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Linear Time Reasoning

reasoning about systems that evolve in time
b b b b b b bb b

model = sequence of propositional interpretations, “worlds”

Applications
reactive systems: protocols, hardware circuits, . . .
automated planning
dynamic authorization policies, . . .

Characteristics
temporal aspect increases complexity from NP to PSPACE
exponential model / inductive argument
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Resolution-based Methods

resolution [Davis and Putnam, 1960]

I C ∨ a D ∨ ¬a
C ∨ D

superposition [Bachmair and Ganzinger, 1990, 1994]
– equality rule + completeness argument
– nice theoretical properties
– foundation for successful implementations

modern SAT solving
– DPLL [Davis et al., 1962]
– CDCL [Marques-Silva and Sakallah, 1999]
– backtrack search + implicit resolution
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Five Main Contribution Areas

LPSup: calculus for Linear Temporal Logic (LTL)

LS4: algorithm for LTL satisfiability based on SAT

VCE: preprocessing method for LTL clause normal forms

applied ideas to hardware verification

further progressed to automated planning
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Linear Temporal Logic

propositional logic + temporal operators:
– next: ©,
– always: 2,
– eventually: 3
– . . .

As a specification language

2(sent → 3delivered) ∧2(delivered →©read)

Why prove LTL theorems?
debugging specifications
synthesis: precondition to realizability
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LPSup: Labeled Superposition for LTL

adapted superposition to deal with linear time

new calculus LPSup

inherits desired properties
– ordering restrictions
– completeness justifies abstract redundancy
– backtrack-free model building

Main challenges
appropriate clausal normal form
keeping track of temporal dependencies
detecting ultimately UNSAT instances

[Suda and Weidenbach, LPAR 2012]
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LTL Clause Normal Forms

SNF [Fisher 1991]
TST: Initial clauses I, step clauses T , and goal clauses G∧

Ci∈I

Ci

 ∧2

 ∧
Ct∨D′

t ∈T

(Ct ∨©Dt)

 ∧23

 ∧
Cg∈G

Cg



Semantics in a picture

. . .
Σ0 Σ1 Σ2

. . .
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Idea of Labels

cast to standard propositional satisfiability
– infinitely many copies
– infinitely many configurations

finitely represent using labels

uniformly lifted in labeled inferences

Labeled resolution inference

I L1 || C ∨ a L2 || D ∨ ¬a
(L1 u L2) || C ∨ D

L1 and L2 merged to express intersection of the temporal contexts
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To Make it Complete

several kinds of empty clauses
potentially infinite derivations

special saturation strategy
repetition detection and derivation replaying argument

"Structural" inference Leap

I {(b,u + i · v) ||C}i∈N derivable from N
(b,u − v) ||C

where u ≥ v > 0 are integers and C is an arbitrary standard clause

Leap eliminates worlds that cannot reach themselves
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SAT Solver Instead of Saturation

connection between superposition and CDCL [Weidenbach]

model-guidance idea:
– build a partial model on the fly
– derive clauses only to resolve conflicts during model construction

LS4: a new algorithm for LTL satisfiability based on SAT
maintains connection to LPSup on macro-level

efficient SAT solver as a black-box on micro-level

one of the strongest LTL solvers

[Suda and Weidenbach, IJCAR 2012]

Saarbrücken, October 16, 2015 9/21



Introduction LPSup LS4 VCE Hardware Verification Automated Planning Conclusion

SAT Solver Instead of Saturation

connection between superposition and CDCL [Weidenbach]

model-guidance idea:
– build a partial model on the fly
– derive clauses only to resolve conflicts during model construction

LS4: a new algorithm for LTL satisfiability based on SAT
maintains connection to LPSup on macro-level

efficient SAT solver as a black-box on micro-level

one of the strongest LTL solvers

[Suda and Weidenbach, IJCAR 2012]

Saarbrücken, October 16, 2015 9/21



Introduction LPSup LS4 VCE Hardware Verification Automated Planning Conclusion

LS4 – Algorithm

eager forward model construction

I G G G

block 0 block 1 block 2
. . .

model repetition check
clauses learned backward when the “extension” fails
clause layer repetition check

Used technology
SAT solving under assumptions
marking literals
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LS4 – Implementation

approx 1k LOC of C++
MiniSat 2.2 inside
publicly available source

Success stories
LTL backend in the TLA+ prover

HWMCC’14 – liveness track
– 5 unique solutions

one of the best publicly available LTL provers
– standard LTL benchmark suite [Schuppan and Darmawan, 2011]
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Experimental Comparison
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Variable and Clause Elimination

useful preprocessing technique
– simplify clausal input before solving
– removes inefficiencies of a normal form transformation

originally from SAT [Eén and Biere, 2005]

VCE: Variable and clause elimination for LTL
adapted variable and clause elimination to LTL

extend version of labeled clauses

implementation prototype
– shown practically effective

[Suda, MACIS 2013] ([Suda, MCS 2015])

Saarbrücken, October 16, 2015 13/21



Introduction LPSup LS4 VCE Hardware Verification Automated Planning Conclusion

Variable and Clause Elimination

useful preprocessing technique
– simplify clausal input before solving
– removes inefficiencies of a normal form transformation

originally from SAT [Eén and Biere, 2005]

VCE: Variable and clause elimination for LTL
adapted variable and clause elimination to LTL

extend version of labeled clauses

implementation prototype
– shown practically effective

[Suda, MACIS 2013] ([Suda, MCS 2015])

Saarbrücken, October 16, 2015 13/21



Introduction LPSup LS4 VCE Hardware Verification Automated Planning Conclusion

Variable Elimination Details

clause distribution rule

Np ⊗ N¬p = {(C ∨ D) | (C ∨ p) ∈ Np, (D ∨ ¬p) ∈ N¬p}

Adapting to LTL
labels from LPSup extended
theorem: finitely many “exotic” clauses can be ignored
some inherent limitations (due to expressiveness)
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Experiment

Prototype implementation
reuse MiniSat’s simplification loop
emulate labels by marking literals

results on the standard LTL benchmark suite
– eliminated 39% of the variables (7% original, 32% auxiliary)
– eliminated 32% of clauses
– both LS4 and trp++ solved more problems and faster on average

Further potential
exploit the theory in full
lift other preprocessing techniques

– blocked clause elimination [Järvisalo et al., 2010]
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Hardware Verification
important part of standard industrial workflows

Example sequential circuit

i

l l′

oAND

XOR

o← l ∧ i

l′ ← l ⊕ i

temporal aspect from modeling registers

Verification of invariance and reachability∧
Ci∈I

Ci

 ∧2

 ∧
Ct∨D′

t ∈T

(Ct ∨©Dt)

 ∧�23

 ∧
Cg∈G

Cg
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Transfer Ideas to Hardware Verification

Reach
new algorithm for verifying invariance
LS4 specialized to reachability
adapted to finite path semantics

Related work from hardware verification
Bounded model checking [Biere et al., 1999]

– Reach explores the same unrolling

Interpolation-based model checking [McMillan, 2003]
– clause layers in Reach are interpolants

Property Directed Reachability [Bradley, 2011], [Eén et al., 2011]
– where is the difference?
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From Reach to Property Directed Reachability
small conceptual change

– monotone layers
three independent enhancements

– obligation rescheduling
– clause propagation
– explicit (inductive) minimization

Extensive experimental evaluation
each enhancement independently
various criteria: search direction, problem status

Triggered clause pushing
new technique for improving PDR’s clause propagation phase
especially useful in the multi-property setting
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Automated Planning

classical branch of artificial intelligence
given a formal description of a world + set of available actions
look for a sequence of actions that achieve a specified goal

Example

a b

c

a

b

c

Operator unstack(X,Y )

pre : clear (X), on(X,Y ), arm-empty

add : holding(X), clear (Y )

del : clear (X), on(X,Y ), arm-empty

Industrial applications
intelligent agents, autonomous robots, logistics, . . .
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Property Directed Reachability
for Automated Planning

1) via encodings from "Planning as SAT" [Kautz and Selman, 1992]

2) without a SAT solver
– planning-specific procedure replaces the SAT calls
– polynomial time upper bound on a single call
– improvements beyond standard PDR

pdrPlan
new planner based on 2)
highly competitive for satisficing planning
supports also: optimal planning, unsolvability detection

[Suda, JAIR 2014]
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Conclusion

Summary
Three resolution-based methods:

– superposition (LPSup)
– SAT solving (LS4)
– clause distribution (VCE)

Three application domains:
– LTL proving
– hardware verification
– automated planning

Future work
possible to extend beyond propositional logic

– EPR, theories, . . .
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