Introduction to
Artificial Intelligence

Problem solving agent is a type of goal-based agent
— uses atomic representation of states
— goal is represented by a set of goal states
— actions describe transitions between states

The task is to find a sequence of actions that reaches the
goal state (from the initial/current) state.

Problem solving is realized via search:
— tree search vs graph search

— uniformed search (no additional information beyond
problem formulation)

— informed (heuristic) search (uses problem-specific
knowledge)
 algorithm A*: f(n) = g(n) + h(n)

W!| find locations of N queens on board

W of size NxN such that the queens
do not conflict with each other

W conflicts:

"] e same row
W e same column
W * same diagonal

How to model the problem?
* What is the goal?

* What are the states?

* What are the actions?

States = locations of queens on board
Initial state = empty board

Goal state = unknown state

but easy to recognize: N queens are on board and no
conflict among them

Action = put a queen to a board (such that the
gueen does not conflict with already placed
gueens)

Better model:

gueens are pre-allocated to columns and we are looking
for rows only (smaller search space: NN vs. (NxN)N)

Alternative model:

all queens are on board and we can just change their
positions (local search)

Properties:

e ciEs — we know the depth where the
solution lies (N)

— each branch leads to a different
set of states (search nodes
contain different states)

Hence, tree search with depth search strategy
(backtracking) is appropriate °

there. .
- .
FELL LR L bk
Can we do better? P e g
@ L ,JQ,M i o
FINNTANSHANS [o
@ﬂii ?7@:
] M%ﬂ@@] -.@:w' - 4@
> n 3 Omj% ﬁ

Introduction to Artificial Intelligence, Roman Bartak

Forward checking

Intro

W) 5 [o< o | NI < | x| x| o [Nl
X | X X /| x X| X | X
W [xx N

X% N) x| Nl X | X

Each time we assign a queen, we remove all conflicting
positions for not-yet assigned queens.

This technique is called forward checking.
How to implement this technique for N-queens and for

other problems?

duction to Artificial Intelligence, Roman Bartak

9l6|3[1|7[4]2]5]8 . .
1 T718l325l612 109 Logic-based puzzle, whose goal is to enter
2/54|6l8lal7]3][1] digits 1-9 in cells of 9x9 table in such a
81211415 7]1519]6] way, that no digit appears twice or more in
bl L L S every row, column, and 3x3 sub-grid
713[5]9|6[1]|8]2]4 ’ , :
518[9|7[1[3[4]6]2

3[1(7]2]4|6|9|8|5

6(4]2]5|9(8|1]7]3

Each cell is a variable ° 13 : g

08
89
08

. . 6 1195
with possible values 5Ts -
from domain {1,...,9}. : 6 3
4 8 3 1
Cells in rows, columns, 7 2 6
. 6 2|8
and sub-grids should s

contain different values. 8 7|9

Introduction to Artificial Intelligence, Roman Bartak

We can formulate N-queens, Sudoku and other problems
using a common formalism with factored state representation.

Constraint satisfaction problem consists of:
— a finite set of variables

» describe some features of the world state that we are looking for, for
example position of queens at a chessboard
— domains — finite sets of values for each variable
» describe “options” that are available, for example the rows for queens
— a finite set of constraints
* aconstraint is a relation over a subset of variables;

constraint can be defined in extension (a set of tuples satisfying the
constraint) or using a formula (rowA # rowB)

e constraint arity = the number of constrained variables

A feasible solution of a constraint satisfaction problem is a
complete consistent assignment of values to variables.
complete = each variable has assigned a value
consistent = all constraints are satisfied

First, one needs to formulate the problem as a
constraint satisfaction problem.

This is called constraint modeling.

Example (N-queens problem):

the core decision: each queen is pre-allocated to its
own column and we are looking for its row

variables: N variables r(i) with the domain {1,...,N}

constraints: no two queens attack each other

Vi rli)=r(j) A li-j| # [r(i)-r(j)

Backtracking search:
assign a value to a selected (not-yet instantiated) variable
check constraints over already instantiated variables

if the constraints are satisfied then continue to the next variable
otherwise try a different value

if no value can be assigned to a variable then go back to the
previous variable and try an alternative value for that variable

repeat until all variables are instantiated (and all constraints

satisfied)

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure
if assignment is complete then return assignment
var +— SELECT- UNASSIGNED- VARIABLE(Variables/csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to Constraints[csp] then
add { var = value } to assignment
result «+— RECURSIVE- BACKTRACKING(assignment, csp)
if result # failue then return result
remove { var = value } from assignment
return failure

Introduction to Artificial Intelligence, Roman Bartak

10

Can we use the constraints in a more active way,
for example to prune inconsistent values ?

Example:
Ain3..7,Bin1..5 the variables’ domains
A<B the constraint

— many inconsistent values can be removed
—weget Ain3.4,Bin4..5

Note: it does not mean that all the remaining combinations of the values are
consistent (for example A=4, B=4 is not consistent)

How to remove the inconsistent values from the
variables’ domains in the constraint network?

For simplicity we will assume binary CSPs only

i.e. each constraint corresponds to an arc (edge) in the
constraint network.

The arc (V,)V)) is arc consistent iff for each value x from the domain D,
there exists a value y in the domain D; such that the assignment V, =x
a V, = y satisfies all the binary constraints on V,, V..

Note: The concept of arc consistency is directional, i.e., arc consistency of
(V;,V;) does not guarantee consistency of (V,V)).

CSP is arc consistent iff every arc (V,)V;) is arc consistent (in both
directions).

Example:

A<B A<B A<B
Al 37 1..5]pg Al 3-4 1.5]g A 3.4 B

no arc is consistent (A,B) is consistent (A,B) and (B,A) are consistent

4.5

= - —

Algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;, X5, ..., X,}
local variables: gqueue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(Xi, X;) 4+ REMOVE-FIRST(queue)
e if RM-INCONSISTENT-VALUES(X;, X;) then

for each X} in NEIGHBORS[X;| do
q add (X, X;) to queue
" function RM-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed <« false
for each z in DoMAIN[X;]| do
if no value y in DOMAIN[X] allows (z,y) to satisfy constraint(X;, X;)

then delete z from DOMAIN[X;]; removed « true
return removed

Introduction to Artificial Intelligence, Roman Bartak 13

How to integrate arc consistency with backtracking search?
* make the problem arc consistent.

» after each assignment (during search) arc consistency is
restored (by removing inconsistent values)

This technique is known as look ahead or constraint
propagation or maintaining arc consistency.

What is the difference from forward checking?

* FC only checks constraints |
co nta I n I n g curre nt | y function BACKTRACKING-SEARCH(C P

k({ },csp) . 3
return BACKTRAC (3 returns a solution, OF failure

L] L] L]) ,)
instantiate variable e axcKTACKsn D T

. he
. S complete t
if asslgnment ' N ASSIGNED’VARIA pLE(csP) ar assignment, csp) do

* LA checks all constraints uar = SELECT U DOMAIN-VALUES

ue in . :
for each vel sistent with assign

(and hence removes more vl O et

INFEREN CE(csp,var,

inconsistencies) e enees foure bR,

K(assignmen

. _—
eturns a solution, Of failur

t,csp)
result < BA ;
if result # fazllure then |
me assignmen
Eet“"— value} and inferences from
remove V0T =

return fa,ilure

Constraint satisfaction techniques

Backtracking is not very good

* 19 attempts

0 — \KIZ

And the winner is Look Ahead
2 attempts

W

X y

Introduction to Artificial Intelligence, Roman Bartak

Forward checking is better
3 attempts
{/ K

15

Arc consistency is a form of local consistency.

Arc consistency removes values (locally) violating
some constraints but does not guarantee global
consistency.

Example (back to Sudoku):

This problem is AC, but not
globally consistent.

396)(1,14'7 V

4 57) O

%))

We can generally define k-consistency, as the consistency check

where for a consistent assignment of (k-1) variables we require a
consistent value in one more given variable.

— arc consistency (AC) = 2-consistency

D =
. . B.@)S
— path consistency (PC) = 3-consistency i
X, a b A This problem is AC, but not PC.
ab c|x,
+
Xl ab

Theorem: If the problem is i-consistent Vi=1,..,n (n is the number of
variables), then we can solve it in a backtrack-free way.

— DFS can always find a value consistent with the assighment of previous
variables

Unfortunately, the time complexity of k-consistency is exponential
in k.

Instead of stronger consistency techniques (expensive) usually global
constraints are used — a global constraint encapsulates a sub-problem with a
specific structure that can be exploited in the ad-hoc domain filtering
procedure.

Example:

global constraint all_different({Xy,..., X,})
— encapsulates a set of binary inequalities X; #X,, X; # X3, ..., X, .1 # X,
— all_different({X,,..., X,}) ={(dy,..., d\) | Vi d;eD; & Vizj d,#d;}
— thefiltering procedure is based on matching in bipartite graphs

1. find a maximal matching

X, ab 2. remove arcs that are not
Z part of any maximal
+ o B C matching
2 3. remove corresponding
ab values

Bipartite graph % @

* variables on one side, values on the v‘g
other side ﬁ;fj

e arcs connect a variable with values in -
its domain

The backtracking search algorithm instantiates variables in
some order and assigns values in some order.

Which variable and value order should be used?

Variable ordering

Fail-first principle: assign first a variable whose assignment will
probably lead to a failure

— dom heuristic: variable with the smallest domain first

— deg heuristic: variable participating in the largest number of
constraint first

Value ordering
Succeed-first principle: value belonging to the solution first

How to recognize such a value?
— for example a value that restricts least the other variables
(keeps the largest flexibility in the problem)

— finding the generally best value is frequently computationally
expensive and hence problem-dependent heuristics are more

frequently used

Constraint Programming is a declarative
approach to (combinatorial) problem solving.

— construct a model (variables, domains, constraints)

— use a general constraint solver

e combination of search (backtracking) and inference
(domain pruning)

* arc consistency and global constraints are the most
widely used inference techniques

For more information

course Constraint Programming
— winter term
— http://ktiml.mff.cuni.cz/~bartak/podminky/

© 2020 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

