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MAPF — multi-agent path finding
M real life motivation

B environment abstraction — graph
(with constant distances)

M goal — plan of movements
M state-space search
B Boolean satisfiability
M optimality:
M Makespan

B Sum of Costs
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MAPF

PROBLEM DEFINITION

M “finding a collision-free paths for a

B agent actions — move or wait
set of agents”

M in each time step

M pair (G,A)
W graph G = (V,E)

W set of agents A = {(s;, i)} M task — find valid plan for each agent

WsgeV M sequence of actions

B sequence of locations
M discretized time — time steps
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MAPF
PROBLEM DEFINITION

M 7; plan for agent g;

B 71;(t) location of agent at time ¢t

M valid solution of MAPF problem is a

plan:
T = U Tt;

a;eA

|. plan for each agent is a valid path

2. only one agent can occupy one

position at the time

B plain existence

3. only one agent can occupy one edge

at the time

B no swap

Note: train allowed
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MAPF

PROBLEM DEFINITION

M Optimal solution — feasible solution
with minimal cost

Cost functions:

M Makespan MkEs(m) = nax |3

B Sum of Costs S0C(m) = Z ||

1=1

M Feasible solution — polynomial

M Optimal solution — NP-Hard

Mks(mt) =5
SoC(m) =10
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M path length is unknown in advance
» restricted plan length

> iterative increasing

B MAPF to SAT
Vx € V,Va € AVt €{0,...,T}: At(x,a,t)
V(x,y) €EE,Va€ AVt e€{0,..,T—1}:
Pass(x,y,a,t)

Note:Vx € V: (x,x) € E — wait

Vae A: At(sq,a,0) = 1
Va e A: At(gg,a,T) =1
Vaec ANYte{0,...,T}: ZAt(x,a,t)SI

reV

Vz € V,Vte{a,...,T}:ZAt(:.c,a,t)g1

acA
Ve V.Nae ANVte{0,...,T—1}:

At(z,a,t) = Z Pass(z,y,a,t) =1
(z,y)EE

V(z,y) € E,Na€ ANte{0,..., T —1}:
Pass(z,y,a,t) = At(y,a,t+1)

V(z,y)e E:z £y Vte{0,...,. T —1}:
Z(Pass(:c,'y,a,t) + Pass(y,x,a,t)) < 1

acA

(D)
(2)
(3)

4

5)

(6)

(7)
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MAKESPAN OPTIMAL MODEL

B SAT representation

M time-expanded graph

M lower bound

W LB(Mks) = max SP;
LEA

M longest shortest path

M preprocessing for variables

B some vertices of time expanded
graph are for agent unreachable
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Mks(rt) = 6 Mks(mt) =5
oC(r)=9 (A O SoC(m) = 10
'@ 0
O Oan®,

B we should be able to use

M Makespan approach won’t work

B assuming we can encode upper
bound to the model

SoC(m) < UB(SoC) (8) Minimize_SoC(LB(SoC), UB(S0C))(9)

B to obtain plan with lowest SoC in
specified interval
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solve_MAPF(T, C)
generates SAT model with:

Algorithm 1 Model 1

M constraints |-7 function MODEL 1
Va; € A: SP; = shortest_path(s;, g;)
B 1 7 i1 Yi
Makespan T LB(Mks) = maxjc4 SP;
B Cas UB(SoC) LB(SoC) =34 SP;
00

while No Solution do
solve MAPF(LB(Mks) + 6, LB(SoC) + 6)
0—0d0+1
end while
end function
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SUM OF COSTS OPTIMAL MODELS

solve_MAPF(T, C)
generates SAT model with:

Algorithm 1 Model 1

M constraints |-7 function MODEL 1
Va; € A: SP; = shortest_path(s;, g;)
B 1 7 i1 Yi
Makespan T LB(Mks) = maxjc4 SP;
B Cas UB(SoC) LB(SoC) =34 SP;
00

while No Solution do

> simultaneously adds solve MAPF(LB(Mks) + 6, LB(SoC) + 6)

d+0+1
> layers of time-expanded end while
graph end function

» available actions
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problems with algorithm |I:
M iterates too many makespans

M at the end final makespan is lager
than needed

» find makespan that guarantees
existence of optimal solution

Algorithm 1 Model 1

function MODEL 1
Va; € A: SP; = shortest_path(s;, g;)
LB(Mks) = max;c4 SP;
LB(SoC) = Z,,EA SP;
0«0
while No Solution do
solve_ MAPF(LB(Mks) + 6, LB(SoC') + 6)
d+—o+1
end while
end function

)

v 40

while No Solution do
SoC' + opt MAPF(LB(Mks) + =,

LB(SoC),|A| *x LB(Mks) + 7)

y—v+1

end while

d < SoC — LB(SoC)

opt MAPE(LB(MEs) + &, LB(SoC), SoC)

end function

LA
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Algorithm 1 Model 1
function MODEL 1

problems with algorithm |: Vai; € A: SP, = shortest_path(si, gi)
LB(Mks) = max;c4 SP;
M iterates too many makespans 6LB (S0C) =2 ica SPi
0
M at the end final makespan is lager while No Solution do
Algorithm 2 Model 2

than needed function MODEL 2

Va; € A: SP; = shortest_path(s;, g;)
LB(Mks) = max;ca SP;

. LB(SoC) =>4 5P -
» find makespan that guarantees N0
existence of optimal solution while No Solution do

SoC' + opt MAPF(LB(Mks) + =,
LB(SoC),|A| *x LB(Mks) + 7)
Yy 7+1
end while
d < SoC — LB(SoC)
opt MAPE(LB(MEs) + &, LB(SoC), SoC)
end function
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Algorithm 2 Model 2

|. optimal Makespan is found function MODEL 2
Va; € A: SP; = shortest_path(s;, g;)
M with no restriction on Sum of Costs LB(Mks) = max;ea SP;
LB(50C) =3, , SP,

2. computes 6 by Theorem | N 0
. ) ) while No Solution do
3. finds optimal solution SoC ei)gt_g/[%PF(ﬁB(%csg/[: Y,

ol ), * s) +
opt_ MAPF(T, L, U) ,YH/H( ). |A] = LB(Mks) + )
generates SAT model with: end while
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Algorithm 2 Model 2

|. optimal Makespan is found function MODEL 2
Va; € A: SP; = shortest_path(s;, g;)
M with no restriction on Sum of Costs LB(Mks) = max;ea SP;
LB(50C) =3, , SP,

2. computes 6 by Theorem | N 0

. ) ) while No Solution do
3. finds optimal solution SoC' + opt MAPF(LB(Mks) + 7.

*
opt. MAPE(T.L, U) o flf(so()), |A| « LB(Mks) + 7)
generates SAT model with: end while
§ < SoC — LB(SoC)
M constraints |-7 opt MAPFR(LB(Mks) + 6, LB(SoC), SoC)

end function

B MakespanT
M LasLB(SoQ)
M Uas UB(SoQ)

M optimal solution found using (9) in interval:
(LB(SoC),|A|*LB(Mks)+-)
Minimize_SoC(LB(SoC), UB(SoC)) 9)



MODEL ||
YO NGO GO NI RYO®IRl = with best Sum of Cost

B with no restriction on Sum of Costs

from all optimal Makespans

M any feasible Makespan is sufficient at
this stage, but nonoptimal is costly

2. computes 6 by Theorem | ;\ /
3. finds optimal solution SoC < opt MAPE(LB(MFks) + 7,

LB(SoC),|A|l« LB(MEk
opt_MAPF(T, L, U) w_le( oC),|A| * LB(Mks) + 7)
generates SAT model with: end while

§ < SoC — LB(SoC)
constraints |-7 opt MAPF(LB(Mks) + 0, LB(SoC), SoC)

d functi
Makespan T end function
L as LB(SoC)
U as UB(SoC)

M optimal solution found using (9) in interval:
(LB(SoC),|A|*LB(Mks)+-)
Minimize_SoC(LB(SoC), UB(SoC)) 9)
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SUM OF COSTS OPTIMAL MODELS

time-expanded graph represented by SAT model can be seen as if each agent had his
own version of this graph and those were connected by constraints

M for Makespan all agents » only when solving Sum of Costs!
needs same numbers of

layers » for each agent is created separate time-expanded

graph with SP; + ¢ layers
M but for Sum of Costs
agents “share available
moves”’ > in this way, agents with short paths would
disappear from abstract graphs of other players
once they reach goal

» such graphs are interconnected by constraints |-7

M agents with short shortest

path have no chance of
reaching all levels » forbid their goal after timestep SP; + 6



D GUMISNEN

2d grids 8x8 up to 16x16
20% of the cells are impassable
|-2x grid width agents

randomly generated unique start
and unique end positions

each setting 5x

altogether 175 unique instances
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M. 1 M. 2 M. 1+ M. 2+ CBS
# of solved o7 137 Q5 139 o7
# of fastest 0 4 3 46 ]
# of fastest
(without CBS) | ° 8 6 s -
[PC score 16.11 44.56 16.76  57.07 92.50
[PC score
(without CBS) 57.19 110.54 5393 134.29 —
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