Generative Adversial Networks
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ROADMAP

e Supervised vs Unsupervised
Learning
 Why study Generative Modeling?
* How do generative models work?
* Generative adversarial network



Supervised vs Unsupervised Learning
Supervised Learning

Data: (x,y)
X is data, y is label

Goal: Learn a function to map x->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x,y)
X is data, y is label

Goal: Learn a function to map x->y

Examples: Classification,
regression, object detection, DOG, DOG, CAT

semantic segmentation, image
captioning, etc. Object Detection



Supervised vs Unsupervised Learning
Supervised Learning

Data: (x,y)
X is data, y is label

Goal: Learn a function to map x->y

GRASS, :
TREE, SKY

Examples: Classification,
regression, object detection,
semantic segmentation, image

o Semantic Segmentation
captioning, etc.



Supervised vs Unsupervised Learning
Supervised Learning

Data: (x,y)
X is data, y is label

Goal: Learn a function to map x->y

Examples: Classification, A cat sitting on a suitcase on the floor
regression, object detection,
semantic segmentation, image

o Image captioning
captlonmg, etc.



Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature

learning, density estimation, etc.



Example 1: K-means clustering

Goal : to find groups - |
within the data that 35* ‘éa
are similar by some _ =
type of metric. -

K-means clustering



Example 2: Dimensionality reduction

Goal: to find axes along which

our training data has the most o e pece .
variation. | e —— £
Underlying Structure: axes | % =SS SSSesnss 5SS
In the right example, we start off

with data in 3D and we are going 3-d —> 2-d

to find two axes of vgr/atlon and Phincinel Gomponsnt Analysis
reduce our data projected down (Dimensionality reduction)

to 2D.



Example 3: Feature learning

In this case, our /oss is trying to

. L2 Loss function:
reconstruct the input data and use

Reconstructed data
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Example 4: Density estimation

Goal: to estimate underlying
distribution of our data.

In the right example, in top case, 1-d density estimation
we have points in 1D. And we fit
Gaussian into this density. In
bottom case, we have data in 2D
and we fit the model such that
density is higher where there is
more points concentrated

P ‘1_,.,_..,‘}.\

2-d density estimation



Why study Generative Models?

Simulate possible futures for planning. (Reinforcement Learning)
Missing data

* Semi-supervised learning
Multi-modal outputs

Realistic generation tasks



Next Video Frame Prediction

Ground Truth MSE Adversarial




Single Image Super-Resolution

bicubic SRResNet SRGAN
(23.44dBN0.7T777)

(21.59dB/0.6423) (20.34dB/0.6562)
-~




1IGAN

« = & Generative image Manipulation




Introspective Adversarial
Networks
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Image to Image Translation

Labels to Street Scene

output

https://www.youtube.com/watch?v=EYjdLppmERE



Maximum Likelihood

x N .
0" = argmax E;p,... 108 Pmodel(Z | 0)

Its easiest to compare many different models if we describe all of them as
performing Maximum Likelihood




Taxonomy of Generative Models

IT

Maximum Likelihood

N

Explicit density Implicit density
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- : : Markov Chai
Tractable density | Approximate density i okl

-Fully visible belief nets - ' GSN
‘NADE AR

‘MADE Variational  Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

Direct

models (nonlinear ICA)

(Goodfellow 201



Generative Adversarial Networks



Advantages of GANs

. They use a latent code that describes everything that is generated later. They
have this property in common with other models like Variational Autoencoders
and Boltzmann Machines . It is advantage they have over fully visible belief
networks.

. They are asymptotically consistent. So, if we are able to find the equilibrium
point of the game defining generative adversarial network, we are guaranteed
that we have actually recovered the true distribution that generates the data.
For example, if we have infinite data, we eventually recover the correct
distribution.

. There are no Markov Chains needed neither to train Generative Adversarial
Network nor to draw samples from it which is an important requirement.

. They are often regarded as producing the best samples compared to other
models



Training GANs: Two-player game

Discriminator
Generator Network

Network
Try to fool the discriminator Try to distinguish between
by generating real-looking real and fake images

Images



Two-player Game

Real or Fake

Dlscrlmlnator Network

Fake Images Real Images
(from generator) (from training set)

Generator Network

t

Random noise | y4




Adversarial Nets Framework

D tries to make
D(G(z)) near 0, G
tries to make D(G(z))

: near 1,
D(x) tries to be near
1
D
G Differentiable x sampled from
function D model

Differentiable

function G
x sampled from data

Input noise z



Generator Network
x = G(z;0(6))

1.G must be differentiable

2.No invertibility required
3.Trainable for any size of z



Discriminator Strategy

Optimal D(x) for any pgata(®) and pmodel () is always

pdata(m)
Pdata (:L') + Pmodel (33)

Discrirninator“ / Data
\ Model

.
.
-
.
.
L D J
.
.
L4 .
.

distribution

D(xz) =

Estimating this ratio
using supervised learning is

.
0.,

the key approximation

mechanism used by GANs //// ‘\\\ ‘:




Minimax Game

1 1
J(D) _ _5114::,,,\,1,data log D(x) — Q]Ez log (1 — D (G(2)))

JG) — _ j(D)

-Equilibrium is a saddle point of the discriminator loss
-Generator minimizes the log-probability of the discriminator being

correct



Minimax Game

r%in FEUAR. []E:wmata log Dy, (z) + Ez~p(z) log(1 — De, (Go, (z)))]
a d L ] L J

Discriminator output Discriminator output for
for real data x generated fake data G(z)

Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and

D(G(z)) is close to 0O (fake)
Generator (6 ) wants to minimize objective such that D(G(z)) is close to 1

(discriminator is fooled into thinking generated G(z) is real)



lan Goodfellow et al., “Generative

Training GANs: Two-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max |Epnpy,., 108 Doy () + Exnp(z) 108(1 — Do, (Go, (2))) |

0, 64

Alternate between:
1. Gradient ascent on discriminator

X [Ea:'vpdam log Dg, () + E.np(z) log(1 — Dg, (Go, (z)))]

2. Gradient descent on generator

n;in Ezfvp(z) log(1 — D, (Geg (2)))



Training Procedure

* Use Stochastic Gradient Descent - optimization
algorithm of choice on two minibatches simultaneously.
* A minibatch of training examples
* A minibatch of generated samples
* Optional: run k steps of one player for every step of the
other player.



lan Goodfellow et al., “Generative

Training GANs: Two-player game Adversarial Nets’, NIPS 2014

Putting it together: GAN training algorithm

for number of training iterations do

for k steps do
e Sample minibatch of m noise samples {z(*), ..., 2("™)} from noise prior p,(2).
e Sample minibatch of m examples {z(!),..., (™)} from data generating distribution
Paata ()

e Update the discriminator by ascending its stochastic gradient:

1 : ?
Vi 2 [10g D, (z) + 10g(1 — Ds, (G, (21"))) ]

end for
e Sample minibatch of m noise samples {z(*), ..., 2™} from noise prior p,(2).
e Update the generator by ascending its stochastic gradient (improved objective):

1 m z
Ve, - ; log(Dg,(Gs,(2")))

end for



Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.




Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
amazing!

Radford et al,
ICLR 2016




Generative Adversarial Nets: Convolutional Architectures
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Samples
from the <
model




Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Samples
from the <
model

Average Z
vectors, do
arithmetic




Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Smiling Man

from the

Samples <
model

Average Z
vectors, do
arithmetic



Generative Adversarial Nets: Interpretable Vector Math

Glasses man  No glasses man No glasses woman

Radford et al,
ICLR 2016




Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman e o

Woman with glasses
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