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Introduction

What is multi-agent path finding (MAPF)?

MAPF problem:
Find a collision-free plan (path) for each agent

Alternative names:
cooperative path finding (CPF), multi-robot path planning, 
pebble motion 
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MAPF formulation

• a graph (directed or undirected)
• a set of agents, each agent is assigned to 

two locations (nodes) in the graph (start, 
destination)
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Plans

Each agent can perform either move (to a 
neighboring node) or wait (in the same node) 
actions.

Typical assumption:
all move and wait actions have identical durations (plans for 
agents are synchronized)

Plan is a sequence of actions for the agent leading 
from its start location to its destination.

The length of a plan (for an agent) is defined by the 
time when the agent reaches its destination and does 
not leave it anymore.

MAPF task

Find plans for all agents such that the plans do 
not collide in time and space (no two agents are 
at the same location at the same time).
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time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6



Plan existence

Some trivial conditions for plan existence:
• no two agents are at the same start node
• no two agents share the same destination node

(unless an agent disappears when reaching its 
destination)

• the number of agents is strictly smaller than the 
number of nodes

No-swap constraint

Agents may swap position

Agents use the same edge at 
the same time!

Swap is not allowed.

V1 V2

V3

V4

time agent 1 agent 2
0 v1 v2

1 move v2 move v1

time agent 1 agent 2
0 v1 v2

1 move v2 move v3

2 move v4 move v2

3 move v2 move v1

Agent at vi cannot perform move 
vj at the same time when agent 

at vj performs move vi



No-train constraint

Agent can approach a node 
that is currently occupied but 
will be free before arrival.  

Agents form a train.

Trains may be forbidden.

time agent 1 agent 2
0 v1 v2

1 move v2 move v3

2 move v4 move v2

3 move v2 move v1

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v2 wait v3
3 move v4 wait v3
4 wait v4 move v2

5 wait v4 move v1

6 move v2 wait v1

Agent at vi cannot perform 
move vj if there is another 

agent at vj

V1 V2

V3

V4

Train collisions

If any agent is delayed then trains may cause 
collisions during execution.

To prevent such collisions we may introduce more 
space between agents.



Robustness

k-robustness
An agent can visit a node, if that node has not been 
occupied in recent k steps.

1-robustness covers both no-swap and no-train 
constraints

[Atzmon et al., SoCS 2017]

Objectives

How to measure quality of plans?
Two typical criteria (to minimize):
• Makespan
– distance between the start time of the first agent 

and the completion time of the last agent 
– maximum of lengths of plans (end times)

• Sum of costs (SOC)
– sum of lengths of plans

(end times)

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6

Makespan = 4
SOC = 7
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Introduction to SAT

Express (model) the problem as a SAT formula in 
a conjunctive normal form (CNF)

Boolean variables (true/false values)
clause = a disjunction of literals (variables and 
negated variables)
formula = a conjunction of clauses
solution = an instantiation of variables such that the 
formula is satisfied

Example:
(X or Y ) and (not X or not Y)
[exactly one of X and Y is true]



SAT abstract expressions

SAT model is expressed as a CNF formula
We can go beyond CNF and use abstract 
expressions that are translated to CNF.

We can even use numerical variables (and 
constraints).

A => B B or not A

sum(Bs) >= 1
(at-least-one(Bs))

disj(Bs)

sum(Bs) = 1 at-most-one(B) and at-least-one(B)

SAT encoding: core idea

In MAPF, we do not know the lengths of plans 
(due to possible re-visits of nodes)!
We can encode plans of a known length using a 
layered graph (temporally extended graph).

Each layer corresponds to one time slice and 
indicates positions of agents at that time.



Classical model

Using layered graph describing agent positions at each time step
Btav : agent a occupies vertex v at time t

Constraints:
• each agent occupies exactly one vertex at each time.

• no two agents occupy the same vertex at any time.

• if agent a occupies vertex v at time t, then a occupies a 
neighboring vertex or stay at v at time t + 1.

Preprocessing:
Btav = 0 if agent a cannot reach vertex v at time t or
a cannot reach the destination being at v at time t

[Barták et al, ICTAI 2017]

Incremental generation of layers

Setting the initial and destination locations

Agent occupies one vertex at any time

No conflict between agents 

Agent moves to a neighboring vertex

K-robustness

Picat code
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Turning

6 classical actions needed to go from v1 to v7
plus 4 turning actions during execution

turning may take significant time (w.r.t. moving) 



Abstract vs. executable actions

Abstract actions:
• move
• wait

Executable actions:
• move forward
• wait
• turn left/right + move
• turn back and move

Times:
tt – time to turn left/right
tf – time to move forward

classic classic+wait

tf tf + 2*tt

tf + tt/2 tf + 2*tt

tf + tt tf + 2*tt

tf + 2*tt tf + 2*tt

Model with turning

It is possible to assume turn actions during path 
finding by splitting the nodes.  

Split model

Classical model



Experiment setting

Some results
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MAPF software
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