Algorithms and Data Structures 1

TIN060

Jan Hric

Lecture 1, v. 16.3.2015

Syllabus

Syllabus:

- An asymptotical notation
- (Binary trees,) AVL trees, Red-Black trees
- B-trees
- Hashing
- Graph alg: searching, topological sorting, strongly connected components
- Minimal spaning tree (d.s. Union-Find)
- Divide et Impera method
- Sorting: a lower bound on the complexity of sorting, average case of Quicksort, randomization of Quicksort, linear sorting alg.
- Algebraic alg. (LUP decomposition)

• Literature

T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, 1991

- Organization
 - Lecture
 - Exercises

Comparing algorithms

- Measures:
 - A time complexity, in (elementary) steps
 - A space complexity, in words/cells
 - A communication complexity, in packets/bytes
 - (in practice: money ~ programmer/human time)
- How it is measured:
 - A worst case, an average case (wrt a probability distribution)
 - Usually an approximation: an upper bound
- Using functions depending on a *size* of input data
 - We abstract from particular data to a data size, |D|
 - We compare functions

Size of data

- Q: How to measure a size of (input) data?
- Formally: a number of bits of data
- Ex: Inputs are natural numbers $a_1, ..., a_n \in N$, a size D of input data is $|D| = \sum_{i=1}^n \lceil \log_2 a_i \rceil$
- A time complexity: a function f: N->N, such that f(|D|) gives a number of algorithm steps depending on data of the size |D|
- Intuitively: An asymptotical behaviour: an exact graph of a function *f* does not matter (ignoring additive and multiplicative constants), a class of *f* matters (linear, quadratic, exponential)

A step of an algorithm

- In theory: Based on an abstract machine: Random Access Machine (RAM), Turing m.
 - Informally: an algorithm step = an operation executable in a constant time (independent of data size)
- RAM, operations:
 - Arithmetical: +, -, *, mod, <<, && ...
 - A comparision of two numbers
 - An assignment of basic data types (not for arrays)
 - Numbers have a fixed maximal size
- Ex: sorting of *n* numbers: |D| = n
- (Counter)Ex: a test for a zero vector

Why to measure a time complexity

- Why sometimes a faster machine doesn't help
- Time of f(n) for data of size n, 10^6 ops per second

			n				
f(n)	20	40	60	80	100	500	1000
n	20µs	40µs	60µs	80µs	100µs	500µs	1ms
n log n	86µs	0.2ms	0.35ms	0.5ms	0.7ms	4.5ms	10ms
n^2	0.4ms	1.6ms	3.6ms	6.4ms	10ms	0.25s	1s
n^3	8ms	64ms	0.22s	0.5s	1s	125s	17min
2^n	1s	11.7days	36ky				
n!	77ky						

Why to measure a time complexity 2

- A difference between polynomial and slower algs.
- How a speed-up of a computation enables to increase a size of a "workable" data; the current size is x

		speed-up		
f(n)	original	10 times	100 times	1000 times
n	x	10x	100x	1000x
n log n	X	7.02x	53.56x	431.5x
n^2	X	3.16x	10x	31.62x
n^3	X	2.15x	4.64x	10x
2^n	х	x+3	x+6	x+9

Asymptotical complexity

- measures a behaviour of the algorithm on "big" data
 - Ignores a finite number of exceptions
- supresses additive and multiplicative constants
 - Abstracts from a processor, a language, (the Moore law)
- classifies algs to categories: linear, quadratic, logarithmic, exponential, constant ...
 - Compares functions

Asymptotical ("Big") O notation

- f(n) is asymptotically less or equal g(n), notation f(n) ∈ O(g(n)), "big O"
 iff ∃c > 0∃n₀∀n ≥ n₀ : 0 ≤ f(n) ≤ c.g(n)
- f(n) is asymptotically greater or equal g(n), notation $f(n) \in \Omega(g(n))$, "big Omega" iff $\exists c > 0 \exists n_0 \forall n \ge n_0 : 0 \le c.g(n) \le f(n)$
- f(n) is asymptotically equal g(n), notation $f(n) \in \Theta(g(n))$, "big Theta" iff $\exists c_1, c_2 > 0 \exists n_0 \forall n \ge n_0 : 0 \le c_1.g(n) \le f(n) \le c_2.g(n)$

O-notation, def. II

- f(n) is asymptotically strictly less than g(n), notation $f(n) \in o(g(n))$, "small o" iff $\forall c > 0 \exists n_0 \forall n \ge n_0 : 0 \le f(n) \le c.g(n)$
- f(n) is asymptotically strictly greater than g(n), notation $f(n) \in \omega(g(n))$, "small omega" iff $\forall c > 0 \exists n_0 \forall n \ge n_0 : 0 \le c.g(n) \le f(n)$
- Examples of classes: O(1), log log n, log n, n, n log n, n², n³, 2ⁿ, 2²n, n!, nⁿ, 2<sup>(2ⁿ),...
 </sup>
- Some functions are incomparable

Exercises

- Notation $f \equiv O(g)$ is sometimes used
- To prove: $max(f,g) \in \Theta(f+g)$
- To prove: if c,d>0, g(n)=c.f(n)+d then $g \in O(f)$
- Ex.: if $f \in O(h)$, $g \in O(h)$ then $(f+g) \in O(h)$
 - Application: A bound to a sequence of commands
- Compare n+100 to n^2 ; 2^10 n to n^2
 - Simple algorithms (with a low overhead) are sometimes better for small data