOT(current, possible_wumpus, safe)
if plan is empty then / / no choice but to take a risk
not_unsafe < {[z,y] : ASK(KB,— OK;y) = false}

plan < PLAN-ROUTE(current, unvisited N not_unsafe, safe)

if plan is empty then

plan < PLAN-ROUTE(current, {[1, 1]}, safe) + [Climb]
action < POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action,t))
t—t+1
return action

Find provably safe (no danger
there) rooms.

T

Gold found, grab it and
escape.

T

Explore the area — find a safe
way to some frontier room.

T

No safe exploration, try to
shoot Wumpus.

T

I

Explore the area with some
risk (not provably safe).

T

B

OK, no way to gold (without

being killed), escape the cave.

© 2020 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

