Attention Is All You Need
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Before the age of ML

e Rule-based approaches

e Statistical approaches



The Problems with Traditional Architectures

Recurrent Neural Networks (RNNs):

e The vanishing and exploding gradient problems - It is hard to control gradients during
backpropagation

Convolutional Neural Networks (CNNs)

e Struggle with capturing long-range dependencies



What is the attention?

Global attention — takes into account all elements in the
input data when calculating the attention weights

Local attention — uses smaller window of input elements

Self-attention — attending to elements within the same
sequence (either the input or the output)

Attention weights — how important
the element in the input sequence
relative to the current context




Differences between attentions:

English: The cat sat on the mat.

French: Le chat était assis sur le tapis.



Attention Query — the element we are currently

Mechanisms:
Query, Key, and Value

focusing on

Key — other elements in the input data

Value - is associated with each Key,
representing the information to be
aggregated




The Transformer Architecture

1.
2.
3.
4.
D.

Encoder-decoder structure

Self-attention layers for capturing relationships
Feed-forward networks

Layer normalization and residual connections
Multi-head attention
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Positional Encoding

e Self-attention mechanisms does not consider the order of elements in a sequence.

PE(pos,2i) = Sin(p08/100002i/dmodel)
PE(pos.2i11) = c05(pos/10000%/ dmos)

e Different formulas for even and odd elements, 2i+1<dmode|

e Pos is the position in sequence
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Multi-Head Attention

Each head generates the attention weights that determine the relevance of each element in the input
sequence for the current context.

->
The attention weights are then used to compute a weighted sum of the Value matrices.

-> Concatenation and Linear Projection ->

SINGLE OUTPUT
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Decoder

e Masked multi-head self-attention

Multi-head attention over encoder
output

Skip/residual connections
everywhere — against vanishing
gradient problem
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Training

The dimensionality of the word embeddings and

positional encodings (dmodel).
o Base: 512
o Big: 1024

The dimensionality of the feed-forward networks
o Base: 2048

o Big: 4096

Number of attention heads:
o Base: 8
o Big: 16

Training time:
o Base: 12 hours
o Big: 3.5days



Results and Benchmarks

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.135
Deep-Att + PosUnk [39] 39.2 L 164
GNMT + RL [38] 24.6 39.92 231017 141029
ConvS2S [9] 25.16  40.46 06-10"% 1.5-102%°
MOoE [32] 26.03  40.56 20-10° 1.3-1p%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 1070
GNMT + RL Ensemble [38] 26.30  41.16 1.8-102° 1.1+«10*
ConvS2S Ensemble [9] 26.36  41.29 7.7-10"  1.2.10*
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 2.3=10°




Applications and Use Cases

e Machine Translation
e Text Summarization

e Sentiment Analysis: emotion expressed in a piece of text

e Question Answering :)
e Pretraining and Transfer Learning: BERT, RoBERTa

e Named Entity Recognition (NER): the objective is to identify and classify entities




Limitation, disadvantages

e Memory and Computational Requirements

e Lack of Interpretability: especially self-attention mechanisms

e Susceptibility to Adversarial Attacks: funny :), not funny outputs :(

e FEthical Considerations and Bias



Conclusion

Attention Is All You Need!



