Pick-up and delivery using MAPF

O

David No
Chaman S
VVé&ra Skop

Seminar on Al 2018

Team #1

nejl

nafig

Kova




Introduction

O

OUR TOPIC




Problem definition

O




» Offline planning — execution on robots
« Abstraction — discrete steps
« Plans should be collision free

« Constraints

- Two agents can not be at the same place at the
same time

- Only one agent can go through one way at one time
step



» To study and implement some effective algorithm
for MAPF and to use it in our problem

» To observe how is the plan executed in ozobots and:

To try to solve problems that appear because of inaccurate start
of execution of the plans

To try to react to obstacles that appear in the map



Supporting programs

O

GRID DESIGNER
OZOCODE GENERATOR




Grid Designer

O




» Written in C#

» Generates xml code that is possible to store into
ozobot

» Possible to open generated code in ozoblockly editor

» Supports only basic commands we need in our
project
Follow line, turn left, turn right, go forward, go backward, wait,
stop motors

Say direction, set top light color, turn top light off



Ozocode Generator

O




Algorithm and results

O

WHAT WE HAVE DONE




MAPF algo - Conflict Based Search

O

Algorithm 1: high-level of CBS

Input: MAPF instance
1 R.constraints = ()
2 R.solution = find individual paths using the
low-level()
3 R.cost = SIC(R.solution)
4 insert R to OPEN
5 while OPEN not empty do
6 P < best node from OPEN // lowest solution cost
7 Validate the paths in P until a coniiicr ocoue
8 if P has no conflict then
9 | return P.solution // P is goal

10 C « first conflict (a;, a;,v,t) in P

11 foreach agent a; in C do

12 A < new node

13 A .constriants < P.constriants + (a;, s, 1)

14 A_.solution <+ P.solution.

15 Update A.solution by invoking low-level(a;)
16 A.cost = SIC(A.solution)

17 Insert A to OPEN




« Quick & dirty implementation of conflict based search
« Uses BFS instead of A*
« Branches for all optimal paths
. "Swap” problem is solved somewhat arbitrarily
« Slow, but seems to be working ©
. Input
« Compatible with the output of the Grid Designer

« Output
« Compatible with the input of the Ozocode Generator



Good map quality, appropriate thickness of the line

Otherwise ozobot can miss junction or it can detect junction even on
the straight line

Equal distances between nodes

Enough space between nodes (to avoid crashes of
ozobots on neighbouring nodes)

Run multiple ozobots in the same moment (sometimes
ozobot does not find the line on the beginning and the
whole experiment has to be repeated)

Waiting time (when no move is done) depends on the
length of the line between the nodes

Video



What next?
O

HOW TO CONTINUE




To implement more efficient algorithm
Kinetic constraints
To finish Pick-up and Delivery

To react to obstacles in the map that were not
present when searching the path

To create simulation of ozobots in the Grid Designer
To be able to try with more agents than we have

To add new functions to Ozocode Generator
Loops for obstacles detection
Maybe to be able to do an undo step



