Multi-agent Path Finding
Planning & Executing

Part I: Introduction to MAPF

— Problem formulation, variants and objectives

Part Il. Solving MAPF

— Reduction-based solvers

Part lll. From abstract to executable actions

— Translation vs. model modification

Part IV. Demo

Part I: Introduction to MAPF

— Problem formulation, variants and objectives

* an (undirected) graph

* aset of agents, each agent is assigned to two locations
(nodes) in the graph (start, destination)

e agents can move (to a neighboring node) or wait

Find plans for all agents such that the plans do not collide
in time and space (no two agents are at the same location
at the same time).

@ | time | agent1 | agent2
@ / \ " "
@ —

wait v, move Vv,
movev; move Vv,

movev, move Vg

A W N -~ O

move Vg wait vg

Vertex conflict — two agents are at the same time at
the same vertex

Edge conflict — two agents use the same edge at the
same direction

Swapping conflict — two agents use the same edge
at different direction

Following conflict — one agent follows another one
(train)

Cycle conflict — agents are following each other
forming a “rotating cycle” pattern

How to measure quality of plans? &

YVONS
Two typical criteria (to minimize): -
 Makespan

— distance between the start time of the first agent
and the completion time of the last agent

— maximum of lengths of plans (end times)

* Sum of costs (SOC) time | agent1 | agent2 |

— sum of lengths of plans V1 L
(end times)

waitv; move v,

0
1
2 move v; move Vv,
Makespan = 4
SOC=7 3 move v, move Vg
4

™ move v wait vg

Part I: Introduction to MAPF

— Problem formulation, variants and objectives

Part Il. Solving MAPF
— Reduction-based solvers

Part lll. From abstract to executable acthﬂ;

— Translation vs. model modification

Part IV. Demo

hh

Express (model) the problem as a SAT formula in
a conjunctive normal form (CNF)
Boolean variables (true/false values)

clause = a disjunction of literals (variables and
negated variables)

formula = a conjunction of clauses

solution = an instantiation of variables such that the
formula is satisfied

Example:
(XorY) and (not X or not Y)
[exactly one of X and Y is true]

SAT model is expressed as a CNF formula

We can go beyond CNF and use abstract
expressions that are translated to CNF.

A=>B

B or not A

sum(Bs) >=1
(at-least-one(Bs))

disj(Bs)

sum(Bs) =1

at-most-one(Bs) and at-least-one(Bs)

We can even use numerical variables (and

constraints).

In MAPF, we do not know the lengths of plans
(due to possible re-visits of nodes)!

We can encode plans of a known length using a
layered graph (temporally extended graph).

Each layer corresponds to one time slice and
indicates positions of agents at that time.

Using layered graph describing agent positions at each time step
B.,, : agent a occupies vertex v at time t

Constraints:

e each agent occupies exactly one vertex at each time.
X 1 Bigy=1fort=0,..., m,and a=1,.... k.

* no tWO 0 agents occupy the same vertex at any time.
Zg= 1Btaz <lfort=0,...,m,andv=1,..., n.

e if agent a occupies vertex v at time t, then a occupies a

neighboring vertex or stay at vat time t + 1.
Btarv =1= Z'ltenc-ibs(vv)(’B(Vt—l—l)au) > 1

Preprocessing:
B.,, = 0 if agent a cannot reach vertex v at time t or
a cannot reach the destination being at vat time t

Picat code

1mport<§at.>

path(N,As) =>
K=len(AS)' 1 amental seneration o AVE
lower_upper_bounds (As, LB, UB),
between (LB, UB, M),
B = new_array (M+1,K,N),
B :: 0..1,

% Initialize the first and last states a9 e ene . . .
foreach (A in 1..K) Setting the initial and destination locations
(V,FV) = As[A],
B[1,A,V] = 1,
B[M+1,A,FV] = 1
end,

% Each agent occupies exactly one vertex Agent O nies one vertex at an me
foreach (T in 1..M+1, A in 1..K)

sum([B[T,A,V] : V in 1..N]) #= 1
end,

% No two agents occupy the same vertex

foreach (T in 1..M+1, V in 1..N) ’ .
sum([B[T,A,V] : A in 1..K]) #=< 1

end,

% Every transition is wvalid
foreach (T in 1..M, A in 1..K, V in 1..N)

neibs (v, Neibs), - .
B[I’A'v] #=> . Acen M OVE N 2 Neichbho " O n ~
sum([B[T+1,A,U] : U in Neibs]) #»>= 1

end,

solve (B), foreach(T in 1..M1, A in 1..X, V in 1..N)

B[T,A,V] #=> sum([B[Prev,A2,V] :
output_plan(s). " A2 in 1..K, A2!-A,

N ——— Prav in max(s,T-5)..T]) 4= 0
end K-robustness

At(x,a,t) —agent a is at node x at time t

Pass(x,y,a,t) — agent a is going from node x to node y at time t

Va € A: At(84,0,0) = 1 4=
Va e A: At(ga, 0, T) = 1 o
Va€ AVte{0,...,T}: > At(z,a,t) < I

zeV

Va € V,VtG{O,...,T}:ZAt(x,a,t)S]

acA

an

Ve e V,Vae AVte{0,..., T —1}:

At(z,a,t) = Z Pass(x,y,a,t) =1
(z,y)€EE
V(z,y) € E.Nae ANte{0,..., T —1}:
Pass(z,y,a,t) = At(y,a,t+ 1)

[/

V(z,y) e E:x#yNVte{0,..., T —1}:

Z (Pass(z,y,a,t) + Pass(y,x,a,t)) < | t——g
acA

initial location
goal location

at most one node per
agent

at most one agent per
node (no vertex conflict)

from node to edge
from edge to node
no swapping conflict

Makespan-optimal V—0) Mks(rt) = 5
. SoC(m) =10
plan might be SOC-

I
suboptimal ® & Y l

and vice versa, SOC-
timal pl
optimal plan may & &

g1 {)

: \/
require larger /L
makespan. O—0O—0

Calculate shortest plan for each }

. , agent independently
Algorithm 1 Model 1 N
function MODEL 1 =
Va; € A: SP; = shortest_path(s;, g;
Lé E'\[]q ' _2’ L Sp ! (v JZ) Calculate lower bounds for
(4 1 ‘?) = nla}\ieé D L4 makespan and SOC
LB(S0C) =Y ;e 4 SP; —_
0+ 0
while No Solution do T
solve_MAPF(LB(Mks) B(SoC) + 6) S
makespan and with upper
0 0+1 bound for SOC
end whlle
end function
If the plan exists then we are If the plan does not exist then add one time
done layer and increase upper bound for SOC

Observation:

When we finally find the SOC-optinal plan, we noticed that a smaller

makespan would be enough in many cases (but when this makespan was
explored, the upper bound for SOC was too tight).

Core idea:

* Find a plan with minimal makespan and use the
difference between SOC of that plan and the lower bound
for SOC to find how many extra time layers are needed.

- Calculate shortest plan for each
Algorlthm 2 Model 2 agent independently

function MODEL 2 /\
Ya; € A: SP; = shortest_path(s;, g;)

LB(Mks) = maxjca SP; - Calculate lower bounds for
tmakespan and SOC

LB(SoC) = },c4 SP;i

v+ 0

while No Solution do
S0C Opt_MAPF(LB(ﬂ[kS) AENE Look for a plan with the minimal

LB(SoC),|Al* LB(Mks) +) makespan and for that makespan

y—v+1 find the best SOC plan

end while

0 < SoC — LB(SoC)

opt MAPF(LB(MEs) + 6, LB(SoC). SoC) }

. Calculate the needed makespan
end function and find best SOC plan for it

Classical pre-processing

* node x is not reachable from the start node at time
t (or destination is not reachable from node x
when starting at time t)

=> At(x,a,t) =0

Novel pre-processing (for SOC)

* Let Sp, be length of the shortest path for agent a,
minSOC be the lower bound for SOC, and
minSOC+d be the current upper-bound for SOC

—> agent a must be at its destination since time
Sp;+d

= At(x,a,t) =0 (x#g, & t = Sp, +d)

4-connected grid maps (8x8 to 16x16)

20% randomly placed obstacles
for grid WxW, we use W to 2W agents

randomly placed starts/goals

five instances for each setting

175 unique problem instances B

time limit of 600 seconds

Results

600 - e —— —
I
::J /
i1 r
I-.
".." /
500 - ’- /
o ’
: .:'l 7
— .'.'.. '. /
.2.4(11 1 }_.) [
) y !
E E J
- £
.g 300 - 3 I -~
= e , ~/
.. -
2 i -/
£ -7 I~
S 200 - ~ /;
Pl /. veeeess Model 1
’,:" J - ==-Model 1+
,‘{'.. ~ I — ~Model 2
100 - 5.-'- p- -7 ¢ —— Model 2 +
-t -
2 / - - —cBs
'?bl -
e |
0 . e . w— e e
- MmN AN O m N~ mmhﬂmmml\ﬂmmml\ﬁmgmr\ﬂmmml\-||ncnm|\ﬁ-nmm
of Solved Problems

M.1 M.2 M. I+ M2+ CBS
of solved 97 137 95 139 97
of fastest 0 4 3 46 38
el s e
IPC score 16.11 44.56 16.76 57.07 92.50
IPC score 5719 11054 5393 13429 -

(without CBS)

Part lll. From abstract to executable actions

— Translation vs. model modification

6 classical actions needed to go from v1 to v7
plus 4 turning actions during execution

turning may take significant time (w.r.t. moving)

Abstract actions:

* move

Times:
t, — time to turn left/right
t; — time to move forward

e wait

Executable actions: [T

* move forward t; te + 2%,
* wait te + t,/2 te + 2%t,
* turn left/right + move 4+t te+ 27,

Xk Xk
e turn back and move e+ 271, te + 2%t

It is possible to assume turn actions during path
finding by splitting the nodes.

Classical model

Split model

Some results

edge 5cm
Computed Total Time [s] Max A time [s]
Makespan
14 14 5 0 1 0 NA 49.2 1.6 16
classic+wait 14 14 0 0 6 0 438 643 0 0
classic+robusmess 16 16 0 0 0 0 327 56.3 1.7 1.5
classic+wait+robustness 16 16 0 0 0 0 50.1 74 0 0
split 22 22 0 0 0 0 30.3 523 1.3 23
split+wait 22 22 0 0 6 0 36.1 69.1 0 0
split+robustness 23 23 0 0 0 0 31.2 53.1 1.2 22
split+wait+robusmess 23 23 0 0 0 0 375 722 0 0
w-split 36 66 0 0 0 0 30.2 54 0 0
w-split+robustness 36 66 0 0 0 0 30.2 541 0 0
Quality index Cm Failed Runs glmh:g Total Time Max A time
classic 5.00 5.00 2.00 5.00 275 5.00 1.90 493 1.52 1.61
classic+wait 5.00 5.00 5.00 5.00 212 5.00 3.69 4.10 5.0 5.00
classic+robustness 3.95 3.95 5.00 5.00 5.00 5.00 412 3.98 264 2.74
classic+wait+robustness 3.95 3.95 5.00 5.00 5.00 5.00 2.79 3.08 5.00 5.00
split 3.04 3.04 5.00 417 3.70 4.00 4.80 372 235 1.82
split+wait 3.04 3.04 5.00 5.00 273 5.00 411 3.50 5.00 5.00
split+robustness 2.87 2.87 417 417 4.33 4.50 3.67 3.57 3.14 2.69
split+wait+robusmess 2.87 2.87 5.00 5.00 5.00 5.00 3.83 3.29 5.00 5.00
w-split 1.97 1.15 5.00 5.00 3.83 5.00 4.99 4.88 5.00 5.00
w-split +robustness 1.92 1.13 5.00 5.00 5.00 5.00 4.88 4.82 5.0 5.00

Talk outline

Part I: Introduction to MAPF

— Problem formulation, variants and objectives

Part Il. Solving MAPF

— Reduction-based solvers

Part lll. From abstract to executable actic)jnl/f”‘/

— Translation vs. model modification | i

Part IV. Demo -

MAPF software

Solver Map

U Map Definition " Agents " Real Map |

| Solver " Settings " Actions \— ﬁi | #ﬁ
Map:

casomen | e e
Laiform v H - H * ’ v N Create new map:
Action durations: 1 Map size:
turnRight 990 * ‘ 4 X g Creat
turnLeft 990 D X ﬁ [H [— ’
waitC 1000 | ‘ Obstacles:
’Name: Iduration (ms): ﬁ? > > < ‘ Add H Remove ’ [None ’
| Delete || Edit || Add |

‘ Reset ’ [Save ’

Simulation: Path display ° () Scale () >

time line) |_2000 |4000 i6000 I8000 |10000 i12000 IMOOO |16000 |18000 |_20000 |
Agent 0 W start backw... | goB goB leftGo goB goB leftGo goB goB end
Agent_1 start goB backw... | leftGo goB leftGo backw... | backw... |rightGo | waitB end

O)

Create a map

Ozoblocky

wait m x 10 ms

x 10 ms

wait m
move forward at speed mm/s until line is found, and then follow the line

(80

move forward at speed mms until line is found, and then follow the line

1"} go_right_pad

Roman Bartak
Charles University, Faculty of Mathematics and Physics
bartak@ktiml.mff.cuni.cz

