
Multi-agent Path Finding
Planning & Executing

Roman Barták
Charles University, Czech Republic

joint work Jiří Švancara and Ivan Krasičenko

Talk outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives

Part II. Solving MAPF
– Reduction-based solvers

Part III. From abstract to executable actions
– Translation vs. model modification

Part IV. Demo

Talk outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives

Part II. Solving MAPF
– Reduction-based solvers

Part III. From abstract to executable actions
– Translation vs. model modification

Part IV. Demo

MAPF task

• an (undirected) graph
• a set of agents, each agent is assigned to two locations

(nodes) in the graph (start, destination)
• agents can move (to a neighboring node) or wait
Find plans for all agents such that the plans do not collide
in time and space (no two agents are at the same location
at the same time).

V1

V2

V3 V4

V5

V6

time agent 1 agent 2

0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6

Conflicts – summary

Vertex conflict – two agents are at the same time at
the same vertex
Edge conflict – two agents use the same edge at the
same direction
Swapping conflict – two agents use the same edge
at different direction
Following conflict – one agent follows another one
(train)
Cycle conflict – agents are following each other
forming a “rotating cycle” pattern

Objectives

How to measure quality of plans?
Two typical criteria (to minimize):
• Makespan
– distance between the start time of the first agent

and the completion time of the last agent
– maximum of lengths of plans (end times)

• Sum of costs (SOC)
– sum of lengths of plans

(end times)

time agent 1 agent 2

0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6

Makespan = 4
SOC = 7

Talk outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives

Part II. Solving MAPF
– Reduction-based solvers

Part III. From abstract to executable actions
– Translation vs. model modification

Part IV. Demo

Introduction to SAT

Express (model) the problem as a SAT formula in
a conjunctive normal form (CNF)

Boolean variables (true/false values)
clause = a disjunction of literals (variables and
negated variables)
formula = a conjunction of clauses
solution = an instantiation of variables such that the
formula is satisfied

Example:
(X or Y) and (not X or not Y)
[exactly one of X and Y is true]

SAT abstract expressions

SAT model is expressed as a CNF formula
We can go beyond CNF and use abstract
expressions that are translated to CNF.

We can even use numerical variables (and
constraints).

A => B B or not A

sum(Bs) >= 1
(at-least-one(Bs))

disj(Bs)

sum(Bs) = 1 at-most-one(Bs) and at-least-one(Bs)

Classical SAT-based approach

In MAPF, we do not know the lengths of plans
(due to possible re-visits of nodes)!
We can encode plans of a known length using a
layered graph (temporally extended graph).

Each layer corresponds to one time slice and
indicates positions of agents at that time.

Classical model

Using layered graph describing agent positions at each time step
Btav : agent a occupies vertex v at time t

Constraints:
• each agent occupies exactly one vertex at each time.

• no two agents occupy the same vertex at any time.

• if agent a occupies vertex v at time t, then a occupies a
neighboring vertex or stay at v at time t + 1.

Preprocessing:
Btav= 0 if agent a cannot reach vertex v at time t or
a cannot reach the destination being at v at time t

[Barták et al, ICTAI 2017]

Incremental generation of layers

Setting the initial and destination locations

Agent occupies one vertex at any time

No conflict between agents

Agent moves to a neighboring vertex

K-robustness

Picat code

SAT encoding

• initial location
• goal location
• at most one node per

agent
• at most one agent per

node (no vertex conflict)
• from node to edge
• from edge to node
• no swapping conflict

At(x,a,t) – agent a is at node x at time t
Pass(x,y,a,t) – agent a is going from node x to node y at time t

Makespan vs. Sum Of Costs

Makespan-optimal
plan might be SOC-
suboptimal

and vice versa, SOC-
optimal plan may
require larger
makespan.

SOC – Model 1 (incremental)

Observation:
• When we finally find the SOC-optinal plan, we noticed that a smaller

makespan would be enough in many cases (but when this makespan was
explored, the upper bound for SOC was too tight).

[Surynek et al, 2016]

Calculate shortest plan for each
agent independently

Calculate lower bounds for
makespan and SOC

Look for a plan with this
makespan and with upper
bound for SOC

If the plan exists then we are
done

If the plan does not exist then add one time
layer and increase upper bound for SOC

SOC – Model 2 (jump)

Core idea:
• Find a plan with minimal makespan and use the

difference between SOC of that plan and the lower bound
for SOC to find how many extra time layers are needed.

Calculate shortest plan for each
agent independently

Calculate lower bounds for
makespan and SOC

Look for a plan with the minimal
makespan and for that makespan
find the best SOC plan

Calculate the needed makespan
and find best SOC plan for it

Pre-processing

Classical pre-processing
• node x is not reachable from the start node at time

t (or destination is not reachable from node x
when starting at time t)

=> At(x,a,t) = 0

Novel pre-processing (for SOC)
• Let Spa be length of the shortest path for agent a,

minSOC be the lower bound for SOC, and
minSOC+d be the current upper-bound for SOC
Þ agent a must be at its destination since time

Spi+d
Þ At(x,a,t) = 0 (x≠ga & t ≥ Spa +d)

Experiment setup

4-connected grid maps (8x8 to 16x16)
20% randomly placed obstacles

for grid WxW, we use W to 2W agents
randomly placed starts/goals

five instances for each setting
175 unique problem instances
time limit of 600 seconds

Results

Results (another perspective)

Talk outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives

Part II. Solving MAPF
– Reduction-based solvers

Part III. From abstract to executable actions
– Translation vs. model modification

Part IV. Demo

Turning

6 classical actions needed to go from v1 to v7
plus 4 turning actions during execution

turning may take significant time (w.r.t. moving)

Abstract vs. executable actions

Abstract actions:
• move
• wait

Executable actions:
• move forward
• wait
• turn left/right + move
• turn back and move

Times:
tt – time to turn left/right
tf – time to move forward

classic classic+wait

tf tf + 2*tt

tf + tt/2 tf + 2*tt

tf + tt tf + 2*tt

tf + 2*tt tf + 2*tt

Model with turning

It is possible to assume turn actions during path
finding by splitting the nodes.

Split model

Classical model

Experiment setting

Some results

Quality index

10 cmedge 5 cm

Talk outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives

Part II. Solving MAPF
– Reduction-based solvers

Part III. From abstract to executable actions
– Translation vs. model modification

Part IV. Demo

MAPF software

Ozoblocky

Roman Barták
Charles University, Faculty of Mathematics and Physics

bartak@ktiml.mff.cuni.cz

