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Multi-robot navigation problem

• N robots, M obstacles
• Obstacles move as well

• Dynamic

• Partially observable

• Multiple targets
• Robots can go to any target

• Goal allocation

• Simulation and Real World

• Task: learn the navigation policy



Challenges

• Efficient target location allocation
• Allocate the goals fast

• Reduce the total travel time

• Robot cooperation
• How to combine the experience of all robots

• Transfer from simulation to real world
• Noise in observations from sensors

• Noise in motion when applying actions

• The noise parameters differ across different scenarios (sensor type etc.)



System framework of multi-robot navigation

• They share one neural network and policy
• The network is trained using input from all

robots

• Agents communicate through ROS
• They share observations

• obstacle positions, their position,…

• They receive actions

• Agents get information from sensors

• Agents have a dynamics model



Problem definition
• POMDP

• States
• Robot states: 𝒔𝑟

𝑡 = 𝑝𝑟𝑥
𝑡 , 𝑝𝑟𝑦

𝑡 , θ𝑟
𝑡 , 𝑣𝑟𝑥

𝑡 , 𝑣𝑟𝑦
𝑡 (position, orientation, velocity)

• Obstacle states: 𝒔𝑜
𝑡 = 𝑝𝑜𝑥

𝑡 , 𝑝𝑜𝑦
𝑡 , 𝑣𝑜𝑥

𝑡 , 𝑣𝑜𝑦
𝑡 , 𝑟𝑜

𝑡 (position, velocity, radius)

• Target positions: 𝒔𝑔 = 𝑝𝑔𝑥 , 𝑝𝑔𝑦

• Actions: 𝒂𝑡 = 𝑣𝑡
𝑡 , 𝑣𝑟

𝑡 ~ 𝜋 𝒂𝑡 𝒔𝑟
𝑡 , 𝒔𝑜

𝑡 , 𝒔𝑔

• Objective:
• Minimize travel time of

all agents to goals while
avoiding collisions



RL quick overview

• Estimate v(s) or q(s,a) … average return from state s (starting with a)

• 𝑉 𝑠 = 𝔼 𝐺𝑡 | 𝑠𝑡 = 𝑠 = 𝔼 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + 𝛾3𝑟𝑡+3 + … |𝑠𝑡 = 𝑠

• Bellman equation
• 𝑉𝜋 𝑠 = σ𝑎 𝜋 𝑠, 𝑎 σ𝑠′ 𝑃 𝑠′, 𝑟 𝑠, 𝑎)(𝑟 + 𝛾𝑉𝜋 𝑠′ )

• The equation is estimated, since we don’t know the probability model
• In POMDP, we even don’t know the states

• We also want to learn the policy π



1. Deep reinforcement learning framework

• State space: 𝒔𝑡 = 𝒔𝑟
𝑡 , ෤𝒔𝑟

𝑡 , 𝒔𝑜
𝑡 , 𝒔𝑔

𝑡

• Robot state, other robot states, obstacle state, allocated goal state

• Action space: 𝒂𝑡 = 𝑣𝑡
𝑡 , 𝑣𝑟

𝑡

• Velocities clipped to some range (hyperparameter)

• The reason is limited obstacle detection speed

• Reward of robot i: 𝑟𝑖
𝑡 = 𝑟𝑔,𝑖

𝑡 + 𝑟𝑐,𝑖
𝑡

Collision avoidance rewardGoal reward



1. Deep reinforcement learning framework

• Model used – PPO

• Temporal-difference method

• Actor-critic – 2 dense networks
• Actor – outputs actions

• Critic – estimates the value
function

• Predicted actions are continuous
• Transitional and rotational velocities are modelled

• Network outputs mean and standard deviation (Gaussian distribution)

• The action is sampled from these distributions



2. Target location allocation

• Why? – While avoiding obstacles, the closest target may change

• For N robots and N targets, allocate targets such that the total 
distance is minimal
• Allocation is a permutation of robots

• Presented algorithm – basically just check all permutations and select 
the best one

• Run only after 𝑇𝑎 steps
• 𝑇𝑎 is a hyperparameter

• Chosen according to no. of agents & computing power



3. Dynamics randomization

• Transfer from simulation to the real world

• Real sensors have noise that can be different for every device

• We want to avoid retraining the model on new data

• However, not retraining could lead to worse performance

• Solution: add noise during training
• The noise stays the same during the episode

• Uniformly selected from a predefined range

• All noises are 𝑁 0, ξ𝑖
• At each step, we sample from it



Full training cycle

• Classic DRL setting
• Simulate multiple episodes

• For every episode, set dynamics

• Train
• Every few steps, allocate goals

• Sample actions using the actor

• Collect next state, reward

• After T steps, compute losses



Related work

1. DRL models
• Q-learning, DQN, A3C, DDPG, PPO

• The difference is what they estimate (state/action-value function) and how

2. Multi-agent learning
• MADDPG – shared critic, one actor per robot

• SLCAP – similar approach, but PPO

• GA3C-CADRL – one policy for all agents, asynchronous

• These methods need preallocated targets

• IDRL – allocates targets, but needs static obstacles

3. Real world transfer – either retrain, or complicated dynamics model

High hardware cost, 
needs specific sensors

Asynchronous update 
inefficient for 
homogenous robots



Experiments

• Simulation
• Gym-Gazebo env, Turtlebot robots

• Obstacles – turtlebots that periodically change
velocity

• Three models
• 1. Without target allocation and dynamics

• 2. With target allocation

• 3. Full model

• Real world scenario
• UWB, Kinect v2 – coordinates, obstacle pos.



Results

• Baseline – ORCA (computes “allowed” velocities as to not collide)

• Metrics
• Success rate – # of bots that arrive to the goal

• Extra time – (avg bot travel time - lower bound on travel)



Summary

• Introduced a cooperative scheme for multi-robot navigation

• Collision avoidance

• Closest target location allocation

• Dynamics model for real world transfer

• Actor-critic based neural network model

• Two experiments – simulation & real world



Thank you for your attention!

Image sources: the paper
DRL basics: Straka’s lectures



What I think about the paper

• The dynamics (noise) is nice

• Clearly written main results

• The model is not too 
complicated

• All steps could be easily used in 
other models and scenarios

• The robots are cute

• The models with 
allocation/dynamics are trained 
longer

• Only one env/robot type, 
baseline model

• No confidence intervals in plots

• No code 

• The permutation allocation is 
lame


