Cooperative Multi-Robot Navigation in Dynamic
Environment with Deep Reinforcement Learning

Seminar on Artificial Intelligence |l
Gabriela Suchoparova, 16. 3. 2022

Outline

Introduction

Cooperation framework design

Deep reinforcement learning model
Target location allocation algorithm
How to solve the transfer to real world

S

Experiments

Multi-robot navigation problem

* N robots, M obstacles
e Obstacles move as well

* Dynamic
 Partially observable

* Multiple targets
* Robots can go to any target
* Goal allocation

e Simulation and Real World

* Task: learn the navigation policy

Challenges

* Efficient target location allocation
* Allocate the goals fast
* Reduce the total travel time

* Robot cooperation
 How to combine the experience of all robots

* Transfer from simulation to real world
* Noise in observations from sensors
* Noise in motion when applying actions
* The noise parameters differ across different scenarios (sensor type etc.)

System framework of multi-robot navigation

* They share one neural network and policy

* The network is trained using input from all
robots

* Agents communicate through ROS

* They share observations
* obstacle positions, their position,...

* They receive actions
* Agents get information from sensors
* Agents have a dynamics model

ROS Communication Network

ROS Master

jhl.\ill:l']

_

|

| Robot | 'eess | Robot N '

Publish -Subscribe

Sensors
UWB

Camera

Motion model

Observation model

Problem definition

 POMDP
e States

* Robot states: st = [pf,, pt,, 6L, vty vty | (position, orientation, velocity)
» Obstacle states: s, = |pSy, ply, Véy, V&, 4] (position, velocity, radius)
* Target positions: s, = [pgx, pgy]

» Actions: a* = [vf,vf] ~ n(at|st, s, s,)

° ObjECtive: argmin [E [T[rrn.s,.,lz‘\-.s(,_l,\/.s_,,,l:‘\-]
* Minimize travel time of st Wiieli, N ke LM
all agents to goals while dorii > 20
avoiding collisions drojik > Tr + To

(1_41.1 < (lmin

RL quick overview

e Estimate v(s) orq(s,a) ... average return from state s (starting with a)
* V(s) = E[G¢ | sy = s] = E[ry + ¥Tgq + VTe4z ¥V T4z + o|se = 5]

* Bellman equation

* V7(s) = Xam(s,a) Xs P(s', 7 | s,a)(r +yV7™(s"))

* The equation is estimated, since we don’t know the probability model

* I[n POMDP, we even don’t know the states

* We also want to learn the policy

state

"_| Agent |

reward
R,

1+1
-—]

S,

)

Rr_ s

1
-

Environment Jq—

action

1. Deep reinforcement learning framework

. ol — Jot ot ot ot
State space: s* = [sr, Sy, S, sg]

* Robot state, other robot states, obstacle state, allocated goal state
e Action space: at = [vf, v}]

 Velocities clipped to some range (hyperparameter)

* The reason is limited obstacle detection speed

* Reward of robot i 1y’ =1 ; + 7
5) 1/(1' 2 03 -10 if d.,. <2x*7r,
rii =14 1+d}*0.5 if0.1 <d <04 rt.=¢{ =10 if di, <r.+7,
10 * (1' Vs (/f,) otherwise 0 otherwise

Goal reward Collision avoidance reward

1. Deep reinforcement learning framework

- "

Policy

‘_

* Model used — PPO

| I
|
. - Robot 1 J'> -~ > Action |
* Temporal-difference method = 124 | £ — | E || £ 5
iy i e 1|
* Actor-critic — 2 dense networks 2 B | & TR [E -
. - RobotN HI| £ | = Action N
e Actor — outputs actions :) :
° Cnt'C — estimates the value »{ Reward -[: Critic -ll-b- Neural Network

function

* Predicted actions are continuous
* Transitional and rotational velocities are modelled
* Network outputs mean and standard deviation (Gaussian distribution)
* The action is sampled from these distributions

2. Target location allocation

 Why? — While avoiding obstacles, the closest target may change

* For N robots and N targets, allocate targets such that the total
distance is minimal
* Allocation is a permutation of robots

* Presented algorithm — basically just check all permutations and select
the best one

* Run only after T, steps
* T, is a hyperparameter
e Chosen according to no. of agents & computing power

3. Dynamics randomization

* Transfer from simulation to the real world

* Real sensors have noise that can be different for every device
* We want to avoid retraining the model on new data

* However, not retraining could lead to worse performance

* Solution: add noise during training
. . . - Noise in transitional velocity, &,

* The noise stays the same during the episode . Noise in rotational velocity, &,

. Uniformly selected from a predeﬁned range - Y\In?sc ?n the 'p.u.siliun (u?ordinulc.\‘) of robots, &3
- Noise in position (coordinates) of obstacles, &4

e All noises are N(O, El) - Noise in the measurements of obstacles &;

. - Mass of robots m,
e At each step, we sample from it

F U | | tra | N | N g CyC | e Algorithm 2 Policy Training with PPO

I: Initialize neural network g

2: for episode=1,2.... do
3: Reset the environment with the initial state, s;,,;
. . 4: Sample the dynamics parameters A from a range 7
* Classic DRL setting R il
. . . 5. =12
* Simulate multiple episodes 3 SEIRhot =1 2. G0 e
6: Receive state s;, select the goal position s, ,
: . 7. Add noise, 8! ~ s! + [£3. 4. &) |
* For every episode, set dynamics _ dd noise, 8; ~ 8; + (53, 84, S
8: Sample action a; ~ mp(a;|s;)
. 9: Add noise, a¢ ~ al + [£,. &
[} ! i . -l
Train 10: Publish &' to robot i
i AP AOCH, JieTcs 3 IS oo e
- Every few steps, allocate goals 1 Collect state S, ru\ard.“ and ¢_1], for T; ;_um steps
12: Compute advantage estimates A, ,...,. A;
e Sample actions using the actor 13: end for
. I d 14: Optimize surrogate loss L7 () wrt 6, with Adam
Collect next state, rewar optimizer and learning rate [, for K epochs
15: Oolq 0
° After T StepS; COmpUte Iosses 16: Optimize value loss LY (¢¥)) wrt ¥, with Adam opti-

mizer and learning rate /,, for L epochs
17: Wold ¢ ¥
18: end for

Related work

1. DRL models
* Q-learning, DQN, A3C, DDPG, PPO
* The difference is what they estimate (state/action-value function) and how

2. Multi-agent learning
* MADDPG - shared critic, one actor per robot j‘> High hardware cost,
SLCAP — similar approach, but PPO needs specific sensors
GA3C-CADRL — one policy for all agents, asynchronous j> ﬁseyf?i‘j;’:?;: update
These methods need preallocated targets homogenous robots

IDRL — allocates targets, but needs static obstacles

3. Real world transfer — either retrain, or complicated dynamics model

Experiments

NUC

UwB

Block

Batery
Battery

NUC

e Simulation

* Gym-Gazebo envy, Turtlebot robots

* Obstacles — turtlebots that periodically change
velocity

Kobubt

(a) (b)

Fig. 5. Configuration of real robots and obstacles

e Three models

e 1. Without target allocation and dynamics
e 2. With target allocation
* 3. Full model

* Real world scenario

 UWB, Kinect v2 — coordinates, obstacle pos.

Fig. 4. Simulation scenario

Results

* Baseline — ORCA (computes “allowed” velocities as to not collide)

* Metrics

* Success rate — # of bots that arrive to the goal
* Extra time — (avg bot travel time - lower bound on travel)

1.2 : : ' - : ——— : ——
ORCA-Sim ©Pre-Policy-Sim € TA-Policy-5im €DP-Policy-Sim 20§ (A)R(-'\‘Nm GTA'PUI!C_\-SHH
ORCA-Real # Pre-Policy-Real # TA-Policy-Real - DP-Policy-Real ORCA-Real - TA-Policy-Real| .
© Pre-Policy-Sim €©DP-Policy-Sim 2 caegp IS
u] 9_______________-_-_-_-_:3 Z 1 5 f* Pre-Policy-Real ® DP-Policy-Real| R i ‘
:"-d' - - - ’J
I:': T - o _ _ —5) E
T - o p—
Z) 8 [
808F-"==-==zzz3~-__ s
3 e >
= ~IIts-ll ~
7 . ——— o
- _ - : : - - bed ’
0.6 T
- 0 = = =
| 1.5 2 2.5 3 3.5 4 I 1.5 2 2.5 3 3.5 4

Number of Robots Number of Robots

Summary

* Introduced a cooperative scheme for multi-robot navigation
* Collision avoidance

* Closest target location allocation

* Dynamics model for real world transfer

e Actor-critic based neural network model

* Two experiments — simulation & real world

Thank you for your attention!

What | think about the paper

* The dynamics (noise) is nice * The models with
allocation/dynamics are trained

 Clearly written main results
longer

* The model is not too

complicated * Only one env/robot type,

, _ baseline model
 All steps could be easily used in

other models and scenarios

» The robetsare-cute * No code ®
* The permutation allocation is
lame

* No confidence intervals in plots

