
Cooperative Multi-Robot Navigation in Dynamic
Environment with Deep Reinforcement Learning

Seminar on Artificial Intelligence II

Gabriela Suchopárová, 16. 3. 2022

Outline

1. Introduction

2. Cooperation framework design

3. Deep reinforcement learning model

4. Target location allocation algorithm

5. How to solve the transfer to real world

6. Experiments

Multi-robot navigation problem

• N robots, M obstacles
• Obstacles move as well

• Dynamic

• Partially observable

• Multiple targets
• Robots can go to any target

• Goal allocation

• Simulation and Real World

• Task: learn the navigation policy

Challenges

• Efficient target location allocation
• Allocate the goals fast

• Reduce the total travel time

• Robot cooperation
• How to combine the experience of all robots

• Transfer from simulation to real world
• Noise in observations from sensors

• Noise in motion when applying actions

• The noise parameters differ across different scenarios (sensor type etc.)

System framework of multi-robot navigation

• They share one neural network and policy
• The network is trained using input from all

robots

• Agents communicate through ROS
• They share observations

• obstacle positions, their position,…

• They receive actions

• Agents get information from sensors

• Agents have a dynamics model

Problem definition
• POMDP

• States
• Robot states: 𝒔𝑟

𝑡 = 𝑝𝑟𝑥
𝑡 , 𝑝𝑟𝑦

𝑡 , θ𝑟
𝑡 , 𝑣𝑟𝑥

𝑡 , 𝑣𝑟𝑦
𝑡 (position, orientation, velocity)

• Obstacle states: 𝒔𝑜
𝑡 = 𝑝𝑜𝑥

𝑡 , 𝑝𝑜𝑦
𝑡 , 𝑣𝑜𝑥

𝑡 , 𝑣𝑜𝑦
𝑡 , 𝑟𝑜

𝑡 (position, velocity, radius)

• Target positions: 𝒔𝑔 = 𝑝𝑔𝑥 , 𝑝𝑔𝑦

• Actions: 𝒂𝑡 = 𝑣𝑡
𝑡 , 𝑣𝑟

𝑡 ~ 𝜋 𝒂𝑡 𝒔𝑟
𝑡 , 𝒔𝑜

𝑡 , 𝒔𝑔

• Objective:
• Minimize travel time of

all agents to goals while
avoiding collisions

RL quick overview

• Estimate v(s) or q(s,a) … average return from state s (starting with a)

• 𝑉 𝑠 = 𝔼 𝐺𝑡 | 𝑠𝑡 = 𝑠 = 𝔼 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + 𝛾3𝑟𝑡+3 + … |𝑠𝑡 = 𝑠

• Bellman equation
• 𝑉𝜋 𝑠 = σ𝑎 𝜋 𝑠, 𝑎 σ𝑠′ 𝑃 𝑠′, 𝑟 𝑠, 𝑎)(𝑟 + 𝛾𝑉𝜋 𝑠′)

• The equation is estimated, since we don’t know the probability model
• In POMDP, we even don’t know the states

• We also want to learn the policy π

1. Deep reinforcement learning framework

• State space: 𝒔𝑡 = 𝒔𝑟
𝑡 , ෤𝒔𝑟

𝑡 , 𝒔𝑜
𝑡 , 𝒔𝑔

𝑡

• Robot state, other robot states, obstacle state, allocated goal state

• Action space: 𝒂𝑡 = 𝑣𝑡
𝑡 , 𝑣𝑟

𝑡

• Velocities clipped to some range (hyperparameter)

• The reason is limited obstacle detection speed

• Reward of robot i: 𝑟𝑖
𝑡 = 𝑟𝑔,𝑖

𝑡 + 𝑟𝑐,𝑖
𝑡

Collision avoidance rewardGoal reward

1. Deep reinforcement learning framework

• Model used – PPO

• Temporal-difference method

• Actor-critic – 2 dense networks
• Actor – outputs actions

• Critic – estimates the value
function

• Predicted actions are continuous
• Transitional and rotational velocities are modelled

• Network outputs mean and standard deviation (Gaussian distribution)

• The action is sampled from these distributions

2. Target location allocation

• Why? – While avoiding obstacles, the closest target may change

• For N robots and N targets, allocate targets such that the total
distance is minimal
• Allocation is a permutation of robots

• Presented algorithm – basically just check all permutations and select
the best one

• Run only after 𝑇𝑎 steps
• 𝑇𝑎 is a hyperparameter

• Chosen according to no. of agents & computing power

3. Dynamics randomization

• Transfer from simulation to the real world

• Real sensors have noise that can be different for every device

• We want to avoid retraining the model on new data

• However, not retraining could lead to worse performance

• Solution: add noise during training
• The noise stays the same during the episode

• Uniformly selected from a predefined range

• All noises are 𝑁 0, ξ𝑖
• At each step, we sample from it

Full training cycle

• Classic DRL setting
• Simulate multiple episodes

• For every episode, set dynamics

• Train
• Every few steps, allocate goals

• Sample actions using the actor

• Collect next state, reward

• After T steps, compute losses

Related work

1. DRL models
• Q-learning, DQN, A3C, DDPG, PPO

• The difference is what they estimate (state/action-value function) and how

2. Multi-agent learning
• MADDPG – shared critic, one actor per robot

• SLCAP – similar approach, but PPO

• GA3C-CADRL – one policy for all agents, asynchronous

• These methods need preallocated targets

• IDRL – allocates targets, but needs static obstacles

3. Real world transfer – either retrain, or complicated dynamics model

High hardware cost,
needs specific sensors

Asynchronous update
inefficient for
homogenous robots

Experiments

• Simulation
• Gym-Gazebo env, Turtlebot robots

• Obstacles – turtlebots that periodically change
velocity

• Three models
• 1. Without target allocation and dynamics

• 2. With target allocation

• 3. Full model

• Real world scenario
• UWB, Kinect v2 – coordinates, obstacle pos.

Results

• Baseline – ORCA (computes “allowed” velocities as to not collide)

• Metrics
• Success rate – # of bots that arrive to the goal

• Extra time – (avg bot travel time - lower bound on travel)

Summary

• Introduced a cooperative scheme for multi-robot navigation

• Collision avoidance

• Closest target location allocation

• Dynamics model for real world transfer

• Actor-critic based neural network model

• Two experiments – simulation & real world

Thank you for your attention!

Image sources: the paper
DRL basics: Straka’s lectures

What I think about the paper

• The dynamics (noise) is nice

• Clearly written main results

• The model is not too
complicated

• All steps could be easily used in
other models and scenarios

• The robots are cute

• The models with
allocation/dynamics are trained
longer

• Only one env/robot type,
baseline model

• No confidence intervals in plots

• No code 

• The permutation allocation is
lame

