
Artificial	Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Summary	of	last	lecture

We	know	how	to	do	probabilistic	reasoning	over	time

– transition	model	P(Xt | Xt-1),	sensor	mode	P(Et	| Xt)	

– Markov	assumptions

Basic	inference	tasks:
– filtering:	P(Xt | e1:t)	

– prediction:	P(Xt+k | e1:t)	pro	k>0

– smoothing:	P(Xk | e1:t)	pro	k:	0	≤ k	<	t
– most	likely	explanation:	argmaxx1:t P(x1:t | e1:t)	

Hidden	Markov	Models	(HMM)

– a	special	case	with	a	single	state	variable	and	

a	single	sensor	variable

– inference	tasks	solved	by	means	of	matrix	

operations

Localization	(an	example	of	HMM)	

Assume	a	robot	that	moves	randomly	in	a	grid	world,	has	a	map	of	the	

world	and	(noisy)	sensors	reporting	obstacles	laying	immediately	 to	

the	north,	south,	east,	and	west.	The	robot	needs	to	find	its	location.

A	possible	model:
– random	variables	Xt describe	 robot’s	location	at	times	t

• possible	values	are	1,..,n	for	n	locations

• Nb(i)	– a	set	of	neighboring	 locations	for	location	i

– transition	 tables
• P(Xt+1=j|Xt=i)	=	1/	|Nb(i)|,	 if	j∈Nb(i),	otherwise	0

– sensor	variables	Et describe	observations	 (evidence)	 at	times	t	(four	

sensor	for	four	directions	NSEW)

• values	indicate	detection	of	obstacle	at	a	given	direction	NSEW	(16	values	for	
all	directions)

• assume	that	sensor’s	error	rate	is	ε
– sensor	 tables

• P(Et=et|Xt=i)	=	(1-ε)4-dit εdit
where	dit is	the	number	of	deviations	of	observation	et
from	the	true	values	for	square	i

Localization	(a	practical	example)

P(X1|E1=NSW)

P(X2|E1=NSW,	E2=NS)

The	localization	error	defined	

as	the	Manhattan	distance	
from	the	true	location

Dynamic	Bayesian	networks

Dynamic	Bayesian	network	(DBN)	is	a	Bayesian	
network	that	represents	a	temporal	probability	

model.

the	variables	and	links	exactly	replicated	 from	slice	to	

slice

It	is	enough	to	describe	one	slice.

• prior	distribution	P(X0)

• transition	model	P(X1	| X0)

• sensor	model	P(E1| X1)	

Each	variable	has	parents	either	at	the	same	slice	or	in	

the	previous	slice	(Markov	assumption).

DBN	vs	HMM

A	hidden	Markov	model	is	a	special	case	of	a	dynamic	Bayesian	network.

Similarly,	 a	dynamic	Bayesian	network	can	be	encoded	as	a	hidden	Markov	

model

one	random	variable	 in	HMM	whose

values	are	n-tuples	of	values

of	state	variables	 in	DBN

What	is	the	difference?

The	relationship	between	DBN	and	HMM	is	roughly	analogous	to	the	

relationship	between	ordinary	Bayesian	networks	and	full	tabulated	joint	

distribution.

– DBN	with	20	Boolean	state	variables,	each	of	which	has	three	parents

• the	transition	model	has	20	× 23 =	160	probabilities

– Hidden	Markov	model	has	one	random	variable	with	220 values

• the	transition	model	has	220 × 220 ≈ 1012 probabilities
• HMM	requires	much	more	space	and	inference	is	much	more	expensive

Exact	inference	in	DBNs

Dynamic	Bayesian	networks	are	Bayesian	networks	and	we	already	have	

algorithms	for	inference	 in	Bayesian	networks.

We	can	construct	the	full	Bayesian	network	representation	of	a	DBN	by	

replicating	slices	to	accommodate	the	observations	(unrolling).

A	naive	application	of	unrolling	would	not	be	particularly	efficient	as	the	

inference	 time	will	 increase	with	new	observations.

We	can	use	an	incremental	approach	that	keeps	in	memory	only	two	

slices	(via	summing	out	the	variables	from	previous	slices).

– This	is	similar	to	variable	elimination	 in	Bayesian	networks.

– The	bad	news	are	that	“constant”	space	to	represent	 the	largest	factor	
will	be	exponential	in	the	number	of	state	variables.

O(dn+k),	where	n	is	the	number	of	variables,	d	is	the	domain	size,	k	is	the	

maximum	number	of	parents	of	any	state	variable

Approximate	inference	in	DBNs

We	can	try	approximate	inference	methods	(likelihood	weighting	is	most	

easily	adapted	to	the	DBN	context).

We	sample	non-evidence	nodes	of	the	network	in	topological	order,	

weighting	each	sample	by	the	likelihood	in	accords	to	the	observed	evidence	

variables.

– each	sample	must	go	through	a	full	network

– we	can	simply	run	all	N	samples	together	through	the	network	(N	samples	are	

similar	to	the	forward	message,	the	samples	themselves	 are	approximate	
representation	of	the	current	state	distribution)

There	is	a	problem!

Samples	are	generated	completely	independently	of	the	evidence!

– This	behaviors	decreases	accuracy	of	the	method	as	the	weight	of	samples	 is	
usually	very	small	and	we	need	much	larger	number	of	samples

• We	need	to	increase	the	number	of	samples	exponentially	with	t.

• If	a	constant	number	of	samples	is	used	them	the	method	accuracy	is	goes	down	
significantly.

Particle	filtering

We	need	to	focus	the	set	of	samples	on	the	high-probability	

regions	of	the	sample	space.

Particle	filtering is	doing	exactly	that	by	resampling	the	

population	of	samples.

– a population	of	N	samples	is	created	by	sampling	from	the	prior	

distribution P(X0)

– each	sample	is	propagated	forward	by	sampling	the	next	state	

value	xt+1 given	the	current	value	xt for	the	sample,	based	on	the	

transition	model	P(Xt+1	| xt)

– each	sample	is	weightedby	the	likelihood	 it	assigns	to	the	new	

evidence,	P(et+1	| xt+1)

– the	population	is	resampled to	generate	a	new	population	of	N	

samples

• each	sample	is	selected	from	the	current	population	such	that	the	

probability	of	selection	is	proportional	to	its	weight	(the	new	samples	

are	unweighted)

Particle	filtering	algorithm

e,N

Particle	filtering	(soundness)

Assume	that	samples	at	time	t	are	consistent	with	

probability	distribution

N(xt | e1:t)	/	N	=	P(xt | e1:t)

After	propagation	to	time	t+1,	the	number	of	samples	is

N(xt+1	| e1:t)		=	Σxt
P(xt+1	| xt)	N(xt | e1:t)

The	total	weightof	the	samples	in	state	xt+1 after	evidence	is
W(xt+1	| e1:t+1)	=	P(et+1	| xt+1)	N(xt+1	| e1:t)	

After	resamplingwe	will	get
N(xt+1	| e1:t+1)	/	N	=	αW(xt+1	| e1:t+1)

=	α P(et+1	| xt+1)	N(xt+1	| e1:t)	

=	α P(et+1	| xt+1)	Σxt
P(xt+1	| xt)	N(xt | e1:t)

= α‘ P(et+1	| xt+1)	Σxt
P(xt+1	| xt)	P(xt | e1:t)

=	P(xt+1	| e1:t+1)

Complex	example	(DBN)

Let	us	consider	a	battery-powered	mobile	robot	and	model	its	

behavior	using	a	DBN.

– we	need	state	variables	modelling	

position of	the	robot	Xt =	(Xt,Yt),	its	
velocity Xt =	(Xt,Yt),	and	actual	battery	
level
• the	position	at	the	next	time	step	depends	

on	the	current	position	and	velocity

• the	velocity	at	the	next	steps	depends	on	

the	current	velocity	and	the	state	of	

battery

– we	assume	some	method	of	measuring	
position	(a	fixed	camera	or	onboard	

GPS)	Zt

– similarly	we	assume	a	sensor	measuring	
battery	level	BMetert

Sensor	failures

A	fully	accurate	sensor	uses	a	sensor	model	with	probabilities	1.0	“along	the	

diagonal“	and	probabilities	0.0	elsewhere.

In	reality,	noise	always	creeps	into	measurements.	 A	Gaussian

distribution	with	small	variance	might	be	used	(for	continuous	

measurements)

– Gaussian	 error	model

Real	sensors	fail.	When	a	sensor	fails,	it	simply	sends	nonsense	 (but	does	not	

say	that	it	that	way).	Then	the	Gaussian	error	model	does	not	work	as	we	need.

– after	two	wrong	measurements	we	are	almost	certain	that	the	battery	is	empty

– if	the	failure	disappears	then	the	battery

level	quickly	returns	to	5,	as	if	by	magic

(transient	failures)
• in	the	meantime,	the	system	may	do	some

wrong	decisions	(shut	down)

– if	the	wrong	measures	are	still	coming

then	the	model	 is	certain	that	the	batters

is	empty	(though	a	chance	of	such	a	sudden

change	is	small)	 (persistent	failure)

Sensor	transient	failure	model	

The	simplest	kind	of	failure	model	allows	a	certain	

probability	that	the	sensor	will	return	some	completely	

incorrect	value,	regardless	of	the	true	state	of	the	world.

P(BMetert=0|Batteryt=5)	=	0.03

Let	us	call	this	the	transient	failure	model.

The	model	brings	some	“inertia”	that	helps	to	overcome	

temporary	blips	in	the	meter	reading.

However,	after	more	wrong readings

the	robot	gradually	coming	to

believe	that	the	its	battery	is	empty

while	in	fact	it	may	by	that	the

meter	has	failed!

Sensor	persistent	failure	model

To	model	persistent	failures	we	use

additional	state	variable,	BMBroken,	
that	describes	the	status	of	the	

battery	meter.

• The	persistence	arc	has	a	CPT	that	
gives	a	small	probability	of	failure	in	

any	given	time	step	(0.001),	but	

specifies	that	the	sensor	stays	broken	

once	it	breaks.

• When	the	sensor	is	OK,	the	sensor	

model	is	identical	to	the	transient	

failure	model.

• Once	the	sensor	is	known	to	be	

broken,	the	robot	can	only	assume	

that	its	battery	discharges	at	the	

“normal”	rate.

Continuous	variables

So	far	we	assumed	discrete	random	variables	so	the	

probability	distribution	can	be	captured	by	tables.

• How	can	we	handle	continuous	variables?
– discretization

• dividing	up	the	possible	values	into	a	fixed	set	of	intervals

• often	results	in	a	considerably	loss	of	accuracy	and	very	large	

CPTs

– we	can	also	use	standard	 families	of	probability	
density	functions	 that	are	specified	by	a	finite	number	

of	parameters

• Gaussian	(or	normal)	distribution

– described	by	the	mean	µ and	the	variance	σ2 as	parameters

Continuous	variables	(conditional	probability)

How	are	the	conditional	probability	tables	specified	in	hybrid	Bayesian	

networks?

– dependence	of	continuous	variable	on	the	continuous	variable	can	be	
described	using	linear	Gaussian	distribution

» the	mean	values	varies	linearly	with

the	value	of	the	parent

» standard	deviation	is	fixed

– dependence	of	continuous	variable	on	the	discrete	variable

» for	each	value	of	the	discrete	variable	we	specify	parameters	of	

standard	distribution

– Dependence	of	discrete	variables	on	the	continuous	variable

» ”soft”	threshold	function

» probit is	often	a	better	fit	to	real	situations,

(the	underlying	decision	process	has	a	hard

threshold,	but	the	precise	location	of	th

threshold	is	subject	to	random	Gaussian	noise)

» logit has	much	longer	“tails“,	sometimes	easier

to	deal	with	mathematically	

probit (probability unit) distribution logit (logistic function) distribution

Kalman filters

Assume	a	problem	of	detecting	actual	position	of	an	
aircraft	based	on	observations	on	radar	screen.	We	

will	model	the	problem	using	a	dynamic	Bayesian	
network.

– random	state	variables	describe	 actual	location and	

speed of	the	aircraft

• the	next	location	depends	on	the	previous	location	and	speed	

and	can	be	modelled	using	linear	Gaussian	distribution

P(Xt+Δ=xt+Δ | Xt=xt ,	Xt=xt)	=	N(xt+xtΔ,σ2)	(xt+Δ)

– we	observe	 location	Zt
• again,	we	can	use	Gaussian	distribution

in	the	sensor	model

Kalman filters	(properties)

Gaussian	distribution	has	some	nice	properties	when	solving	

the	tasks	of	filtering,	prediction,	and	smoothing.

• If	the	distribution	P(Xt | e1:t)	is	Gaussian	and	the	transition	

model	P(Xt+1	| xt)	is	linear	Gaussian	then	P(Xt+1 | e1:t)	is	also	

a	Gaussian	distribution.

• If	P(Xt+1 | e1:t)	is	Gaussian	and	the	sensor	model	P(et+1	| Xt+1)	

is	linear	Gaussian	 then P(Xt+1 | e1:t+1)	is	also	a	Gaussian	

distribution.	

• To	solve	tasks	we	can	use	the	message	passing	technique.	

Kalman filters	(applications)

• Classical	application	of	the	Kalman filter	
is	tracking	movements of	aircrafts	and	
missiles	using	radars.

• Kalman filters	are	used	to	reconstruct	
trajectories	of	particles	in	physics	and	
monitoring	ocean	currents.

• The	range	of	applications	is	much
larger	than	tracking	of	motion:	any	
system	characterized	by	continuous	
state	variables	and	noisy
measurements	will	do
(pulp	mills,	chemical	plants,
nuclear	reactors,	plant
ecosystems,	and	national

economies).

Kalman filters	(non-linearities)

Kalman filters	assumes	linear	Gaussian	transition	and	sensor	

models.

What	if	the	model	is	non-linear?
Example:	assume	a	bird	heading	at	high	speed	straight	for	a	tree	trunk

A	standard	solution:	switching	Kalman filter
• multiple	Kalman filters	run	in	parallel,	each	using	a	different	model	of	the	

system	(one	for	straight	flight,	one	for	sharp	left	turns	,	and	one	for	sharp	

right	turns)

• a	weighted	sum	of	predictions	is	used,	where	the	weight	depends	om	how	

well	each	filter	fits	the	current	data

• this	is	a	special	case	of	DBN	obtained	by	adding	a	discrete	“maneuver”	
state	variable to	the	network

Kalman filter a more realistic model

Keeping	track	of	many	objects

We	have	considered	state	

estimation	problems	

involving	a	single	object.

What	do	happen	if two	or	

more	objects	generate	the	

observations?

Additional	problem:

Uncertainty	about	which	

object	generated	which	

observation!

Keeping	track	of	many	objects	(approaches)

Data	association	problem:
the	problem	of	associating	observation	data	with	the	objects	that	

generated	them

Exact	reasoning	means	summing	out	the	variables	over	all	possible	

assignments	of	objects	to	observations

– for	a	single	time	slice	and	n	objects	it	means	n!	mappings

– for	T	time	slices	we	have	(n!)T mappings

Many	different	approximate	methods are	used.
– choose	a	single	“best”	assignment	at	each	time	step

• nearest-neighbor	filter	(chooses	 the	closest	pairing	of	predicted	position	and	
observation)

• a better	approach	is	to	choose	the	assignment	that	maximizes	the	joint	
probability	of	the	current	observations	given	the	predicted	positions	 (the	
Hungarian	algorithm)

– Any	method	that	commits	to	as	single	best	assignment	at	each	time	step	

fails	miserably	under	more	difficult	conditions		(the	prediction	on	the	

next	step	may	be	significantly	wrong)

• particle	filtering	(maintains	a	large	collection	of	possible	current	assignments)

• MCMC (explores	the	space	of	possible	current	assignments)

Keeping	track	of	many	objects	(in	reality)

Real	applications	of	data	association	are	typically	

much	more	complicated.

– false	alarm	(clutter)
(observations	 not	caused

by	real	objects)

– detection	failures
(no	observation	 is	reported

for	a	real	object)

– new	and	disappearing	objects
(new	objects	arrive	and	old	ones	disappear)

© 2016 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

