
1

Multi-Agent Reinforcement Learning on Trains using Classical AI

Search Technique

Anthony Leamer1, Rajat Sharma1, Mohammed Shafakhatullah Khan1

Charles University1

anthonyleamer@gamil.com, rajatsharma3200@gmail.com, mdshafakat91@gmail.com

Abstract

The goals of Flatland Challenge are resolving problems of train
scheduling and rescheduling. To address these issues we used
AI search and planning techniques. In this report we produce
the classical AI search and planning techniques to review
transport planning problems with the help of the framework
provided by NeurIPS flatland Challenge. Multi-Agent Path
Finding (MAPF) is a problem of finding paths for multiple
agents and those paths must be collision free. To solve the
scheduling and rescheduling issues of dense railway network
we are using an optimized technique of MAPF. The techniques
used will resolve collision and deadlock problems and provide a
smooth transportation environment.

1 Introduction

NeurIPS 2020 Flatland Challenge is a railway scheduling

competition which was held in partnership with German,

Swiss, and French railway companies. This research challenge

deals with the real key problem in the transportation world.

The Flatland Challenge (Mohanty et al. 2020) is a research

competition designed to come up with solutions addressing

transportation issues not only in railway but also in other areas

of transportation and logistics “How to efficiently manage

dense traffic on complex rail networks?” this competition is

organized by AIcrowd, and this edition of the challenge is

affiliated with the AMLD2021 and ICAPS 2021 conferences.

This is a real-world problem faced by many transportation and

logistics companies around the world such as the Swiss

Federal Railways, Deutsche Bahn and SNCF (Li. J, et al.

2021).

The Flatland challenge was initiated in the year 2019, the

key concept of it is to answer “How can trains learn to

automatically coordinate among themselves, so that there are

minimal delays in large train networks?”, at the core of this

challenge lies the general vehicle rescheduling problem

(VRSP) (Li et al. 2007). In 2020, the organizers came up with

new issues regarding transportation and added them onto the

2019 version. The Flatland Challenge is a train planning

problem. The task of this competition is to design a plan such

that the trains reach their goal / destination position within a

time limit without colliding with each other.

Multi-Agent Path Finding (MAPF) deals with multi- agent

path finding problems, how to move agents from start to

target locations on a graph without vertex and edge collisions

(Stern R et al. 2019).

2 Flatland Challenge Environment

2.1 Problem Definition

Flatland environment is the core concept for a simulation

which contains all of the concepts like the railway network

itself (turns, one-ways, crossroads, turnouts, etc.) and its

agents (trains). The railway networks comprise of a 2D

rectangular grid with width and height, and number of cities

and stations. Each city contains multiple parallel rail tracks,

and each rail track in a city contains one or more stations.

Let’s assume that there are k trains t1, t2, t3….tk each of them

has its starting point and a destination point, here we

discretize time into timesteps from 0 to Tmax. To maximize the

reward, we give commands to the trains at every timestep so

that we move as many trains as possible to their goal cells as

soon as possible. We are interested in each agent reaching its

destination but we also strive to reach a global goal that all

trains reach their destinations.

Each grid is of size 1 x 1 and contains one of the seven base

types of tracks as shown the figure below Figure 1, that

determines how the train can move through the cells. In

addition to that, some of these base track types can be rotated

in up to four directions. This creates up to 27 different rail

types.

mailto:anthonyleamer@gamil.com
mailto:rajatsharma3200@gmail.com
mailto:mdshafakat91@gmail.com

2

Figure 1: Eight rail types: (a) straight, (b) curve, (c) simple switch, (d)

diamond crossing, (e) single slip switch, (f) double slip switch, (g) tri-

symmetrical switch, and (h) symmetrical switch (Li. J, et al. 2021).

The Flatland grid contains sparse railways that

essentially create limitations on the movement of the

agents. Trains must legally move around the grid through

these various rail types without colliding. Another rather

important conflict that must be solved in the challenge are

deadlocks where trains get stuck in a position and cannot –

without interruption – continue to their final destinations.

The basic conflicts are when two or more trains occupy the

same cell or when they exchange positions at same

timestep – that is forbidden and must be solved at the

beginning.

Figure 2: Flatland map with a grid before the execution of any

plan. (Source: AIcrowd [2020])

Each Flatland object has an assigned timestep limit and

all trains are required to reach their target within that limit.

The train which does not reach its goal position within that

timestep limit will be kept on an incomplete trains list. For

each train that is on the incomplete list there is a penalty

subtracted from the reward function. Time is discretized

into timesteps from 0 to Tmax, where

𝑇_𝑚𝑎𝑥 = 8 ∗ (𝑤 + ℎ + ⌈|𝐴|/|𝐶|⌉). equation 1

In equation 1, w is the grid width, h is the grid height, A

is the number of trains in the problem and C is the number

of cities in the grid. The task is to command the trains in

such a way that as many as possible get to their target

stations without collisions in the shortest time. With these

individual timestep costs, we will also analyze the total

time (make-span) until the last agent arrives at its goal

point. This gives birth to a reward function that is used

and evaluates the efficacy of various algorithms on a

local and global scale.

Timestep 0 means there are no trains in the environment.

To make the train appear in the environment with its initial

orientation, which occupies one cell, we provide the

departure time of the train and pass a command at that

time. During the execution, the train makes only one action

and occupies a single cell at each timestep. As per the

commands passed, the train behaves accordingly and

leaves the environment as soon as it reaches the

destination position if and only if there are no conflicts

during the transition and it doesn’t suffer a malfunction. If

a conflict occurs or a malfunction happens then the train

becomes still for a given number of timesteps and it cannot

make any sort of transition. This helps raise issues in the

execution as the penalties inquired by these delays are

visible in the final score.

The train has to perform a particular action at every

timestep from the start to the target position, either it has to

wait or move forward, turn left or right. Collision of trains

occurs only when two trains enter the same cell at the same

timestep (or pass through each other). The Flatland

Challenge considers the solution as valid if the trains reach

their targets within a reasonable timeframe. In the

environment we will come across four types of conflict

situations a) tile conflict (collision) b) following conflict

(can be eliminated by introducing elementary timesteps) c)

cycle conflict (form of deadlock) and d) swapping conflict,

illustrated in Figure 3 below.

Figure 3: Conflict Situations. (Source: AIcrowd [2020])

2.2 Examples

The following Figures 4 and 5 are visualizations of the

Flatland problem with 4 and 32 agents respectively. Results

obtained after running these simulations provided by

AIcrowd can be seen in Figures 6 and 7, where the

individual agents moved around the grid randomly. The five

scores in each figure are reflecting five separate runtimes of

the algorithm with again 4 and 32 agents respectively. The

reward function takes into account runtimes and the number

of trains that successfully got to their target locations on

time. The precise calculation of the reward function can be

found in the Flatland source code documentation.

3

Figure 4: 10 x 10 grid environment with 4 trains.

Figure 5: 30x30 grid environment with 32 agents

Figure 6: Scores of 5 Episodes for 4 trains.

Figure 7: Scores of 5 Episodes for 32 trains

3 Literature Review

3.1 Multi-Agent Path Finding

In the AI community, MAPF is one of the most researched

domains. Finding an optimal path for all the agents from

their initial state to the goal state without causing collision

during their transition is NP-hard (G. Sharon et al. 2015).

And while the problem is NP-hard, modern multi-agent

pathfinding algorithms are able to find optimal paths for

more than 100 agents in reasonable time. In most cases

there will be an additional goal to reduce the sum of

timesteps required for each agent to reach its goal state.

Hence, lot of research in this area is done on finding the

appropriate heuristics to solve the problem as quickly as

possible. In recent days this research has practical

applications in airplane taxiway scheduling (Li. J et al.

2019), robot routing (W. Honig et al. 2018, 2019), traffic

control, robotics, aviation and video games, etc. (G. Sharon

et al. 2015).

To solve the MAPF problem, the algorithms used are

categorized into two classes: optimal and sub-optimal

solvers. We usually apply optimal solvers when the number

of agents is relatively small and the task is to find an

optimal and minimal-cost solution. Whereas suboptimal

solvers are used to find paths when the number of agents is

high and finding the optimal solution is NP-hard.

3.2 A* Search

The A* search is an informed, best-first search algorithm. It

is an extension of the Dijkstra algorithm by a heuristic

function which makes the search more efficient – especially

useful when working with large state spaces. It can be

simply modified to be relevant for prioritized planning as

well. The A* builds a tree of possible paths originating from

the start node and always extends these paths one edge at a

time until a certain termination criterion is met. The path

extension order is determined by expanding nodes that

minimize the evaluation function f(n) = g(n) + h(n), where

g(n) represents the cost of travelling to the node n from the

agent’s start node and h(n) represents the estimated cost of

the cheapest path from node n to the target node based on

the heuristic function. The A* algorithm terminates when

the target node is expanded or when there are no more

nodes to expand.

The A* algorithm is complete when used on finite graphs

with non-negative edge weights (Russell & Norvig [2009])

and optimal if the heuristic function is admissible. An

admissible heuristic function is a distance function h that

never overestimates the cost of getting to the target node

from the current node. However, if the heuristic function is

only admissible, it does not guarantee that g(n) obtained

upon first expansion of the node is optimal. In order to

guarantee that the g(n) of a node is optimal upon its first

expansion, we must require that the heuristic function is

also consistent.

3.3 Conflict Based Search

Conflict Based Search (CBS) - as summarized by (Sharon et

al. 2015) - is a tree-based search algorithm used to find the

optimal solution for multiple agents by decomposing MAPF

into a number of constrained single-agent pathfinding CB

Searches. It is a two-level algorithm that is complete and

4

optimal and is able to solve large instances of MAPF

problems. All these problems are resolved in time

proportional to the size of the map and length of the

solution, but there is a possibility of having an exponential

number of such single-agent problems.

At the beginning of the CBS the search tree contains only

one node i.e., the root node without any constraints. Using

this node, CBS – on its low level - finds the shortest path for

the agents using one of the shortest path algorithms, mostly

A* search algorithm is used.

Conflict tree (CT) is a binary tree that guides the overall

search for the solution. Each node contains constraints for

each agent’s paths and the cost of the solution based on the

objective. The solution is in the node with the lowest cost,

where there are the fewest constraints, and all agents are

satisfying them and there are no conflicts between their

paths.

If nodes in the CT contain conflicts, we initially select the

one with the lower cost and secondarily the one with fewer

constraints (if they have the same cost). If they have the

same cost and same number of constraints, one of them is

arbitrarily selected and solved by splitting the node into two

child nodes where each of them prohibits one of the

conflicting agents from entering the conflicting cell. The

CBS always splits the conflicting node into two, meaning it

constrains only two agents in each step, even when there are

more agents in conflict in the node in question. Before any

implementation, this fact seems likely to play a negative role

in the Flatland environment because the railways are sparse

and contain a very high number of agents.

3.4 Prioritized Planning

Prioritized planning is a decoupled MAPF approach as it

plans agent paths individually. It is sub-optimal because it

doesn’t look at a global picture and does not enforce any

cooperation between agents that could be obtained through

coupled approaches which plan all agents together.

Alike other successful participants using local search

techniques we decided to solve a simplified problem by

omitting potential breakdowns and deadlock situations and

use a prioritized path planning algorithm to break down the

number of trains into smaller subgroups. This algorithm is

able to solve the Challenge in its first stages with few agents

but with variable speeds (no tricky deadlock/breakdown

situations). Based on the previous winners of the

competition that used prioritized planning to reduce the

number of agents that the CBS has to sift through, it is

obviously a very effective approach. The question for testing

is the group size.

The prioritized planning algorithm is simple and fast but is

not generally complete nor optimal. In our Flatland setting

where the grid starts empty and allows the placement of

agents in any order as well as time-step changes and also the

agents disappear immediately from the grid after reaching

their destination makes the prioritized planning algorithm

complete.

The prioritized planning approach is sensitive to the priority

assignments to agents and is very sensitive to the correct

assignment. There are various ordering heuristics that can be

used to boost the prioritized planning algorithm. From

research conducted on other Flatland participants we’ve

noticed that Fast-First ordering was the most effective and

decided to include it in our own implementation.

3.5 Large Neighborhood Search (LNS)

The LNS metaheuristic was proposed by Shaw. In LNS the

neighborhood is defined implicitly by a destroy and a repair

method. The destroy method destructs part of the current

solution while a repair method rebuilds the destroyed

solution. The destroy method typically contains an element

of stochasticity such that different parts of the solution are

destroyed in every invocation of the method. The

neighborhood L(s) of a solution s is then defined as the set

of solutions that can be reached by first applying the destroy

method and then the repair method. The main idea behind

the metaheuristic is that the large neighborhood allows the

heuristic to navigate in the solution space easily, even if the

instance is tightly constrained. This is to be opposed to a

small neighborhood which can make the navigation in the

solution space much harder. The destroy method is an

important part of LNS. The most important choice when

implementing the destroy method is the degree of

destruction: if only a small part of the solution is destroyed

then the heuristic may have trouble exploring the search

space, as the effect of a large neighborhood is lost. If a very

large part of the solution is destroyed then the LNS heuristic

almost degrades into repeated re-optimization. This can be

time-consuming or yield poor-quality solutions dependent

on how the partial solution is repaired. This is why an

educated neighborhood selection strategy is essential.

3.6 Minimal Communication Policies (MCP)

(Ma, Kumar, and Koenig 2017) MCP’s are decentralized

robust plan-execution policies that can prevent collisions

and deadlocks during plan execution for valid MAPF plans.

Usually, they stop some trains so that the original plan

maintains the ordering with which each train visits each

cell. This ensures all trains reach their destinations within a

finite number of timesteps.

4 Methodology

We have somewhat laid out our methodology higher, but

to sum up:

On the lower level of our Conflict Based Search we use

the A* algorithm which can quickly find paths for

individual agents and is subject to restrictions imposed by

the corresponding node in the CT. We adopted the space-

time A* algorithm to find the shortest path for every agent

that avoids collisions with the given paths of all other

trains. Each state of space-time A* is a pair of a cell and a

5

timestep. We reviewed previous heuristics used for the

A* algorithm in the Challenge and chose to use the

Distance Map heuristic. It is consistent; hence the

algorithm is admissible. It also showed more promise

in the Challenge than the Manhattan Distance

heuristic. For every agent, the heuristic calculates the

distance to the agent’s target for every reachable cell

by the agent. The heuristic function is formulated as

follows

hi,j = min(argmin (c(π0
i,j), c(π1

i,j), . . .), ∞),

we are searching for the minimal πk
i,j – the k-th possible

path from node i to node j. function c takes a path and

gives its length (cost).

We apply the high level of the CBS algorithm to

subgroups of trains in the grid. We use Prioritized

Planning to do so. The groups differ in size, we didn’t

restrict all groups to have a certain number of trains in

each group. In different steps of the Flatland Challenge

there are different numbers of agents in the grid, so we

firstly use PP to break the agents into as many groups as

there are different speeds of the trains. Then, if the number

of agents in a group is higher than 8, we break them up

into two either arbitrarily or preferably based on the

distances from each of theirs targets. We assign higher

priority to the ones that are faster and then also to the ones

that are closer to their destinations. Individual path

planning is done for the agents with higher priority first.

In our implementation we took care of agent collisions.

We did so by creating conditions in the run of the CBS

which then fed these constraints to the A* algorithm to

find collision-free paths. However, deadlocks are a

separate problem that require significant attention in the

Challenge in order to produce high ranking results. We

addressed them by introducing a Communication Policy

(CP) that recorded the intersections that a malfunctioned

train was supposed to pass through. All trains that were

supposed to pass through each of these intersections are

then stopped in such a cell, so they do not block any

additional trains and before passing any of these

intersections in question. We use Prioritized Planning to

prioritize the list of potentially affected trains based on

how close they are to any of these intersections in

question. We then run a partial replanning subroutine on

every train in this list in the order of its priority.

Firstly:

Step 1: create a queue of trains passing through the cell

occupied by the malfunctioned train.

Step 2: sort the queue based on the number of timesteps

that it takes each train to reach this occupied cell.

Step 3: pop the train with the highest priority and

perform replanning on its route.

Step 4: repeat steps 1-3 until the queue is empty.

Secondly:

Step 5: create a queue of trains passing through any of the

intersections that the malfunctioned train was supposed to

pass through on its way to its destination.

Step 6: sort the queue based on the arrival times to any of

these intersections in question (lowest time first).

Step 7: pop the train with the highest priority and

perform replanning on its route.

As defined in the Flatland Challenge, the trains appear

on the map at the start and disappear when they reach the

goal state which makes our prioritized planning approach

complete as it guarantees to find the optimal solution. At

the beginning of the simulation, priorities are given to all

the trains and are used throughout the simulation. Fast-First

is the first ordering, if some trains have identical speeds,

we apply the Near-First ordering that prioritizes the trains

closer to their final destinations. In order to avoid the

conflicts and make the trains reach their destination state

safely, the highest priority should be given to the fast trains

rather than the slower ones – this is a Fast-First heuristic

that turned out to be more efficient considered to others

(Rýzner 2020).

To farther improve our algorithm, we used the LNS to

replan possible train paths for a given group of trains (a

certain neighborhood of trains). The selection of

neighborhoods we mostly overtook from last year’s

Flatland Challenge winners only with minor changes,

mostly to the parameters. Our initial neighborhoods were

always the size of 4 (unless there are fever trains left in the

grid). The first two neighborhood selection methods are

from (Li et al. 2021a): (1) the train-based strategy, which

selects a train ai with the largest delay and 3 trains that

prevent train ai from reaching its target cell earlier; (2) the

intersection-based strategy, which selects 4 trains that visit

the same intersection (i.e., cell of rail types (c) to (g) in

Figure 1); (3) the start-based strategy, which selects 4

trains with the same start cell; and (4) the destination-based

strategy, which selects 4 trains with the same target cell.

5 Experimental Results
5.1 Collisions

We got our implementation to work very successfully on

levels with a maximum of 32 agents and no malfunctions.

The CBS was very efficient in finding the collision bound

trains and finding an optimal solution. We used Prioritized

Planning for breaking down the overall number of trains that

the CBS had to run on. The most effective approach was

when we limited the largest possible group of agents entering

a CBS run to 8. The smallest could be as small as 1 agent -

based on its subgroup chosen by the prioritization.

In Figures 8 through 10 we can see three different settings

with one smaller group limitation (maximum of 8 agents

entering a CBS) and one larger group limitation (maximum of

16 agents).

In these figures runtime was the only factor we analyzed in

percentages, with a runtime of 7865ms being 100%. It is a

6

limitation set for good representativity in our figures. It was

produced as the hardest problem where we broke 32 agents

down only into 2 groups of 16 agents for a CBS. For

example in Figure 8, for 16 agents the runtime was 81% of

the 7865ms cap, therefore 6370ms.

It was based on research we have conducted in Figures 8-10

(varying the maximal group sizes entering a CBS) that we

decided to cap the group sizes entering a CBS at 8.

Note: To more accurately test the optimal maximal group for

a CBS, we would have to conduct more expansive research

and would need more information about the evaluation itself.

Figure 8: Max group of 16 in one CBS run

Figure 9: Max group of 8 in one CBS run

Figure 10: Max group of 4 in one CBS run

5.2 Examples
When we implemented our algorithm with all our heuristics

and settings (as stated in Chapter 4) and with the knowledge

from Subchapter 5.1 (groups entering a CBS are below 8

trains per group) and kept the default Flatland Challenge

reward function, we obtained results that can be seen in

Figure 11. The scores in Figure 11 were obtained with 4 and

32 agents in the environment, respectively. In comparison

with the random agents that have no logic behind them, we

have produced higher ranking scores (compare with Figures 6

and 7).

Figure 11: Average scores over 10 episodes for 4 and 32 trains resp.

The default Flatland reward function takes the number of

trains that successfully arrived at their target location and

their runtimes as arguments. Because both algorithms -

default Flatland setting with random agents and our

implementation – managed to get all the trains to their

locations on time, the only unit the score reflects is runtime.

Therefore, our algorithm had on average ten times shorter

runtimes than agents moving randomly in the Flatland

example.

5.3 Malfunctions
As we didn’t manage to submit our techniques addressing

malfunctions directly but have already implemented them, we

ended up creating our own simulation and testing our

replanning approach. We did effectively solve a malfunction

problem by marking the intersections in question (as stated in

the theoretical part) and running a CBS search with a

constraint (blocked cell by malfunction and potential delays at

intersections where the malfunctioned train was bound) for

trains that had this cell or intersections in their path.

In our simulation – as can be seen in Figure 12 - we had only

two trains. Train number 1 malfunctioned and was still

supposed to pass through the highlighted intersection. Train 2

stopped a single step in front of the intersection in question

and a replanning subroutine was called because train 1 was

initially supposed to go through the intersection first. The new

paths will have train 2 passing through the intersection first as

the previous route is now blocked but there is an alternative

route and because train 1 is assigned the lowest priority in the

replanning as the malfunction may not be solved quickly.

Figure 12: 20x20 grid with 2 agents and 2 Target stations

7

Figure 13: 20x20 grid with 3 agents and 3 Target stations

In Figure 13 we complicated the situation by adding one

more train and another intersection influenced by the

malfunction of train 1.

Step 1: List all the intersections affected by the malfunction

(highlighted).

Step 2: Calculate the times it will take all the trains to reach

an affected intersection.

Step3: Prioritize the list of affected trains by the shortest

time it will take them to reach the affected intersection.

Step 4: Replan the train on the top of the prioritized list.

In our simulation the first train that needed replanning was

train 2. Our algorithm found the alternative around the

malfunctioned train 1. Secondly, it replanned train 3.

Possible upgrade to our malfunction problem is to replan the

trains before they stop near the affected intersection. We

replan at the point when all the trains get to the affected

intersections making our prioritizing redundant.

6 Conclusion

Apart from last year’s winners of the Challenge, we used a

less adaptive LNS, which could have caused lower yielding

scores in the more advanced rounds of the Challenge

compared to theirs. When we saw on the first levels of the

Challenge that the first method of choosing a neighborhood

for replanning ((1): picking a train with the longest route

and then 3 other trains at random – a slight change from

our initial thought of choosing the 3 other trains based on if

they play a role in delaying the initially chosen train) was

the most effective and we made it our default.

The Flatland Challenge was a challenging and

sophisticated task for us to do for the AI 2 seminar. In this

report we try to resolve the conflict between the trains to

have a smooth railway transportation, using A* search and

MAPF solvers. There are many other techniques available

which are complete and optimal MAPF algorithms, even

the previous competitors of the Challenge have used

techniques like CBS, push and rotate, LNS and won the

challenge.

7 Contributions

A. Leamer: Extensively researched the entire Flatland

Challenge API and figured out where and how to

incorporate the proposed classical AI algorithm code in the

adopted Flatland Challenge Environment. As well as

working hardly on the final report.

R. Sharma: Collection of Data, for approaches and

techniques related to Flatland Challenge in order to address

the issues of the Challenge and from the AI crowd to

prepare the Final Report and Presentation. Even, worked on

result simulation.

M. S. K: Implementation of the code viz., creating an

agent which uses the search algorithm, developing custom

observation, MAPF solver for replanning to resolve the

Flatland Challenge issues.

References

Atzmon, D., R. Stern, A. Felner, G. Wagner, R. Barták, & N.-

F.Zhou (2018): “Robust multi-agent pathfinding” in “Eleventh

Annual Symposium on Combinatorial Search”; pp. 1-9

Atzmon, D., R. Stern, A. Felner, N. R. Sturtevant, & S. Koenig

(2020): “Probabilistic robust multi-agent path finding” in

“Proceedings of the Thirtieth International Conference on

Automated Planning and Scheduling (ICAPS 2020)"; pp. 29-37

Barták, R., J. Švancara, & M. Vlk (2018): “A scheduling-based

approach to multi-agent path finding with weighted and

capacitated arcs” in “Proceedings of the Conference on

Autonomous Agents and Multiagent Systems (AAMAS)”; pp.

748–756

Bnaya, Z., R. Stern, A. Felner, R. Zivan, & S. Okamoto (2013):

“Multiagent path finding for self-interested agents” in “Sixth

Annual Symposium on Combinatorial Search”; pp. 38-46.

Botea, A. & P. Surynek (2015): “Multi agent path finding on

strongly biconnected digraphs” in “Twenty-Ninth AAAI

Conference on Artificial Intelligence”; pp. 2024-2030.

Boyarski, E., A. Felner, R. Stern, G. Sharon, E. Shimony,

O.Bezalel, & D. Tolpin (2015): “Improved conflict-based search

for optimal multi-agent pathfinding” in “Proceedings of the

Twenty-Fourth International Joint Conference on Artificial

Intelligence (IJCAI)”; pp. 740-746.

Cohen, L.; Uras, T.; Kumar, T. K. S.; and Koenig, S. (2019):

“Optimal and Bounded-Suboptimal Multi-Agent Motion

Planning.” In “Proceedings of the Twelfth International

Symposium on Combinatorial Search (SoCS 2019)”; pp. 44–51.

8

De Wilde, B., A. W. Ter Mors, & C. Witteveen (2014): “Push

and rotate: a complete multi-agent pathfinding algorithm” in

“Journal of Artificial Intelligence Research 51 (2014)”; pp. 443–

492.

Filip Rýzner. (2020): “Multiagent path-finding for trains with

breakdowns” In “Czech Technical University in Prague”

https://dspace.cvut.cz/bitstream/handle/10467/87776/F3-

BP2020-Ryzner-Filip-BP_FILIP_RYZNER_2020.pdf; pp. 1-74.

Hart, P. E., N. J. Nilsson, & B. Raphael (1968): “A formal basis

for the heuristic determination of minimum cost paths” in “IEEE

Transactions on Systems Science and Cybernetics SSC-4(2)”;

pp. 100-107.

Ho, F.; Salta, A.; Geraldes, R.; Goncalves, A.; Cavazza, M.; and

Prendinger, H. (2019): “Multi-Agent Path Finding for UAV

Traffic Management” from “Proceedings of the Conference on

Autonomous Agents and Multiagent Systems (AAMAS)”; pp.

131–139.

Hönig, W., S. Kiesel, A. Tinka, J. W. Durham, & N. Ayanian

(2019): “Persistent and robust execution of mapf schedules in

warehouses” in “IEEE Robotics and Automation Letters VOL.

4”; pp. 1125–1131.

Hönig, W., T. K. S. Kumar, L. Cohen, H. Ma, H. Xu,

N.Ayanian, & S. Koenig (2017): “Summary: Multi-agent

pathfinding with kinematic constraints” in “Proceedings of the

Twenty-Sixth International Joint Conference on Artificial

Intelligence (IJCAI-17)”; pp. 4869–4873.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and

Koenig, S. (2020): “New Techniques for Pairwise Symmetry

Breaking in Multi-Agent Path Finding” In “Proceedings of the

Thirtieth International Conference on Automated Planning and

Scheduling (ICAPS 2020)”; pp. 193–201.

Li, J., Chen, Z., Zheng, Y., Chan, S.-H., Harabor, D., Stuckey, P.

J., Ma, H., & Koenig, S. (2021): “Scalable Rail Planning and

Replanning: Winning the 2020 Flatland Challenge” in

“Proceedings of the International Conference on Automated

Planning and Scheduling, 31(1)”; pp. 477-485.

Mohanty, S. P.; Nygren, E.; Laurent, F.; Schneider, M.; Scheller,

C.; Bhattacharya, N.; Watson, J. D.; Egli, A.; Eichenberger, C.;

Baumberger, C.; Vienken, G.; Sturm, I.; Sartoretti, G.; and

Spigler, G. (2020): “Flatland-RL: Multi-Agent Reinforcement

Learning on Trains” in “CoRR abs/2012.05893”; pp. 1-25.

Sharon, G., R. Stern, A. Felner, & N. R. Sturtevant (2015):

“Conflict based search for optimal multi-agent pathfinding” in

“Artificial Intelligence 219 (2015)”; pp. 40-66.

Stern, R., N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker,

J. Li, D. Atzmon, L. Cohen, T. K. Satish Kumar, E. Boyarski, &

R. Bartak (2019): “Multi-Agent Pathfinding: Definitions,

Variants, and Benchmarks” in “e-prints arXiv:1906.08291v1”;

pp. 151-158.

Svancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and Bartak, R.

(2019): “Online Multi-Agent Pathfinding” in “The Thirty-Third

AAAI Conference on Artificial Intelligence (AAAI-19)”; pp.

7732–7739.

Walter, J. (2020): “Existing and Novel Approaches to the Vehicle

Rescheduling Problem (VRSP): In “the Course of the Flatland

Challenge by Swiss Federal Railways (SBB)” Master’s thesis,

University of Applied Sciences Rapperswil, Rapperswil,

Switzerland. pp. 1-68.

Wagner, G.; and Choset, H. (2017): “Path Planning for Multiple

Agents under Uncertainty” in “Proceedings of the Twenty-

Seventh International Conference on Automated Planning and

Scheduling (ICAPS 2017)”; pp. 577–585.

W. Hönig, S. Kiesel, A. Tinka, J. Durham, and N. Ayanian

(2018): “Persistent and robust execution of mapf schedules in

warehouses” in “IEEE Robotics and Automation Letters”; pp.

1125-1131.

W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian

(2018): “Conflict-based search with optimal task assignment” in

“Proceedings of the 17th International Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS)”; pp.

757–765.

