Multiagent (Deep)
Reinforcement Learning

MARTIN PILAT (MARTIN.PILAT@MFF.CUNI.CZ)

Reinforcement learning

The agent needs to learn to perform tasks in
environment

No prior knowledge about the effects of tasks
Maximized its utility

Mountain Car problem —
o Typical RL toy problem
o Agent (car) has three actions — left, right, none
o Goal — get up the mountain (yellow flag)

o Weak engine — cannot just go to the right, needs
to gain speed by going downhill first

Reinforcement learning

Formally defined using a Markov Decision Process (MDP) (S, A, R, p)
° §; € § — state space

° a; € A—action space
° 1 € R —reward space
o p(s',r|s,a) — probability that performing action a in state s leads to state s’ and gives reward r

Agent’s goal: maximize discounted returns Gy = Ry+q + YR¢i2 + V?Rii3 oo = Rpyq + VGryq

Agent learns its policy: m(A; = a|S; = s)
o @Gives a probability to use action a in state s

State value function: V7 (s) = E[G|S; = s]

Action value function: Q™ (s, a) = E,[G¢|S; = s,A; = a]

Q-Learning

Learns the Q function directly using the Bellman’s equations

Q(seap) « (1 —a)Q(se, ar) + a(ry + VmaaXQ(SHl» a))

During learning — sampling policy is used (e.g. the e-greedy policy — use a random action with
probability €, otherwise choose the best action)

Traditionally, Q is represented as a (sparse) matrix

Problems

> In many problems, state space (or action space) is continuous = must perform some kind of
discretization

o Can be unstable

Watkins, Christopher JCH, and Peter Dayan. "Q-learning." Machine learning 8, no. 3-4 (1992): 279-292.

Deep Q-Learning

Q function represented as a deep neural network

Convolution Convolution Fully connected Fully connected
A v hd L

Experience replay

o stores previous experience (state, action, new state,
reward) in a replay buffer — used for training

L]
]
[]
-
-
-
.
.
.
-

e

Target network
o Separate network that is rarely updated

...?..Q/...‘_”.-l..‘_(

Optimizes loss function
L(O) = E kr +ymaxQ(s,a;6;) — Q(s, a; 9))2]
a

° 0,0~ - parameters of the network and target network

e

" e e e e

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, et al. “Human-Level Control through Deep Reinforcement Learning.” Nature 518, no.
7540 (February 2015): 529-33. https://doi.org/10.1038/naturel14236.

https://doi.org/10.1038/nature14236

Deep Q-Learning

Successfully used to play single player Atari o

Star Gun
Robolank

games

Crazy CI mb

EF—

Demon An;ack
Name This Game
Krull

Complex input states — video of the game | —

Road Runi
Kangarou
James Bol d
Tennis

Action space quite simple — discrete — 2.:
=
Freeway 1o [

Rewards — changes in game score e 1 —

Fishing Derby | [SSSm—
Up and Down | sesdiil—

At human-level or above

Better than human-level performance nEno

Wizard of Wor

> Human-level measured against “expert” who Cre o
played the game for around 20 episodes of max. s
5 minutes after 2 hours of practice for each -
game. oo

Below human-level

o
E
N
93

Private Eye |}-2%
Montezuma's Revenge || 0%

T T T T T T T !
0 100 200 300 400 500 600 1,000 4,500%

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, et al. “Human-Level Control through Deep Reinforcement Learning.” Nature 518, no.
7540 (February 2015): 529-33. https://doi.org/10.1038/nature14236.

https://doi.org/10.1038/nature14236

Actor-Critic Methods

The actor (policy) is trained using a gradient that depends on a critic (estimate of value function)

Critic is a value function
o After each action checks if things have gone better or worse than expected

o Evaluation is the error 8; = 1441 + YV (St41) — V(st)
° |s used to evaluate the action selected by actor

o If § is positive (outcome was better than expected) — probability of selecting a; should be strengthened (otherwise lowered)

Both actor and critic can be approximated using NN
° Policy (m(s,a)) update - A8 = aVy(logmy(s,a))q(s,a)

° Value (q(s, a)) update - Aw = .B(R(S» a) +vq(Ser1, Qg1) — (St at))qu(st: at)

Works in continuous action spaces

Multiagent Learning

Learning in multi-agent environments more
complex — need to coordinate with other

agents

Example — level-based foraging (—)
° Goal is to collect all items as fast as possible

o Can collect item, if sum of agent levels is greater
than item level

0.23

0.83

0.15

Goals of Learning

Minmax profile
> For zero-sum games — (7;, 71;) is minimax profile if Ui(nl-,nj) = —U;(m;, ;)

o Guaranteed utility against worst-case opponent

Nash equilibrium
o Profile (my, ...,) is Nash equilibrium if Vivr;: U; (m;, m_;) < U;(m)

o No agent can improve utility unilaterally deviating from profile (every agent plays best-response to other agents)

Correlated equilibrium
o Agents observe signal x; with joint distribution (x4, ..., x,,) (e.g. recommended action)

o Profile (1, ..., m,) is correlated equilibrium if no agent can improve its expected utility by deviating
from recommended actions

o NE is special type of CE — no correlation

Goals of Learning

Pareto optimum
o Profile (14, ..., m,) is Pareto-optimal if there is not other profile ' such that Vi: U;(") = U_i(m) and
3i: Ul'(T[’) > Ul'(Tl')
o Cannot improve one agent without making other agent worse

Social Welfare & Fairness
o Welfare of profile is sum of utilities of agents, fairness is product of utilities

o Profile is welfare or fairness optimal if it has the maximum possible welfare/fairness

No-Regret
> Given history H* = (aq, ..., a;_1) agent i’s regret for not having taken action q; is

Ri(a) =) g qt) — wilal,al)
t
° Policy m; achieves no-regret if Va;: L}im %Ri(aiIHt) < 0.

Joint Action Learning

Learns Q-values for joint actionsa € A
° joint action of all agents a = (a4, ..., a,,), where a; is the action of agent i

t
Q' (as se) = (1 — a)Q(ayg, s¢) + au;
° uf - utility received after joint action a;

Uses opponent model to compute expected utilities of action
° E(a;) = Xq_, P(a_)Q" " ((a;,a_;), s¢4+1) —joint action learning

° E(a;) =Yg, Pla_ila;)Q"**((a;, a—;),s¢+1) — conditional joint action learning

Opponent models predicted from history as relative frequencies of action played (conditional
frequencies in CJAL)

€ — greedy sampling

Policy Hill Climbing

Learn policy m; directly

Hill-climbing in policy space
o it = nit(sit, af) + & if a is the best action according to Q(s¢, a})

o it = wl(st af) — otherwise

1
|A;|—1

Parameter ¢ is adaptive — larger if winning and lower if losing

Counterfactual Multi-agent Policy
Gradients

Centralized training and de-centralized execution (more information available in training)

Critic conditions on the current observed state and the actions of all agents
Actors condition on their observed state

Credit assignment — based on difference rewards

o Reward of agent i ~ the difference between the reward received by the system if joint action a was
used, and reward received if agent i would have used a default action

o Requires assignment of default actions to agents

o COMA — marginalize over all possible actions of agent i

Used to train micro-management of units in StarCraft

Foerster, Jakob, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. “Counterfactual Multi-Agent Policy Gradients.” ArXiv:1705.08926 [Cs], May 24, 2017.
http://arxiv.org/abs/1705.08926.

http://arxiv.org/abs/1705.08926

Counterfactual Multi-agent Policy
Gradients

a® =x(h?, €) T‘t
(e)—~ (v, 7°)-+| COMA
That {Q(u=1, u‘al,..],.T.,Q[ua= U, u?,.)}
(h*,)—>| GRU |—(h?) v
4 4

: :

[Environment] [gat’ a, “at-1) [u‘“t, Sp oat, a, Ill_l]

(a) (b) (c)

Figure 1: In (a), information flow between the decentralised actors, the environment and the centralised critic in COMA; red
arrows and components are only required during centralised learning. In (b) and (c), architectures of the actor and critic.

Foerster, Jakob, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. “Counterfactual Multi-Agent Policy Gradients.” ArXiv:1705.08926 [Cs], May 24, 2017.
http://arxiv.org/abs/1705.08926.

http://arxiv.org/abs/1705.08926

Ad hoc Teamwork

Typically whole team of agents provided by single organization/team.
° There is some pre-coordination (communication, coordination, ...)

Ad hoc teamwork
o Team of agents provided by different organization need to cooperate

o RoboCup Drop-In Competition — mixed players from different teams

o Many algorithms not suitable for ad hoc teamwork
o Need many iterations of game — typically limited amount of time

o Designed for self-play (all agents use the same strategy) — no control over other agents in ad hoc teamwork

Ad hoc Teamwork

Type-based methods
o Assume different types of agents

o Based on interaction history — compute belief over types of other agents
> Play own actions based on beliefs

° Can also add parameters to types

Other problems in MAL

Analysis of emergent behaviors

o Typically no new learning algorithms, but single-agent learning algorithms evaluated in multi-agent
environment

° Emergent language
o Learn agents to use some language

o E.g.signaling game — two agents are show two images, one of them (sender) is told the target and can send a message (from fixed
vocabulary) to the receiver; both agents receive a positive reward if the receiver identifies the correct image

Learning communication
o Agent can typically exchange vectors of numbers for communication
o Maximization of shared utility by means of communication in partially observable environment

Learning cooperation

Agent modelling agents

References and Further Reading

o Foerster, Jakob, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. “Counterfactual Multi-Agent Policy Gradients.”
ArXiv:1705.08926 [Cs], May 24, 2017. http://arxiv.org/abs/1705.08926.

° Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, et al. “Human-Level Control through Deep
Reinforcement Learning.” Nature 518, no. 7540 (February 2015): 529-33. https://doi.org/10.1038/nature14236.

o Albrecht, Stefano, and Peter Stone. “Multiagent Learning - Foundations and Recent Trends.” http://www.cs.utexas.edu/~larg/ijcail7 tutorial/

Nice presentation about general multi-agent learning (slides available)

o Open Al Gym. https://gym.openai.com/

Environments for reinforcement learning

o Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. “Continuous Control with
Deep Reinforcement Learning.” ArXiv:1509.02971 [Cs, Stat], September 9, 2015. http://arxiv.org/abs/1509.02971.

Actor-Critic method for reinforcement learning with continuous actions

o Hernandez-Leal, Pablo, Bilal Kartal, and Matthew E. Taylor. “Is Multiagent Deep Reinforcement Learning the Answer or the Question? A Brief Survey.”
ArXiv:1810.05587 [Cs], October 12, 2018. http://arxiv.org/abs/1810.05587.

A survey on multiagent deep reinforcement learning

o Lazaridou, Angeliki, Alexander Peysakhovich, and Marco Baroni. “Multi-Agent Cooperation and the Emergence of (Natural) Language.” ArXiv:1612.07182
[Cs], December 21, 2016. http://arxiv.org/abs/1612.07182.

Emergence of language in multiagent communication

http://arxiv.org/abs/1705.08926
https://doi.org/10.1038/nature14236
http://www.cs.utexas.edu/~larg/ijcai17_tutorial/
https://gym.openai.com/
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1810.05587
http://arxiv.org/abs/1612.07182

