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MAPF – multi-agent path finding

 real life motivation

 environment abstraction – graph 

(with constant distances)

 goal – plan of movements

 state-space search

 Boolean satisfiability

 optimality:

 Makespan

 Sum of Costs
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 “finding a collision-free paths for a 
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 pair 𝐺, 𝐴

 graph 𝐺 = 𝑉, 𝐸

 set of agents 𝐴 = 𝑠𝑖 , 𝑔𝑖

 𝑠, 𝑔 ∈ 𝑉

 discretized time – time steps

 agent actions – move or wait

 in each time step

 task – find valid plan for each agent

 sequence of actions

 sequence of locations
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PROBLEM DEFINITION

 𝜋𝑖 plan for agent 𝑎𝑖

 𝜋𝑖(𝑡) location of agent at time 𝑡

 valid solution of MAPF problem is a 

plan:

𝜋 = ራ

𝑎𝑖∈𝐴

𝜋𝑖

1. plan for each agent is a valid path

2. only one agent can occupy one 

position at the time

 plain existence

3. only one agent can occupy one edge 

at the time

 no swap

Note: train allowed
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PROBLEM DEFINITION

 Optimal solution – feasible solution 

with minimal cost

Cost functions:

 Makespan

 Sum of Costs

 Feasible solution – polynomial

 Optimal solution – NP-Hard
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 SAT representation 

 time-expanded graph

 lower bound

 𝐿𝐵 𝑀𝑘𝑠 = max
𝑖∈𝐴

𝑆𝑃𝑖

 longest shortest path

 preprocessing for variables

 some vertices of time expanded 

graph are for agent unreachable
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 Makespan approach won’t work

 assuming we can encode upper 

bound to the model

 we should be able to use  

 to obtain plan with lowest SoC in 

specified interval
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SUM OF COSTS OPTIMAL MODELS

solve_MAPF(T, C) 

generates SAT model with:

 constraints 1-7

 MakespanT

 C as UB(SoC)

➢ simultaneously adds

➢ layers of time-expanded 

graph

➢ available actions
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1. optimal Makespan is found

 with no restriction on Sum of Costs

2. computes 𝛿 by Theorem 1 

3. finds optimal solution

opt_MAPF(T, L, U) 

generates SAT model with:

 constraints 1-7

 MakespanT

 L as LB(SoC)

 U as UB(SoC)

 optimal solution found using (9) in interval:

 with best Sum of Cost

from all optimal Makespans

 any feasible Makespan is sufficient at 

this stage, but nonoptimal is costly
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 for Makespan all agents 

needs same numbers of 

layers

 but for Sum of Costs 

agents “share available 

moves”

 agents with short shortest 

path have no chance of 

reaching all levels

➢ only when solving Sum of Costs!

➢ for each agent is created separate time-expanded 

graph with 𝑆𝑃𝑖 + 𝛿 layers

➢ such graphs are interconnected by constraints 1-7

➢ in this way, agents with short paths would 

disappear from abstract graphs of other players 

once they reach goal

➢ forbid their goal after timestep 𝑆𝑃𝑖 + 𝛿

time-expanded graph represented by SAT model can be seen as if each agent had his 
own version of this graph and those were connected by constraints
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 2d grids 8x8 up to 16x16

 20% of the cells are impassable

 1-2x grid width agents

 randomly generated unique start 

and unique end positions

 each setting 5x

 altogether 175 unique instances
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