An Analysis of the Automatic Bug
Fixing Performance of ChatGPT

Maros Bratko 14.3.2023

sE] 20 Jan 2023

An Analysis of the Automatic Bug Fixing
Performance of ChatGPT

Dominik Sobania
Johannes Gutenberg University Mainz
Email: dsobania@uni-mainz.de

Carol Hanna
University College London
Email: carol.hanna.21 @ucl.ac.uk

Abstract—To support software developers in finding and fixing
software bugs, several automated program repair techniques have
been introduced. Given a test suite, standard methods usually
either synthesize a repair, or navigate a search space of software
edits to find test-suite passing variants. Recent program repair
methods are based on deep learning approaches. One of these
novel methods, which is not primarily intended for automated
program repair, but is still suitable for it, is ChatGPT. The
bug fixing performance of ChatGPT, however, is so far unclear.
Therefore, in this paper we evaluate ChatGPT on the standard
bug fixing benchmark set, QuixBugs, and compare the perfor-

Martin Briesch
Johannes Gutenberg University Mainz
Email: briesch@uni-mainz.de

Justyna Petke
University College London
Email: j.petke @ucl.ac.uk

straint solver to synthesize repairs [3]. The generate-and-
validate ones have first seen industrial uptake [4]. One of
the key disadvantage of standard approaches to APR is their
running cost. The generate-and-validate ones usually rely on
test suites to verify program correctness, while synthesis-based
ones on calls to a constraint solver. Both validation strategies
are costly, making typical APR tools hours to run before a
viable patch is presented to the developer.

Most recently, program repair tools based on deep learn-

[1] Sobania, D., Briesch, M., Hanna, C., & Petke, J. (2023). An analysis of the automatic bug fixing performance of chatgpt. arXiv preprint arXiv:2301.08653.

Table of contents

» Overview of methods for Automated Program Repair (APR)
> standard methods
> deep-learning based methods
» Comparison of chatGPT with other models
» Benchmark
» Methodology
» Results
» Dialogue hints

Standard methods for APR

* semantics-driven (or synthesis-basedq)
* use a constraint solver to synthesize repairs

* generate-and-validate
 mutate software guided by a search strategy (Genetic Improvement - Gl)
* have first seen industrial uptake [1]

* in [1], authors suggest a system, that tracks bugs during a workday, and
searches for potential fixes overnight

* Both validation strategies are costly (run for hours)

[1] Haraldsson, Seemundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic
Improvement Became an Overnight Success. 10.1145/3067695.3082517.

Genetic Improvement (Gl)

e uses computational search
methods to improve existing
software [1]

Description

Operations

Numerical constants
Arithmetic operators

Arithmetic assignments

Relational operators

Logical operators
Logical constants

Can increment by +1
+9_9*9/9//9%9**

1S, 1S not, not
and, or
True, False

Table 1: Sets of single operators available to the Gl. One member of a

given set can be changed to another member of the same set. [1]

[1] Haraldsson, Seemundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic
Improvement Became an Overnight Success. 10.1145/3067695.3082517.

Genetic Improvement (Gl)

if (a && b) { if (a |
C=l; C —
} else {
c = 03 C

[1] Haraldsson, Seemundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic
Improvement Became an Overnight Success. 10.1145/3067695.3082517.

Genetic Improvement (Gl)
Genetic Algorithm - Individual [1]

(Operation, [Location], "Code out", "Code In")

(Replace, [13,26], "<", "<=")

(Replace, [10,12], "False", "True")

[1] Haraldsson, Seemundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic
Improvement Became an Overnight Success. 10.1145/3067695.3082517.

Gl Community

20 May 2023 (Sat): 12th Gl workshop (event page) at ICSE 2023

Genetic Improvement of Software .com

Welcome to the community website on Genetic Improvement (Gl).

Gl focuses on the repair and optimisation of software using computational search
and evolutionary processes, often outperforming human developers at these tasks.
(read more)

We as a community run a workshop and frequent events year-round, feel free to
meet us to discuss the future of software engineering!

GI@GECCO 2022 (hybrid event)

News

e The 11th International Workshop on Genetic Improvement took place at GECCO 2022, together with a Gl tutorial.

e The 10th International Workshop on Genetic Improvement took place at ICSE 2021.

e There was a Gl tutorial at ASE 2020.

e There was a tutorial on Genetic Improvement at PPSN 2020. Slides can be obtained here.

e Version 2 of the Genetic Improvement in No time (Gin) tool has been released. It is available at
https://github.com/gintool/gin. It provides the ability to handle multi-class projects, gradle and maven build tools, built-in

nrofiler and samnlina iitilities . test case aeneration. and a lonad of new edit onerators.

Deep learning based program repair tools

* learn bug fixing patterns from existing databases and treat the automated
program repalir problem as a neural machine translation task

 DL-based program repair has shown competitive results to standard
approaches [1]

» several large-scale language models based on the Transformer architecture
2] have been introduced

« CoCoNut [3]
 Codex (by OpenAl) — Github Copilot
o chatGPT (by OpenAl)

Zhang, Quanjun, et al. "A Survey of Learning-based Automated Program Repair." arXiv preprint arXiv:2301.03270 (2023).

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Lutellier, Thibaud, et al. "Coconut: combining context-aware neural translation models using ensemble for program repair." Proceedings of the 29th
ACM SIGSOFT international symposium on software testing and analysis. 2020.

N —

Bigram language model

» predicts the next token only by the current token

The quick dog
The | quick dog
The quick dog
Ihe quick dog

The quick brown fox jumped

Ihe quick brown fox umped

[1] https://vitalflux.com/n-gram-language-models-explained-examples/

Transformer

Layer:| 5 % Attention:| Input - Input %

The

animal_
didn_

street
because
it

was_

too
tire

[1] https://jalammar.github.io/illustrated-transformer/

Codex

e The Codex model series is a descendant of GPT-3 series that's been trained
on both natural language and billions of lines of code. [1]

OpenAl Codex 1 E:

We've created an improved version of OpenAl — —

Codex, our Al system that translates natural e B i —

language to code, and we are releasing it through ———

our APl in private beta starting today.

Start using Codex 7

I||| l L IRRT T ||“||I.

[1] OpenAl API. (n.d.). Retrieved March 7, 2023, from https://platform.openai.com/docs/guides/code

chatGPT

ChatGPT is powered by gpt-3.5-turbo, OpenAl’s most advanced language model.

it IS possible to have a conversation with language model and the previous chat history si taken
iInto account

Introducing
ChatGPT

We've trained a model called ChatGPT which
Interacts in a conversational way. The dialogue

format makes it possible for ChatGPT to answer
followup questions, admit its mistakes, challenge

Incorrect premises, and reject inappropriate
requests.

Try ChatGPT ~ Read about ChatGPT Plus

[1] OpenAl APL. (n.d.). Retrieved March 7, 2023, from https://platform.openai.com/docs/guides/chat

https://platform.openai.com/docs/guides/chat

Comparison

QuixBugs benchmark

* A multi-lingual program repair benchmark set based on the Quixey Challenge
* small, yet challenging programs (40 in total)

o https://github.com/jkoppel/QuixBugs

H jkoppel / QuixBugs ' Public ®Watch 6 ~ % Fork 28 ~ Y Star 46~

<> Code () Issues 3 §9 Pullrequests () Actions [Projects () Security |~ Insights

¥ master ~ ¥ 1branch © 0tags Go to file Add file ~ <> Code ~ About

A multi-lingual program repair

drrckin Merge pull request #52 from h4iku/add-manual-run ... V' 4257f44 on Aug 29, 2022 Y9 145 commits benchmark set based on the Quixey
Challenge
.github/workflows Update ci.yml 7 months ago
0 Readme
correct_java_programs Fix FLATTEN indentation 7 months ago g5 MIT license
correct_python_programs Added test cases for shortest path length for python. 6 years ago ¥ 46 stars
java_programs Fix tab/space consistency in indentations 7 months ago © 6 watching
% 28 forks
java_testcases Merge pull request #48 from h4iku/fix-indent 7 months ago
json_testcases Add pytest files for the Python version 7 months ago
Releases
python_programs Fixed TabError last year

No releases published
python_testcases Add pytest files for the Python version 7 months ago

[1] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: A multi- lingual program repair benchmark set based on the Quixey Challenge,” in
Proceedings Companion of the 2017 ACM SIGPLAN international conference on systems, programming, languages, and applications: software for
humanity, 2017, pp. 55-56.

https://github.com/jkoppel/QuixBugs

QuixBugs

Bitcount

def bitcount(n): def bitcount(n):
count = 0 count = 0
while n: while n:

B = n =] —> n & n -1

count += 1 count += 1

return count return count

- 1
QuixBugs i v biseon
_ 3 count = 0
Bitcount 4 while n:

5 n *=n-1
6 count += 1
7 return count
8
9
10
11 Bitcount
12 bitcount
13
14
15 Input:
16 n: a nonnegative int
17
19 QU tput:
19 The number of 1-bits in the binary encoding of n
20
21 Examples:
22 >>> bitcount(127)
23 7
24 >>> bitcount(128)
25 1

N
@)

Evaluation

* remove contained comments (comments sometimes contains the solution)
 ask chatGPT if the code contains a bug and how it can be fixed
 manually check whether the given answer is correct or not
 same code with fixed bug
» description of how to fixe the bug
e repeat 4 times to account for the heuristic nature of chatGPT

* success if at least one request fixes the bug

Evaluation

1 Does this program have a bug? How to
2 fix 1t?

3
4 def bitcount(n):
count = (
while n:
n = n — 1

count += 1
return count

\O© OO0 ~J O\ W

Results

» standard APR approaches - 7 / 40 bugs fixed
 CoCoNut - 19/ 40 fixed

 Codex -21/40

 chatGPT - 19/ 40 fixed

Results

Benchmark problem ChatGPT Codex [15] CoCoNut [14] Standard APR [13]
bitcount X (0/4) v v X
breadth-first-search v 21714 v X
bucketsort vV 414 v v X
depth-first-search X (0/4) v X X
detect-cycle X(0/4) X X v
find-first-in-sorted vV 2174 v v X
find-in-sorted v 374 X X X
flatten v 4/ 4) v v X
ged X (0/4) v X X
get-factors v (1/4) v v X
hanoi X(0/4) v v X
is-valid-parenthesization v 274 v X X
kheapsort X (0/4) v X X
knapsack v (1/4) v v v
kth X (0/4) X X X
Ics-length X (0/4) X v X
levenshtein X (0/4) X X v
lis X (0/4) X X v
longest-common-subsequence X (0/4) v X X
max-sublist-sum X (0/4) v X X
mergesort vV (1/4) X X v

Results

Benchmark problem ChatGPT Codex [15] CoCoNut [14] Standard APR [13]
bitcount X (0/4) v v X
breadth-first-search v 2174 v X
bucketsort vV 414 v v X
depth-first-search X(O0/4) v X X
detect-cycle X (0/4) X X v
find-first-in-sorted v 274 v v X
find-in-sorted v 374 X X X
flatten v 4/4 v v X
ged X
get-factors X
s Execute requests multiple "
is-valid-par X
kheapsort X
knapsack v
kth X (0/4) X X X
Ics-length X (0/4) X v X
levenshtein X (0/4) X X v
lis X(0/4) X X v
longest-common-subsequence X (0/4) v X X
max-sublist-sum X(O0/4) v X X
mergesort v (1/4) X X v

Answers classification

» different classes of chatGPT answers have been identified:
 More information required
 No bug found
o Correct fix provided
* Tries to fix something else
 Provides fix but introduces new bug

 Alternative implementation

Answers classification

more information required

no bug found

correct fix provided

tries to fix something else

provides fix but introduces new bug
alternative implementation

other

Answers classification

more information r

no bug

correct fix pr

tries to fix somethi

provides fix but introduces n

alternative impleme

Discussion with chatGPT

return gcd(a % b, b)

1 Request (1):

2 Does this program have a bug? How to fix it?
3

4 def gcd(a, b):

5 if b == 0:

6 return a

7 else:

8

9

10 Response (1):

11 This is the Euclidean algorithm for finding the greatest common divisor (GCD) of two
12 integers, a and b. It appears to be implemented correctly. If you are experiencing
13 1issues with this program, it is likely that the problem lies elsewhere in your code.
14 Without more information about the bug you are experiencing, it is difficult to say
15 how to fix it.

17 Request (2):
18 No, the function is not correct. E.g., for the input a = 4 and b = 5 I get the following
19 error message: "RecursionError: maximum recursion depth exceeded in comparison™.

21 Response (2):

22 The i1ssue is that the function calls itself recursively, and in some cases, it never
23 reaches the base case (b == 0), causing it to recurse indefinitely. The base case of
24 the gcd algorithm is when the remainder is zero, but in this implementation, it’s when
25 b 1s zero. For example, when a=4 and b=5, gcd(4, 5) i1is called, which then calls

26 gcd(4 % 5, 5) which 1s gcd(4, 5). This causes an infinite loop.

28 You can fix this by swapping the parameters in the recursive call.

30 def gcd(a, b):

31 if a == 0:

32 return b

33 else:

34 return gcd(b % a, a)

36 This way, if a is zero, the function returns b (which is the gcd of a and b), otherwise
37 1t calls i1tself with the new values of b % a and a.

Discussion with chatGPT

1 Request (1):

2 Does this program have a bug? How to fix it?
3

4 def bitcount(n):

5 count = 0

6 while n:

7 n "= n -1

8 count += 1

9 return count

10

11 Response (1):
12 I’m unable to tell if the program has a bug without more information on the expected
13 behavior and the input that is causing the issue. [...]

15 Request (2):
16 The program should count the number of 1-bits in the binary encoding of n.

18 Response (2):
19 The function bitcount(n) appears to be counting the number of 1-bits [...]

21 To confirm this, you can test the function with some test cases to check if
22 1t produces the expected output:

24 test_cases = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
25 expected_output = [0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4]

27 Request (3):
28 The function does not work. For input 1 it seems to run into an infinite loop.

30 Response (3):
31 You are correct that the function will run into an infinite loop when the input is 1.

32 [...]

33

34 def bitcount(n):
35 if n == 0:

36 return 0
37 count = 0

38 while n:

39 n =n -1
40 count += 1

41 return count

Do hints help?

* a checkmark with an asterisk (*)
defines that a solution was found
without a follow-up request being
necessary in this run

o after adding hints, chatGPT solved
31 out of 40 problems (77.5%)

e Codex-21/40
e CoCoNut-19/40
e standard APR -7 /40

Benchmark problem ChatGPT
bitcount v
depth-first-search ¥
detect-cycle V¥
gcd v
hanoi v
kheapsort X
kth v
Ics-length X
levenshtein v
lis X
longest-common-subsequence X
max-sublist-sum v
minimum-spanning-tree v
next-permutation v
powerset v
rpn-eval X
shortest-path-lengths X
sieve ¥
to-base X
topological-ordering X
wrap X
3. (Solved) 9 (12)

Is it worth it?

* Despite its great performance, the question arises whether the mental cost
required to verify ChatGPT answers outweighs the advantages that ChatGPT

brings.

* Overall, we find that participants who had access to an Al assistant based on
OpenAl's codex-davinci-002 model wrote significantly less secure code
than those without access. Additionally, participants with access to an Al
assistant were more likely to believe they wrote secure code than those
without access to the Al assistant. Furthermore, we find that participants who
trusted the Al less and engaged more with the language and format of their
prompts (e.g. re-phrasing, adjusting temperature) provided code with fewer

security vulnerabilities. [1]

[1] Perry, Neil, et al. "Do Users Write More Insecure Code with Al Assistants?." arXiv preprint arXiv:2211.03622 (2022).

