
Yuu Sakaguchi

How AlphaGo Works

How to Play Go

Played on a 19 x 19
square grid board.

Black and white
stones.

Points awarded for
surrounding empty
space.

Why is Go Hard to Compute?

Why is Go Hard to Compute?

Search space is huge

After the first two moves of a Chess game, there are 400 possible next moves.
In Go, there are close to 130,000.

Complexity : 250150 possible sequenses

Match against Lee Sedol

AlphaGo played professional Go player
Lee Sedol, ranked 9-dan, one of the best
players at Go in March 2016.

AlphaGo won by 4 - 1.

How did AlphaGo solve it?

How did AlphaGo solve it?

Ideas

● Deep Learning
● Convolutional Neural Network
● Supervised Learning
● Reinforcement Learning
● Monte-Carlo Tree Search

How did AlphaGo solve it?

Strategies

Knowledge learned
from human expert
games and self-play.

Monte-Carlo search
guided by policy and
value networks.

Computing Go

AlphaGo sees the board as One-hot matrix.
Give a state s, pick the best action a.

Computing Go

Convolutional Neural Network (CNN)

The hidden layers of a CNN consist of convolutional layers, pooling layers, fully
connected layers and normalization layers. There are many applications such as image
and video recognition, recommender systems and natural language processing.

Types of Neural Networks

1.Policy Network

Breath Reduction. Finds the probability of the next move,
and reduces the action candidates.

2. Value Network

Depth Reduction. Evaluates the value of the board at
each state.

Types of Neural Networks

Name Network Data Set Speed

Pπ Pᵞ Linear Softmax 8M from expert
players

CPU 2μs

Pᷟ Pᵩ Deep Network 28M from expert
players

GPU 2ms

Value Network
Vθ(S)
[-1,1]

Policy Network
P(a|s)
᷿aP(a|s) = 1

Vθ Deep Network 30M random states
from Pᷟ

+ 160M
probabilities
from Pᵩ

GPU 2ms

Types of Neural Networks

Policy Network

● Input layer : 19 x 19 x 48
● Hidden layers : 19 x 19 x k x (12 layers)
● Output layer : 19 x 19 P(a|s)

Value Network

● Input layer : 19 x 19 x 49
● Hidden layer : 19 x 19 x 192 x (12 layers) + 19 x 19 x (1 layer) + 256 x (1 layer)
● Output layer : 1 output V(S)

Types of Networks

Types of Networks

Policy Network

Input - First hidden layer :

● 2x2 padding
● 5x5 convolutional by 5 filters
● ReLU function

n - n+1 hidden layer
● 21x21 padding
● 3x3 convolutional by 3 filters
● ReLU function

12th hidden layer - Output
● 1 output
● Different biases on each place

on board
● Softmax function

Types of Networks

Value Network

Input - 12th hidden layer :

Same as policy network.

12th - 13th hidden layer
● 1x1 filter
● ReLU function

13th - 14th hidden layer
● Fully connected
● ReLU function

14th - output
● Fully connected
● tanh function

Training

Supervised learning of policy network

4 weeks on 50 GPUs using Google Cloud.

57% accuracy on test data.

Training

Reinforcement learning of policy network

1 week on 50 GPUs using Google Cloud.

80% against supervised learning.

Training

Supervised learning of value network

1 week on 50 GPUs using Google Cloud.

Monte-Carlo Tree Search

Monte-Carlo Tree Search

Monte-Carlo Tree Search : selection

P : prior probability

Q : action value

u(P) = P/N

Monte-Carlo Tree Search : expansion

Pᷟ = policy network

P = prior probability

Monte-Carlo Tree Search : evaluation

Vᵠ = value network

Monte-Carlo Tree Search : rollout

Vᵠ = value network

r = game score

Monte-Carlo Tree Search : backup

Q = action value

Vᵠ = value network

r = game score

DeepMind - Beyond AlphaGo

Questions?

