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Chapter 1

Introduction

One of the successful tasks done by the computers today is the data storage and its
representation. By this term we not only mean the database management systems
storing large amounts of data. This term includes various forms of the set represen-
tation problem [23] – representation and storing sets of elements. There are a lot of
approaches, that solve this problem and deal with the situations from representing
small sets stored in the main memory to enormous databases stored distributively
on distinct systems.

Solving this problem has many apparent practical applications from databases in
business environment to more hidden ones. Consider bus stops of a city represented
by objects of a programming language. Think about solving the shortest path prob-
lem by graph library. This library does not provide an association of the library’s
node object with its city. But you need a fast mapping of the nodes onto stops to
build the path. This mapping is usually provided by the data structures solving the
set representation problem. Nowadays these data structures are commonly present
as HashTables, ArrayLists or Dictionaries in the standard libraries of many current
programming languages. Their fast implementation plays an important role in the
quality of solutions provided by programmers.

The set representation problem, also known as the dictionary problem, is a storage
of a set consisting of chosen elements of a universe. The universe includes all the
representable elements. Basic operations provided by a data structure solving this
problem allow a modification of the stored set and querying if an element is stored
within it.

• Member(x) – returns true if the element x is contained by the represented set.

• Access(x) – returns the data associated with the element x if it is contained
within the stored set.

• Insert(x) – adds the element into the stored set.

• Delete(x) – removes the element from the stored set.

There are plenty of different data structures solving the problems providing us
with various running times of these operations [8]. If our algorithms prefer some
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operations to the others, we can gain an asymptotic improvement in their running
times by a good choice of the underlying data structure.

The data structures can also guarantee the worst case running time of every
operation. Other promise to be quick in the average case but their worst case running
time can be linear with the number of elements stored. For example the running time
of balanced trees, AVL trees [17], red-black trees [18] or B-trees [5] is logarithmic for
every operation. Hash tables [25], [23], [6], [22] should run in O(1) expected time but
we may get unlucky when iterating a chain of large length. The most simple data
structures such as arrays or lists are preferred because they have certain operations
running in constant times but the other are definitely linear.

The warranties, provided by the data structures, mean a trade off with the ex-
pected times. For instance binary search trees are expected to be faster in the
expected case when assuming uniformity of the input than red black trees or AVL
trees. These comparisons are discussed in [4] and later results in [30] or [14]. If
the uniformity of input may not be assumed we are made to use the conservative
solution.

There are special data structures, such as heaps, that do not implement the basic
operations effectively. We can not consider it as a flaw, their use is also special. In
the case of the heaps it means efficient finding of minimal or maximal element of the
set. On the other hand some data structures may allow other operations.

• Ord(k), k ∈ N – returns the kth element of the stored set.

• Pred(x), Succ(x) – returns the predecessor or successor of x in the set.

• Min(x), Max(x) – returns the minimal or maximal element of the stored set.

In this work we try to design a hash table which has the constant expected
running time of every operation. In addition it also guarantees a reasonable worst
case bound, O (log n log log n). We can not expect running it as fast as classic hashing
when assuming the input’s uniformity. The computations indicate that it runs much
faster than balanced or binary search trees.

The concept of hashing is introduced in Chapter 2. It continues by description
of different models of hashing and finally mentions current approaches and fields of
interests of many authors. In the third chapter the principle of universal hashing is
discussed. It also introduces many universal classes of functions and states their basic
properties. In Chapter 4 we show how to compute the expected length of the longest
chain and discuss its importance. The work later continues by the chapter where we
show the already known results regarding the system of linear transformations. In
the following chapters we improve the results obtained when using universal hashing
with the system. In the last chapter, we show the properties of the proposed model
based on the new results.
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Chapter 2

Hashing

Hashing is one of the approaches designed for the efficient solving of the dictionary
problem. Various implementations differ in many ways. However usage of a hash
function and a quickly accessible table, typically represented by an array, is common
to most of them. Every hash function transforms the elements of the universe into
the addresses of the table.

Represented sets are always small when compared to the size of the universe.
In order to prevent waste of space we are forced to use tables as small as possible.
Typically the size of the hash table containing the represented elements is chosen so
that it is comparable to the size of the stored set.

The fact that the hash table is much smaller than the universe and any two
elements may represented means that the elements may share the same address
after hashing. This event is called a collision. For hashing it is very important
how collisions are handled. This is also the most interesting distinctive feature for
distinct hashing models. In fact, collision handling is crucial when determining the
time complexity of the scheme.

When two elements collide they should be stored in a single bucket, cell of the
hash table. A bucket is often represented by the simplest data structure possible. For
instance, a singly linked list should be sufficient in many cases. More sophisticated
schemes, like perfect hashing, represent every chain in another hash table without
collisions.

The find operation of a hash table works in the following way. Every element is
placed as an argument for the hash function. The element’s address is then computed
and used as an index of the hash table. Then we look into the bucket lying at the
returned address if the element is stored inside or not.

If buckets are represented by linked lists, then the expected time of the find
operation is proportional to one half of the length of the list.

Lemma 2.1. Let S be a set represented by a linked list. Assume that for every
element x ∈ S:

Pr (x is argument of the find operation) =
1

|S| .

Then the expected time of the find operation is |S|+1
2

.
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x ∈ U

h(x) = x mod p

0:

1:

...

x y

2:

3:

Figure 2.1: Concept of a hash table.

Proof. Let xi ∈ S be the i-th element of the list, 1 ≤ i ≤ |S|. Time to find the
element xi inside the list equals i. The expected time of the find operation can be
expressed directly from its definition

E (time of the find operation) =

|S|∑
i=1

iPr (xi is the argument of the find operation)

=

∑|S|
i=1 i

|S| =
|S|(|S|+ 1)

2|S| =
|S|+ 1

2
.

As seen in the previous lemma the time complexity of an operation needs not
to be measured by its worst case time. Compare |S|, which is the worst case, to

the expected value |S|+1
2

which is better. Considering only the worst case times does
not tell much about the structure’s real behaviour. We should use probability based
characteristics that give more accurate results. These characteristics include the
expected operation’s time or its expected worst case time which is usually far more
difficult to analyse. For hashing this difference means an asymptotic improvement.

2.1 Formalisms and Notation

Notation and formalisms that mathematically describe a hash table are crucial part
of an exact analysis. Assume that we are hashing a universe U on a hash table of
size m. The table consists of buckets each having its unique address. The addresses
are usually quite simple. When the table consists of m buckets the addresses are
just 0, . . . ,m− 1. Buckets are always identified by their addresses and thus we can
refer to the set B = {0, . . . ,m− 1} as a hash table.

Universe consists of all the representable elements, examples include the objects
of a programming language, strings over an alphabet, numbers or anything else. Hash
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function is a way to transform these elements into an address of the table, usually a
natural number. Hash function h can be described by a function h : U → B. The
other requirements placed on the function h are discussed later.

The letter S typically denotes the stored set. We often refer to the variable n as
to the size of the stored set, n = |S|. As already mentioned we always assume that
S ⊂ U and |S| � |U |.

Since the universes are really large, recall the previous examples, sizes of the tables
are much smaller when compared to those of the universes. Space waste is typically
caused by allocating a large table containing many empty buckets. The definition
of the table’s load factor allows an exact analysis of the phenomena connected with
the table’s filling – its performance or waste of space.

Definition 2.2 (Load factor). Let n be the size of the represented set and m be the
size of the hash table. The variable α defined as

α =
n

m

is called the load factor of the table.

To take control of the table’s overhead it is sufficient to keep the load factor in a
predefined interval. Not only the empty buckets cause troubles. The overfilled ones
are another extreme especially if there are too many collisions.

Definition 2.3 (Collision). Let h be a hash function and x, y ∈ U be two distinct
elements. We say that the elements x and y collide if h(x) = h(y).

Above all the collision handling is what differentiates distinct hash tables and
determines their performance.

To completely explain the notation we have to mention that we refer to the func-
tion log as to the binary logarithm. The function ln denotes the natural logarithm.

2.2 Assumptions of Classic Hashing

In Lemma 2.1 we computed the expected time of the find operation and used it
as a measure of its time complexity. Known probability distribution of the input
enables us to compute the expected value. For the lemma we assumed the uniform
distribution. In hashing similar situation occurs. If we want to find the expected
results, then we need corresponding probabilistic assumptions on the input. The
assumptions we make may be found in [23] or in [24]. They are similar to ours.

• Hash function h distributes the elements of universe uniformly across the hash
table:

||h−1(x)| − |h−1(y)|| ≤ 1 for every x, y ∈ B.

• Every set has the same probability of being stored among the sets of the same
size:

Pr (S is stored) =
1(|U |
|S|
) for every set S ⊂ U .
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• Every element of the universe has the same probability of being an argument
of an operation:

Pr (x is used as an argument of an operation) =
1

|U | for every x ∈ U .

These assumptions provide us with a probabilistic model for the average case
analysis of classic hashing.

2.3 Separate Chaining

Separate chaining [22], [24] and [25] may be considered the most basic hash table
implementation. However, it provides a sufficient framework for illustration of var-
ious problems and analyses. Separate chaining usually utilises one hash function
mapping elements to an address – an index of the array representing the hash table.
Every represented element is stored within a bucket given by its hash address. Every
bucket is represented by a singly linked list.

Separate chaining, like the other classic models of hashing, is quite dependent
on the stored input. The previous assumptions are required for its average case
analysis. This model assumes hashing of the universe U = {0, . . . , N − 1} for N ∈ N
into a table of size m. Number m is much smaller then N and moreover it is
chosen to be a prime. Primality of m improves the ability of the hash function to
uniformly distribute the stored set across the table. The following example clarifies
why primality is important for the choice of m.

Example 2.4. Consider the set S = {5n | n ∈ {0, . . . , 5}} and a table consisting
of 10 buckets. Set S contains only 6 elements, so the table’s load factor equals 0.6.
If we use function x mod 10, then it maps the elements of the set S just onto two
addresses, 0 and 5. The hash table is not used effectively. Choosing m to be a prime
number improves the results but is not a remedy.

The apparent disadvantage of classic hashing is usage of a single hash function
known in advance. For example if the stored set S is chosen, by an adversary, so that
S ⊆ f−1(b) for a single bucket b ∈ B, we run into problems. Because our assumptions
say that the probability of having such an input is quite low, these inputs may be
neglected.

To illustrate how separated chaining works the algorithms are presented. Al-
though the model is quite simple the subroutines regarding the singly linked lists are
not discussed. They are considered elementary enough. We remark that the running
time is proportional to length of the represented chain. Also notice that the insert
procedure has to check whether the element is already stored inside the list else it
can be stored twice.
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Algorithm 1 Find operation of the separate chaining.

Require: x ∈ U
h = h(x)

if T [h] contains x then
return true {operation is successful}

else
return false {operation is unsuccessful}

end if

Algorithm 2 Insert operation of the separate chaining.

Require: x ∈ U
h = h(x)

if T [h] does not contain x then
insert x into chain T [h]

end if

Algorithm 3 Delete operation of the separate chaining.

Require: x ∈ U
h = h(x)

if T [h] contains x then
remove x from chain T [h]

end if

Theorem 2.5 (Average case of the separate chaining). Let α > 0 be the load factor
of the hash table resolving collisions by separate chaining. Then the expected time of
the successful find operation converges to 1 + α

2
and to e−α + α in the unsuccessful

case.

Proof. The theorem is proved in [24].

Various modifications of separate chaining are known. If the universe is an or-
dered set then ordering the elements in chains monotonously may bring a speedup.
This is caused by the fact that the operations concerning the chains do not have to
iterate throughout the whole list and stop earlier.

There is a modification utilising the move to front principle [2]. This principle is
motivated by the rule of the locality of reference [1]. The rule says that whenever an
element is accessed, it is very likely that it is going to be accessed again in a short
future. Therefore it is quite convenient to put the last accessed element to the front
of the list so that it is accessed fast.
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Figure 2.2: Singly linked lists represented directly in the hash table. The first number
is the bucket’s address, the second is the represented key and the last one is the next
pointer.

Another set of modifications changes the representation of chains. They are no
longer represented by common linked lists since their cache behaviour [20] is poor as
stated in [32]. The chains are stored directly in the hash table. So when resolving
a collision an empty place in the hash table is taken. There are problems connected
with this approach that need to be solved. Above all chains may not be merged
together. This appears when a new chain should be started but the place of the first
element is already taken. It may be solved by moving the element, not belonging to
the chain, to another empty place. To perform the replacement quickly we are forced
to use double linkage. Or, instead of using doubly linked lists, at every address an
additional begin pointer may point to the first element of the chain. In addition,
we have to deal with the fact that schemes using only the hash table suffer from
bad behaviour when the load factor is almost one. And of course a uniform random
choice of an empty bucket has to be provided when prolonging a chain.

2.4 Coalesced Hashing

In coalesced hashing, the chains of colliding elements are also stored directly in the
hash table. However, they are allowed to fuse together. Every chain is represented
by a singly linked list. The simpler methods such as LISCH and EISCH do not use
any special additional memory. In addition, the EISCH method utilises the move
to front rule. Methods such as LICH, EICH and VICH use the additional memory
which is not directly addressable by the hash function. Collision resolution uses the
additional memory to store growing chains. When an empty place for a colliding
element is needed, it is first sought in the additional memory. Only if the special
memory is full, then the addressable memory is used. The methods are distinct in a
way they use the move to front rule. The EICH method always obeys it, VICH uses
it only in the addressable memory and the LICH method does not obey the rule at
all.
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2.5 Open Addressing

Methods of coalesced hashing and separate chaining represent the chains explicitly by
linked lists. The additional pointer of the list not only consumes an extra memory. It
also worsens the cache behaviour of the hash table. Open addressing also merges the
chains together. They are stored directly in the hash table and their representation
is more implicit. To remove the need of an additional pointer, a secondary function
for conflict resolution is used.

Models of open addressing assume existence of two hash functions h1 : U → B
and h2 : U → B. Assume x ∈ U is the ith element of the chain and the order of
elements in a chain starts from zero. Its address is then determined by a compound
hash function h(x, i) = h1(x) + ih2(x). When we insert the element x ∈ U we find a
minimal i such that the bucket at the address h(x, i) is empty.

This approach also removes the problem of the choice of a free bucket when a
collision occurs. Unfortunately, there is no fast implementation of the delete opera-
tion known so far. To delete an element we can mark its bucket as free and reuse it
when possible. Marking the deleted element’s bucket is necessary if we do not want
to accidentally loose the elements lying behind the deleted one in the chains.

2.5.1 Linear Probing

Linear probing is a scheme of open addressing with h2(x) = 1 for every x ∈ U . The
last element of the prolonged chain is placed into the first empty bucket behind the
one with the address h1(x).

Another problem of linear hashing is its degradation. Clusters of non-empty buck-
ets emerge when load factors reach one. Delete operation implemented by marking
only emphasises this problem. Despite of the mentioned problems, linear probing
takes the advantage of the good cache behaviour. No wonder, that its modifications
are studied nowadays, e.g hopscotch hashing mentioned in Section 2.8.

2.5.2 Double Hashing

If we want to distribute the stored set uniformly across the hash table, then the
choice of a free bucket should be random. Whenever function h(x, i) of argument
i is a random permutation of B, then the mentioned choice becomes random. A
necessary condition is that h2(x) and m are relatively prime. Therefore the size of
the hash table is chosen so that it is a prime number again.

Double hashing has theoretical analyses yielding remarkable results.

Theorem 2.6. Let α ∈ (0, 1) be the load factor of the hash table resolving collisions
by double hashing. Then the running time of the find operation converges to 1

1−α in

the unsuccessful case and to 1
α

log
(

1
1−α

)
when the operation is successful.

Proof. The proof is shown in [24].
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2.6 Universal Hashing

Universal hashing uses a universal system of functions instead of a single function.
This removes the dependence of universal hashing on the uniformity of its input. It
does not require the assumptions of standard hashing made in Section 2.2. Universal
hashing is a randomised algorithm and the probability space is determined by the
uniform choice of a hash function, instead of the selection of a stored set. We study
universal hashing and its systems in a more detailed way in Chapter 3.

2.7 Perfect Hashing

Assume that the stored set S is known in advance. The problem solved by perfect
hashing is how to create a hash table and a hash function such that the find operation
takes only a constant time. Insert and delete operations are forbidden, the stored set
S remains fixed. Additional requirements are placed on the size of the scheme. Size
of the hash table is not the only problem. We must also take care about the space
needed to represent the constructed hash function since it becomes quite complex.
The problem is solved in [16].

2.8 Modern Approaches

Modern approaches to hashing are nowadays often based on their probabilistic prop-
erties. Authors adapt and change their models to improve the asymptotic results in
the average case and in the expected worst case. The algorithms still remain fast
and are enriched by simple rules.

Straightforward use of a single function is not enough and various universal sys-
tems are used. Theoretical analyses of the models do not necessarily involve the
ideas of universal hashing. Universal classes are used as a heuristic. Although the
algorithms are not complicated, their analyses become more and more difficult.

A model called robin hood hashing [7], [10] is an improvement of the double
hashing. In double hashing we are able to access the chain at an arbitrary position
in constant time. The main idea of robin hood hashing is to minimise the variance
of the expected chain length. If probing starts from the average chain length the
expected time of the find operation becomes constant.

Another model, hopscotch hashing [21], is a modification of the linear probing
utilising the computer’s cache behaviour. A chain is kept together in one place as
long as possible. Algorithms in control of the processor cache store whole blocks of
memory inside it when only a single part of the block is accessed. Provided that the
chains are compact, storing them in the cache is quite probable. This optimisation
makes probing substantially faster.

Next investigated model is cuckoo hashing [9]. However, the interest fades these
days since there are some problems connected with it [13], [12].
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2.9 Advantages and Disadvantages

Hashing, compared to other data structures solving the dictionary problem, e.g.
trees, does not provide the complete set of operations. If the universe is ordered,
we can not query the hash table for the kth stored element. The hash functions
are supposed to distribute the elements across the table evenly. This assumption is,
somehow, in the opposition to the preservation of the ordering. Especially, different
functions of a universal class can not preserve the ordering, they are required to be
different. So in general, hashing does not provide the operations based or related
to ordering, such as Succ, Pred, Order of an element and the already mentioned
operation – kth stored element. Despite this, it can also be a rare advantage. Trees
require an ordering of the elements they store, so when the universe is not naturally
ordered a problem occurs. Usually we solve the problem by adding a unique identifier
to every element before storing. This consumes a little memory and in distributed
environments causes small troubles with uniqueness, too.

The obvious advantage of hashing is its simplicity. In addition, its constant
expected time of the find operation may seem far better than the logarithmic time
of trees. On the other hand, if provided with an unsuitable, input hashing often
degrades. Balanced trees provide warranties for every input they are provided with.
This is a tradeoff that has to be decided by the user – excellent expected and poor
worst case time compared to the logarithmic time in every case.

To sum up, when we need a fast and simple to implement mapping of an object
to another one, hashing is a good solution. Especially, when the assumptions from
Section 2.2 are satisfied. These conditions are often met with objects having artificial
identifiers. However, the worst case guarantee is poor. Despite this, the expected
worst case warranty is similar to that of trees, as shown later in the work. Nowa-
days simplicity does not mean any extra advantage. Standard libraries of current
programming languages provide us with many implementations of hashing and trees.
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Chapter 3

Universal Classes of Functions

Universal classes of functions play an important role in hashing since they improve
independence of the associative memory on its input. Their greatest advantage is
removal of the two assumptions of classic hashing – uniformity of input. The first
one states that the probability of storing a set is distributed uniformly among sets
having the same size. The second one says that every element of the universe has
the same probability of being hashed.

In addition, models of standard hashing take probability of collision relative to the
choice of the stored set. In models of universal hashing probability space corresponds
to the choice of a random function selected from the universal class. Collision is
caused by an inconvenient choice of a universal function more than by an unsuitable
input. Notice that the relation between a collision and the input, the represented
set, is not so tight as in the classic hashing. Another advantage of universal hashing
is that any obtained bound holds for every stored set.

Probability that the selected universal function is not suitable for a stored set
is low. So every function from a universal system is suitable for many stored sets.
If the selected function is not suitable for a stored set we are free to pick another
one. Rehashing the table using a new function is not likely to fail. The probability
of failure for several independent choices of a hash function decreases exponentially
with respect to the number of choices.

3.1 Universal classes of functions

Various definitions of universal classes may be found in [6], [23], [25] and [24]. Their
various application are shown in [34] and [27]. Originally for strongly n-universal
classes the equality in the probability estimate holds in [34]. Various situations may
satisfy only inequality and therefore their definition is a bit changed in this work.
We also define nearly strongly n-universal classes.

Definition 3.1 (c-universal class of hash functions). Let c ∈ R be a positive number
and H be a multiset of functions h : U → B such that for each pair of elements
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x, y ∈ U , x 6= y we have

|{h ∈ H | h(x) = h(y)}| ≤ c|H|
|B|

where the set on the left side is also considered a multiset. The system of functions
H is called c-universal class of hash functions.

First notice that the bound on the number of colliding functions for each pair of
elements is proportional to the size of the class H. More interesting is the inverse
proportionality to the size of the hash table. A generalisation of the above definition
for more than two elements provides us with a better estimate on the number of
colliding functions. This count becomes inversely proportional to the power of the
table size.

Definition 3.2 (Nearly strongly n-universal class of hash functions). Let n ∈ N,
c ∈ R, c ≥ 1 and H be a multiset of functions h : U → B such that for every
choice of n different elements x1, x2, . . . , xn ∈ U and n elements y1, y2, . . . , yn ∈ B
the following inequality holds

|{h ∈ H | h(x1) = y1, h(x2) = y2, . . . , h(xn) = yn}| ≤ c|H|
|B|n

where the set on the left side is also considered a multiset. The system of functions
H is called nearly strongly n-universal class of hash functions with constant c.

Definition 3.3 (Strongly n-universal class of hash functions). Let n ∈ N and H be
a multiset of functions h : U → B such that for every choice of n different elements
x1, x2, . . . , xn ∈ U and n elements y1, y2, . . . , yn ∈ B the following inequality holds

|{h ∈ H | h(x1) = y1, h(x2) = y2, . . . , h(xn) = yn}| ≤ |H||B|n

where the set on the left side is also considered a multiset. The system of functions
H is called strongly n-universal class of hash functions.

Every strongly n-universal class of hash functions is nearly strongly n-universal
class with constant one. Most of the presented strongly universal classes not only
satisfy the inequality from Definition 3.3 but the bound equals the number of the
colliding functions.

Definition 3.4 (Strongly ω-universal class of hash functions). Family of functions
H is strongly ω-universal if it is strongly n-universal for every n ∈ N.

The strongly ω-universal systems provide us with an estimate of the expected
length of the longest chain. This bound can be proved directly from the above
property without regarding any other special attributes of a system. As shown
later the above property is difficult to be satisfied by a small class of functions.
A straightforward example of a strongly ω-universal class is the set of all functions
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from a domain U to a hash table B. It is obvious that the system is not very
convenient because of its size. Simple construction of the system of all functions is
briefly discussed later and shown in [34].

One may ask if there are classes that are strongly ω-universal other than the
empty class or the class of all functions. However, there are classes that are not
necessarily strongly ω-universal, but give the asymptotic bound on the expected

length of the longest chain O
(

logn
log logn

)
. The bound is the same for standard hashing

and for strongly ω-universal systems as shown in Chapter 4. The families are based
on the system of polynomials or linear systems and are quite large and not very
efficient compared to the standard systems. ”Distinct large families of functions
were given by Siegel [11] and by Dietzfelbinger and Meyer auf der Heide [33]. Both
provide families of size |U |nε . Their functions can be evaluated in a constant time on
a RAM.” The families are somewhat more complex to implement when compared to
the class of linear functions as stated in [34]. However, these classes may be cosidered
”nearly” strongly ω-universal, in fact they are strongly log n-universal.

The above definitions of universal classes can be rewritten in terms of probabil-
ity as well. The probability space corresponds to the uniform choice of a function
from the system of functions. For example in Definition 3.1 of c-universal class H,
probability of collision of two different elements x and y can be rewritten as

Pr (h(x) = h(y)) =
|{h ∈ H | h(x) = h(y)}|

|H| =
c

|B| .

In the same manner we can reformulate and use definitions for the other universal
systems.

In the remainder of this chapter we sum up some basic facts regarding universal
systems, show remarks about their combinations and derive some theoretic bounds
of strongly k-universal systems.

Theorem 3.5. Every strongly 2-universal class of hash functions is also 1-universal.

Proof. Let H be strongly 2-universal class containing functions from a universe U
into a set B. We have to find the number of functions in H which make a given pair
of different elements x, y ∈ U collide.

First, define the set of functions that map both x and y on the image t ∈ B
Ht = {h ∈ H | h(x) = h(y) = t}.

These sets are disjoint and moreover |Ht| ≤ |H|
|B|2 . By summing throughout all t ∈ B

we have

|{h ∈ H | h(x) = h(y)}| =
∑
t∈B

|Ht| ≤ |B| |H||B|2 =
H

|B| .

The number of all colliding functions is then less or equal to H
|B| and the system H

is clearly 1-universal.

Theorem 3.6. Every strongly n-universal class of functions is strongly k-universal
for every 1 ≤ k ≤ n.
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Proof. Let H be a n-universal class consisting of functions from a universe U into
a hash table B. Similarly to the previous proof there are k different elements
x1, . . . , xk ∈ U that should be mapped to the prescribed buckets y1, . . . , yk ∈ B.
For every choice of their images y1, . . . , yk ∈ B we need to find the number of func-
tions mapping the element xi to its image yi, 1 ≤ i ≤ k.

The only estimate we can use comes from the strong n-universality of H and holds
for n elements only. We extend the set of images by other n−k elements xk+1, . . . , xn.
They are let to be mapped on arbitrary element of B. Such extension must be done
carefully so that the final sequence consists of different elements x1, . . . , xn, too.
From now on fix one such extension, xk+1, . . . , xn.

The set of functions mapping given k elements onto their prescribed images, H̄,
may be seen as

H̄ = {h ∈ H | h(xi) = yi, i ∈ {1, . . . , k}}
=

⋃
yk+1,...,yn∈B

{h ∈ H | h(xi) = yi, i ∈ {1, . . . , n}}.

Notice that sets of functions that map elements xk+1, . . . , xn onto different images
yk+1, . . . , yn are disjoint. The sum of their sizes is then equal to |H̄|. It follows that

|H̄| =
∣∣∣∣∣∣

⋃
yk+1,...,yn∈B

{h ∈ H | h(xi) = yi, i ∈ {1, . . . , n}}
∣∣∣∣∣∣

=
∑

yk+1,...,yn∈B

|{h ∈ H | h(xi) = yi, i ∈ {1, . . . , n}}|

≤
∑

yk+1,...,yn∈B

H

|B|n = |B|n−k H

|B|n =
H

|B|k .

Now we can see that the class of functions H is strongly k-universal, too.

3.2 Examples of universal classes of functions

In this section we show some examples of common universal classes of hash functions.
With each system we provide a simple proof of its universality or strong universality.
Presented systems not only differ in contained functions but also in their domains
and co-domains. However every system can be thought of as a mapping from a
subset of natural numbers onto another subset of natural numbers.

Linear system. System of linear functions was among the first systems of uni-
versal hash functions that were discovered. They were introduced by Carter and
Wegman in [6] where they showed basic properties of universal hashing. Above all
they mentioned the expected constant time of the find operation of universal hash-
ing. Nowadays various modifications of linear systems are known and are presented
in the following text. The system is also mentioned in [23] and [25].
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Definition 3.7 (Linear system). Let N be a prime, m ∈ N and let U = {0, . . . , N−1}
and B = {0, . . . ,m− 1} be sets. Then the class of linear functions

LS = {ha,b(x) : U → B | a, b ∈ U where ha,b(x) = ((ax+ b) mod N) mod m}

is called linear system.

Remark 3.8. Linear system is
dNme2
(Nm)

2 -universal.

Proof. Consider two different elements x, y ∈ U . We need to find the number of
functions ha,b ∈ H such that

(ax+ b mod N) mod m = (ay + b mod N) mod m.

This is equivalent to the existence of numbers r, s, t that satisfy the following
constraints:

r ∈ {0, . . . ,m− 1}
t, s ∈

{
0, . . . ,

⌈
N

m

⌉
− 1

}
(ax+ b) mod N = sm+ r

(ay + b) mod N = tm+ r.

Since N is a prime number and x 6= y for every choice of parameters r, s, t there
is an exactly unique solution; parameters a, b that satisfy the equalities.

Number of all possible choices of parameters r, s, t is m
⌈
N
m

⌉2
. So there are exactly

m
⌈
N
m

⌉2
functions ha,b that map the elements x, y to the same bucket.

We compute the system’s c-universality constant:

m

⌈
N

m

⌉2

= m

⌈
N

m

⌉2 N2

m
N2

m

=

⌈
N
m

⌉2

N2

m2

N2

m
=

⌈
N
m

⌉2

N2

m2

|LS|
|B| .

Hence the linear system is
dNme2
(Nm)

2 -universal.

For examining the properties of the original linear system simpler and smaller
multiplicative system may be used. They have many common properties and share
some same drawbacks. This multiplicative system may provide us with some insights
for which choices of hash function and stored set they both fail.

Definition 3.9 (Multiplicative system). Let p be a prime and m, m < p be the size
of the hash table. Then the system

Multm,p = {h : Zp → Zm | h(x) = (kx mod p) mod m for k ∈ Zp − {0}}

is called the multiplicative system.
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An important application of the multiplicative system is the construction of a
perfect hash function shown in [16] by Fredman, Komlós and Szemeredi. The system
and its other properties are also mentioned in [25].

Remark 3.10. For a prime p and m < p the multiplicative system is 2-universal.

Proof. Let x and y be different elements of the universe. We have to find the number
of functions in the multiplicative system that make their images the same. For a
collision function we have that

kx mod p mod m = ky mod p mod m

kx− ky mod p mod m = 0.

This may be rewritten as:

k(x− y) mod p = lm for l ∈
{
−
⌊ p
m

⌋
, . . . ,

⌊ p
m

⌋}
− {0}.

Notice that the parameter l 6= 0 since k 6= 0. Thus for every choice of x and
y there are at most 2

⌊
p
m

⌋
functions. For every value of l there is exactly one k

satisfying the equality because parameter p is a prime but k can be a solution for
distinct l. For the number of colliding functions we have

|{h ∈ Multm,p | h(x) = h(y)}| ≤ 2p

m

and the system is then 2-universal.

Previous systems contain only simple linear functions from natural numbers to
natural numbers. An analogous class can be constructed by using linear transfor-
mations between vector spaces. The systems have various similar properties but the
latter one gives us a suitable bound on the size of the largest bucket.

System of linear transformations. Systems of linear transformations are stud-
ied later in Chapter 5. We use them in Chapter 6 to create a new model of universal
hashing. The system is discussed in a very detail way in [3].

Definition 3.11 (The set of all linear transformations, the set of all surjective
linear transformations). Let U and B be two vector spaces. Denote the set of all
linear transformations as

LT (U,B) = {T : U → B | T is a linear transformation}

and let

LTS(U,B) = {T : U → B | T is a surjective linear transformation}

denote the set of all surjective linear transformations between vector spaces U and B.
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Definition 3.12 (System of linear transformations). Let U and B be two vector
spaces over the field Z2. The set LT (U,B) is called the system of linear transforma-
tions between vector spaces U and B.

Remark 3.13. System of linear transformations between vector spaces U and B is
1-universal.

Proof. Let m and n denote the dimensions of vector spaces U and B respectively.
Then every linear transformation L : U → B is associated with a unique n × m
binary matrix T .

Let ~x, ~y ∈ U be two distinct vectors mapped on a same image. We need to find
the number of linear mappings confirming this collision. Let k be a position such
that xk 6= yk. Such k exists since ~x 6= ~y. We show the following statement. If the
matrix T is fixed except the kth column, then the kth column is determined uniquely.
We just lost n degrees of freedom when creating matrix T causing the collision of ~x
and ~y. This lost implies 1-universality of the system, this is proved later, too.

In order to create a collision of ~x and ~y their images T~x, T~y must be the same.
The system of equalities must then be true for every i, 1 ≤ i ≤ n:

m∑
j=1

ti,jxj =
m∑
j=1

ti,jyj.

For ti,k we have:

ti,k = (xk − yk)−1

m∑
j=1,j 6=k

ti,j(yj − xj).

The elements in the k-th column are uniquely determined by the previous equal-
ity.

The number of all linear functions, equivalently the number of all binary matrices,
is 2mn. Notice that the size of the target space B is 2n. The number of all linear
functions mapping ~x and ~y to a same value is 2mn−n since we are allowed to arbitrarily
choose every element of the matrix T except the n ones in the k-th column.

System of linear transformations is 1-universal because

|{L ∈ LT (U,B) | L(x) = L(y)}| = 2mn−n =
2mn

2n
=
|LT |
|B| .

We are not limited only to vector spaces over field Z2. Systems of all linear
transformations between vector spaces over any finite field Zp are 1-universal, too.
However the most interesting results are achieved for the choice of Z2.
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Bit sum of a string over the alphabet {0, 1}. Presented family is another
linear system that is 1-universal, too. It is clear that every natural number can be
written as a string over alphabet consisting from two characters only, 0 and 1, it
is the number’s binary form. Weighted digit sum is considered the number’s hash
value. This reminds us of the system of linear transformations.

If we are hashing strings that are k + 1-bit long we also need k + 1 coefficients.
Also assume hashing into a table of size p ∈ N where p is a prime. Coefficients
may be chosen arbitrarily but are not greater than a parameter l, 0 < l ≤ p. To
transform a digit sum into an address of the hash table simple modulo p operation is
used. Parameter l may seem quite artificial. However it sets the range for coefficients
and therefore determines the size of the whole system.

Definition 3.14 (Bit string system). Let p be a prime, k ∈ N, B = {0, . . . , p − 1}
and l ∈ N, l ≤ p. System of functions

BSSp,l =

{
h~c : {0, 1}k+1 → B | h(x) =

(
k∑
i=0

cixi

)
mod p,~c = (c0, . . . , ck) ∈ Zk+1

l

}

is called bit string system with parameters p and l.

Remark 3.15. Bit string system for binary numbers of length k + 1 modulo prime
p and constant l ∈ N, l ≤ p is p

l
-universal.

Proof. Let x and y be two different bit strings x, y ∈ {0, 1}k+1. We must estimate
the number of all sequences of coefficients 0 ≤ c0, . . . , ck < l that make the two
elements collide. Every collision sequence must satisfy:(

k∑
i=0

cixi

)
mod p =

(
k∑
i=0

ciyi

)
mod p.

Since x 6= y there is an index j, 0 ≤ j ≤ k such that xj − yj 6= 0. This allows us
to exactly determine the jth coefficient cj from the others:

(
k−1∑
i=0

cixi

)
mod p =

(
k−1∑
i=0

ciyi

)
mod p

cj(xj − yj) mod p =

(
k−1∑

i=0,i 6=j

ci(xi − yi)
)

mod p

cj = (xj − yj)−1

(
k−1∑

i=0,i 6=j

ci(xi − yi)
)

mod p.

Last equality holds since p is a prime number and the number xj−yj is invertible
in the field Zp. The computed cj may be from the set {0, . . . , p − 1} but we need
it less then l. For such choice of the other coefficients ci, i 6= j there is no function
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causing a collision. However we still have a valid upper bound on the number of
colliding functions. There is one degree of freedom lost when choosing a function
that makes x and y collide. The number of all functions is lk+1 and the size of the
table is p. The number of colliding functions can be computed as:

|{h ∈ BSSp,l|h(x) = h(y)}| ≤ lk =
p

l

lk+1

p
=
p

l

|BSSp,l|
|B| .

The bit string system is thus p
l
-universal.

Polynomials over finite fields. The following system is a generalisation of so far
discussed linear functions and linear transformations to polynomials. The advantage
delivered by the system of polynomials is its strong universality. Unfortunately it is
traded for the bigger size of the system. The class is briefly mentioned in [34].

Definition 3.16 (System of polynomial functions). Let N be a prime number and
n ∈ N. Define U = {0, . . . , N − 1} and B = {0, . . . ,m− 1} The system of functions

Pn = {hc0,...,cn(x) : U → B | ci ∈ U, 0 ≤ i ≤ n}
where

hc0,...,cn(x) =

((
n∑
i=0

cix
i

)
mod N

)
mod m

is called the system of polynomial functions of the n-th degree.

Remark 3.17. Let N be a prime number and n ∈ N. If B = U then the system of
polynomial functions of the n-th degree is strongly n+ 1-universal. When B 6= U the
system is nearly strongly n+ 1-universal.

Proof. Let x1, x2, . . . , xn+1 be different elements of U and y1, y2, . . . , yn+1 are their
prescribed images. We can write down a system of linear equations that can be used
to find the coefficients c0, c1, . . . , cn:

h(xi) = yi, 0 ≤ i ≤ n.

If U = B the function h(x) is reduced to the form:

h(x) =

(
n∑
i=0

cix
i

)
mod N .

Since N is a prime number and the elements xi are different the corresponding
Vandermond matrix is regular. There is exactly one solution of the above system,

let c0, . . . , cn denote the solution. Size of the system is |U |n+1 and 1 = |U |n+1

|B|n+1 = |U |n+1

|U |n+1 .
Now it is clear that the system of polynomial functions is strongly n+ 1-universal.

Let U 6= B. We use the idea from the proof of c-universality of linear system.
First we write down the equations h(xi) = yi in the field ZN . Instead using modN
we introduce new variables ri as in the proof for linear system such that

25



(
n∑
j=0

cjx
j
i

)
mod N = yi + rim ri ∈

{
0, . . . ,

⌈
N

m

⌉
− 1

}
.

For every choice of all ri, 0 ≤ i ≤ n, we obtain an unique solution of the above
system of equations since we are in the field ZN . The number of all choices of ri is⌈
N
m

⌉n+1
. From the number of functions which map xi to yi for 1 ≤ i ≤ n it follows

that

|{h ∈ H | h(xi) = yi, i ∈ {1, . . . , n+ 1}}| ≤
⌈
N

m

⌉n+1

=

⌈
N
m

⌉n+1(
N
m

)n+1

(
N

m

)n+1

.

Hence this system is nearly strongly n+1-universal with the constant
dNmen+1

(Nm)
n+1 .

Although the choice of U = B is not very practical one, however it gives us a
clue that the system might be nearly strongly universal.

System of all functions. The strongly ω-universality is a powerful property. The
question is whether a system that satisfies the property exists. One example, al-
though not very useful, can be immediately constructed – it is a set of all functions
between two sets. The applicable construction of the system is taken from [34].

Definition 3.18 (System of all functions). Let U and B be sets such that |B| < |U |.
The family of functions

H = {h : U → B}
is called the system of all functions between U and B.

Remark 3.19. System of all functions between sets U and B is strongly ω-universal.

Proof. We are given n different elements x1, . . . , xn and their images y1, . . . , yn. We
must compute size of the set Hn = {h ∈ H | h(xi) = yi, i ∈ {1, . . . , n}}. Now note

that the system’s size is |H| = |B||U |. Since the values for elements x1, . . . , xn are
fixed we have

|Hn| = |B||U |−n =
|B||U |
|B|n =

|H|
|B|n

and thus the system is strongly ω-universal.

The main problem when using this system is that fact that to encode a function
h ∈ H is highly inconvenient. To store one we need |U | log |B| bits. When using this
simple approach we need to encode the values of elements that with great probability
will never be stored in the hash table. An alternative is to construct random partial
function from the set of all functions from B to U as shown in [34].

These ideas come from the existence of fast associative memory having expected
time of find and insert operations O(1) and existence of a random number generator.
Whenever we have to store an element we must determine its hash value. First, by
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using the associative memory we find out if the stored element already has a hash
value associated. If not we use the random number generator to obtain an element
from B and remember this connection, element – its hash value, to the associative
memory. This sequentially constructs a random mapping from the system of all
functions. Because the random number generator used chooses the elements of B
uniformly created system is certainly strongly ω-universal. In addition we do not
store the hash values for irrelevant elements.

By using this idea to construct a fast hash table we are trapped in a cycle since
we already supposed existence of a fast associative memory. But ω-universal class
can not only be used to construct a fast solution to the dictionary problem. It can
solve other problems like the set equality as shown in [34].

3.3 Properties of systems of universal functions

In this section we sum up some properties of strongly k-universal classes of functions.
We concentrate on the generalisation of the known properties of the c-universal
classes to the strongly universal classes. These results may inspire us to create more
powerful or better behaving systems without losing strong universality.

The first theorems show the results of combinations of two strongly universal
systems.

Theorem 3.20. Let H and I be strongly k-universal systems both from a universe U
into a hash table B with m = |B|. For h ∈ H and i ∈ I let us define

f(h,i)(x) = (h(x), i(x))

for all x ∈ U . Then the system

J = {f(h,i) : U → B ×B | h ∈ H, i ∈ I}
is strongly k-universal.

Proof. Let x1, . . . , xk be distinct elements of U and y1, . . . , yk, z1, . . . , zk ∈ B. We
find the number of pair functions f(h,i) such that for both functions h and i we
have h(x1) = y1, . . . , h(xk) = yk, i(x1) = z1, . . . , i(xk) = zk. From strong k-

universality of both systems we know that there are at most |H|
mk

functions h and
|I|
mk

functions i satisfying mentioned criteria. So the number of all functions f(h,i)

such that f(h,i)(x1) = (y1, z1), . . . , f(h,i)(xk) = (yk, zk) is at most |H||I|
m2k . The size of

the table is m2 and thus the constructed system is strongly k-universal.

Combination of two universal systems does not have to increase the size of the
table. From the previous result we obtain a smaller probability of collision by paying
the expensive price of the table expansion. When using single class of hash functions
the same effect on probability decrease can be achieved by simple squaring the table’s
size. We could also combine two strongly universal systems of functions and use a
suitable operation to merge the given results into a small table. The created system
remains strongly universal as it is stated in the next theorem and the combination
does not bring us any obvious advantage.
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Theorem 3.21. Let B denote the set of buckets of a hash table of size m, |B| = m.
Let both H and I be strongly k-universal classes of functions over the table B. Let o
be a binary left cancellative operation on B, ie. for every a, c ∈ B there exists exactly
one b ∈ B with o(a, b) = c. Then the system of functions

F = {f(h,i)|h ∈ H, i ∈ I}

where
f(h,i)(x) = o(h(x), i(x))

is strongly k-universal.

Proof. To prove the statement assume that x1, . . . , xk are pairwise distinct elements
of U and y1, . . . , yk are elements of B. For every yi, 1 ≤ i ≤ k choose a pair (ai, bi)
with o(ai, bi) = yi. The number of such choices is mk. From Theorem 3.20 for a
fixed choice of (ai, bi), 1 ≤ i ≤ k, it follows that the probability of the event

h(x1) = a1, . . . , h(xk) = ak and i(x1) = b1, . . . , i(xk) = bk

is less than 1
m2k . Hence Pr (f(xi) = yi, 1 ≤ i ≤ k) = mk

m2k = 1
mk

. Now we see that the
system F is strongly k-universal.

Corollary 3.22. Combining the results of pair functions created from strongly k-
universal classes by operations

• xor where the table size is a power of 2

• +, − over an additive group Zl where l is the table size

gives strongly k-universal classes of functions.

Proof. Both of the operations are left cancellative because they are group operations.

Next step is to discover the dependence of the parameter k of strongly k-universal
classes on their size. Theorem 3.23 shows us the best possible probability bound
for the collision of k different elements depending on the size of the system when
considering the strongly k-universality of a system. Original proof for c-universal
classes may be found in [24] and [23]. We slightly modify it to obtain a lower bound
on the size of a strongly k-universal class.

Theorem 3.23. Let H be a strongly k-universal system of functions from a universe
U of size N to a table B of size m. Size of the system H is then bounded by:

|H| > mk−1 logm

(
N

km

)
.
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Proof. Let H = {h1, . . . , h|H|}. By induction we create sequence U0, U1, . . . of sets
such that U0 = U and Ui is a greatest subset of Ui−1 such that hi(Ui) is a singleton.

From the Dirichlet’s principle size of every set Ui satisfies |Ui| ≥ |Ui−1|
m

. Hence we

obtain |Ui| ≥ |U |
mi

.
Let i be the greatest index with |Ui| ≥ k. Functions h1, h2, . . . , hi map at least

k elements of set Ui to a singleton. By Remark 3.6, the probability of this event is
less or equal to 1

mk−1 . It follows that i ≤ |H|
mk−1 . Since i is the greatest index with the

property |Ui| ≥ k we also have that |U |
mi+1 ≤ |Ui+1| < k.

From N
mi+1 < k it follows N

km
< mi and thus logm

(
N
km

)
< i.

Obtaining the bound on the size of system of functions:

|H|
mk−1

≥ i > logm

(
N

km

)
|H| > mk−1 logm

(
N

km

)
.

Corollary 3.24. If H is a strongly k-universal system of functions from a universe
U of size N to a table B of size m, then

k < 1 +
log |H| − log logm

(
N
km

)
logm

< 1 +
log |H|
logm

.

Proof. Theorem 3.23 can be reformulated to get a bound on k:

mk−1 <
|H|

logm
(
N
km

)
k < 1 +

log |H| − log logm
(
N
km

)
logm

k < 1 +
log |H|
logm

.
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Chapter 4

Expected Length of the Longest
Chain

4.1 Length of a Chain

In Lemma 2.1 we explain why the length of a chain is so important for hashing.
Consider a model of hashing which assumes that chains, representing the elements
of a single slot, are stored by linked lists. To find an element in a bucket (or chain)
we need to iterate it. Thus the time of the find operation is linear with respect to the
number of elements of a chain. An approach, how to estimate the expected length
of the longest chain, for both classic and universal hashing is shown.

Definition 4.1 (Equality indicator). Let x and y be two variables from the same
domain B. Then the function I : B ×B → {0, 1} such that

I(y = x) =

{
1 if x = y

0 if x 6= y

is called equality indicator.

Definition 4.2 (Length of a chain, length of the longest chain). Let U be a universe,
B be a hash table and h : U → B be a hash function. Let b ∈ B be a bucket and
S ⊂ U be a stored set. Then the length of the chain representing the bucket b when

hashing with the function h is denoted by psl(b, h) =
∑
x∈S

I(h(x) = b). The value

lpsl(h) = max
b∈B

(psl(b, h)) is called the length of the longest chain when hashing with

the function h.

Notation probe sequence comes from the open addressing. Open addressing as-
sumes that chains are represented directly in the hash table. In addition, the chains
from various buckets may be merged together. Thus they may contain elements with
different hash values. Many authors refer to the process of finding an element in a
chain as to the probing a sequence. Authors denote corresponding random variables
by names psl and lpsl as well, for example in [7].
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When taking the probability into an account we define random variables psl(b)
and lpsl over the probability space determined by a choice of a hash from a universal
class.

Definition 4.3 (Randomised variables psl and lpsl). Random variable psl(b) de-
notes the length of the chain representing a bucket b ∈ B. Its values are natural
numbers and probability density function is defined as:

Pr (psl(b) = k) =

∑
h∈H I(psl(b, h) = k)

|H| for k ∈ N.

Random variable lpsl denoting the length of the longest chain is defined as

lpsl = max
b∈B

(psl(b)).

In universal hashing the expected value of both random variables psl and lpsl is
taken over the choice of a function h ∈ H. Hence the bounds on the variable lpsl
are valid for any stored set S ⊂ U . They frequently depend on the size of the stored
set and on the size of the hash table but are independent of the stored elements.
The value E (lpsl) is not only important characteristic of the expected worst case.
As shown later in Chapter 6, if we are able to find a tight upper bound on E (lpsl),
then we are also able to guarantee the worst case behaviour of the model.

4.2 Estimate for Separate Chaining

The standard result of classic hashing is the bound O
(

logn
log logn

)
on the length of the

longest chain. We can reuse calculations in its proof found in [24] to show the same
bound for universal hashing with a strongly ω-universal class. In either case when
proving this result, we need to estimate the probability of collision of k elements.
In the classic model of hashing the estimate follows from the assumptions given in
Section 2.2. The assumptions are strong enough to solve the problem in the area
of classic hashing. However, they are not necessarily satisfied for many real world
situations.

Definition 4.3 of the random variables lpsl and psl are made for models of uni-
versal hashing. Yet, they are easy to understand with the standard hashing, too.

Remark, when using the standard model, we do not have to mention the addi-
tional parameter h of the variables psl and lpsl because the standard model assumes
a single hash function only. Recall that the probability space of this model corre-
sponds to the choice of a stored set.

Additional restriction placed on the hash function requires that it distributes the
elements of the universe uniformly across the hash table. Hence the other parameter,
bucket b ∈ B, of the variable psl is no longer necessary, too. From this fact it follows
that for two arbitrary buckets a, b ∈ B the random variables psl(a) and psl(b) are
equal:

Pr (psl(a) = k) = Pr (psl(b) = k) for every k ∈ N.
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In this chapter we use the notation from Section 2.1. So U is a universe, m
denotes the size of the hash table B and n is the size of the stored set S ⊂ U .

Theorem 4.4. Assume the model of separate chaining with α < 1. Then

E (lpsl) ∈ O
(

log n

log log n

)
.

Proof. The probability estimate for the variable lpsl is simply obtained from the
probability estimate of psl as:

Pr (lpsl ≥ i) ≤ mPr (psl(b) ≥ i for any b ∈ B) .

We use the definition of the expected value to find E (lpsl):

E (lpsl) =
∞∑
i=0

iPr (lpsl = i)

=
∞∑
i=0

i(Pr (lpsl ≥ i)−Pr (lpsl ≥ i+ 1))

=
∞∑
i=0

Pr (lpsl ≥ i) .

We obtained:

E (lpsl) ≤
∞∑
i=0

mPr (psl ≥ i) .

Since the hash function divides the universe U uniformly across the table, for
every x ∈ U , b ∈ B we have that Pr (h(x) = b) = 1

m
. Now we use the assumption of

the independent and uniform choice of the hashed element. Provided the assumption,
the probability of collision of i ∈ N elements may be estimated by a binomial random
variable as. Hence for the collision of at least i elements it follows

Pr (psl ≥ i) ≤
(
n

i

)(
1

m

)i
.

Remark that this estimate holds only when the universe is substantially larger
than the stored set. Selection of the first element slightly changes the probability of
the choice of the second one and so on. This fact is neglected for large or infinite
universes.

We can finish the estimate of the variable lpsl by computing:

E (lpsl) ≤
∞∑
i=0

mPr (psl ≥ i)

≤
∞∑
i=0

mmin

(
1,

(
n

i

)(
1

m

)i)

= O

(
log n

log log n

)
.

If we assume that the table’s load factor α < 1, we can complete the proof. The
details of the estimate can be found in [24] and in [23].
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4.3 Estimate for Universal Hashing

In universal hashing we move to a different probability estimate of collision of k
elements. The probability bound follows from strongly ω-universality of the class
H, we use. We neither assume nor exploit specific properties other than strongly
ω-universality.

Definition 4.5 (Set indicator). Let I be a function such that

I : 2U → {0, 1}

I(M) =

{
0 M = ∅
1 M 6= ∅.

Then I is called a set indicator.

The relation between the size of a set M and its indicator is described by the
next lemma.

Lemma 4.6.
I(M) ≤ |M |.

Proof. We distinguish between the cases M = ∅ and M 6= ∅.
• If M = ∅ then I(M) = 0 = |M | and the inequality holds.

• If M 6= ∅ then I(M) = 1 ≤ |M | so the statement is true.

Now we present a method how to estimate the probability of collision of k ele-
ments.

Definition 4.7 (Collision sets of k elements). Let h ∈ H be a function, S ⊂ U be a
set and b ∈ B. For a natural number k define

M≥k(h, b) = {Y ⊆ S | |Y | ≥ k, h(Y ) = {b}},
M=k(h, b) = {Y ⊆ S | |Y | = k, h(Y ) = {b}}.

When it is clear, we can omit parametrisation of the sets and use the notation
M≥k or M=k. Simply said, sets M≥k and M=k denote the chains of length at least k
and equal to k, respectively. Formally, chain of length k is a subset of the stored set
S consisting of k elements which are hashed to a singleton.

Lemma 4.8. Let U be a universe, B represent a hash table, b ∈ B a bucket, S ⊂ U
be a stored set and h : U → B. Then the non-emptiness of the set M≥k(h, b) is
equivalent to the non-emptiness of the set M=k(h, b). Equivalently

I(M≥k(h, b)) = I(M=k(h, b)).
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Proof. Let M≥k be a non empty set, then:

Y ∈M≥k ⇒ ∀Y ′ ⊆ Y, |Y ′| = k : h(Y ′) = {b}
⇔ ∀Y ′ ⊆ Y, |Y ′| = k : Y ′ ∈M=k

⇒ ∃Y ′ ⊆ Y, |Y ′| = k : Y ′ ∈M=k.

Let M=k be a non empty set:

Y ′ ∈M=k ⇒ Y ′ ∈M≥k.

Now we have:

M≥k 6= ∅ ⇔M=k 6= ∅
I(M≥k) = I(M=k).

Now fix any arbitrary bucket b ∈ B. If the chain in the bucket b has psl(b, h) ≥ k,
then there is a subset Y ⊆ S, |Y | ≥ k, such that h(Y ) = {b}. If psl(b, h) = k, then
set Y , |Y | = k, is maximal considering its size. It means that the set Y may not
be extended to a larger one hashed just onto b. We can write down the probability
density functions of psl(b) as:

Pr (psl(b) ≥ k) =

∑
h∈H I({Y ⊆ S | |Y | ≥ k, h(Y ) = {b}})

|H| ,

Pr (psl(b) = k) =

∑
h∈H I({Y ⊆ S | |Y | = k, h(Y ) = {b}, Y is maximal})

|H| .

We add some remarks clarifying the following calculations:

• Every chain is determined by a bucket b ∈ B.

• Probability estimate is always computed for a fixed set S.

• We have to find an estimate

Pr (psl(b) ≥ k) ≤ p(B,U,H, |S|)

for some p(B,U,H, |S|). This estimate is then used to estimate the distribution
function of lpsl:

Pr (lpsl ≥ k) ≤ |B|p(B,U,H, |S|).
• The obtained estimate does not depend on the elements of the stored set S.

However, it depends on its size n = |S|.
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From Lemma 4.8 it follows that the probability of collision of more than k ele-
ments can be bound as

Pr (psl(b) ≥ k) =

∑
h∈H I({Y ⊆ S | |Y | ≥ k, h(Y ) = {b}})

|H|
=

∑
h∈H I({Y ⊆ S | |Y | = k, h(Y ) = {b}})

|H|
≤
∑

h∈H |{Y ⊆ S | |Y | = k, h(Y ) = {b}}|
|H|

=
|{(h, Y ) | |Y | = k, h(Y ) = {b}}|

|H|

=

∑
Y⊆S,|Y |=k |{h ∈ H | h(Y ) = {b}}|

|H| .

Claim 4.9. Let k ∈ N, b ∈ B be a bucket and H be a universal class. If we assume
universal hashing with the class H, then

Pr (psl(b) ≥ k) ≤
∑

Y⊆S,|Y |=k |{h ∈ H | h(Y ) = {b}}|
|H| .

Proof. Follows from the previous calculation.

We further estimate the above fraction from the properties of the class H. In
this case we use strong ω-universality as stated in the next theorem.

Theorem 4.10. If H is a strongly ω-universal system, then E (lpsl) ∈ O
(

logn
log logn

)
.

Proof. Estimate the probability of the existence of a chain consisting of at least
k ∈ N elements:

Pr (psl(b) ≥ k) ≤
∑

Y⊆S,|Y |=k |{h ∈ H|h(Y ) = {b}}|
|H|

≤
∑

Y⊆S,|Y |=k
|H|
|B|k

|H|
=

(|S|
k

)
1

|B|k .

Now we carry on as in the case of standard hashing. The probability estimate
of collision of k elements is exactly the same. Thus we can obtain the same result

E (lpsl) = O
(

logn
log logn

)
.

A construction of a small strongly ω-universal system is difficult. Later in this
work we investigate the system of linear transformations. Although the system is not
strongly ω-universal, its specific properties, independent of the strong ω-universality,
give an interesting upper bound on the distribution function of the variable lpsl.
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Chapter 5

The System of Linear
Transformations

From now on, we concentrate on the systems of linear transformations between
vector spaces over the field Z2. The reason is simple, they allow a construction of
a remarkable model of universal hashing. Like for the other universal models, the
expected length of a chain is constant and so is the expected running time of the
find operation. In addition, the expected length of the longest chain is bounded by
a sub-linear function of a single variable – the size of the hash table. In our model,
we have also managed to prove that the expected amortised time of every operation,
find, insert and delete, is constant.

Once again, the main result is the upper bound on the expected length of the
longest chain when a system of linear maps is used as a universal class. As already
mentioned, probability of collision of k-elements is not estimated directly from the
properties common to all universal systems. Hence the proof of the bound can not
be based on the idea shown in the previous chapter.

First, we show a few models of the uniform random choice of a linear function.
They describe other ways of the uniform random choice of a linear function from
the universal class – choice of the universal hash function. Later, we prove some
technical lemmas regarding the vector spaces. Finally, we state the required facts
in terms of system of linear transformations. Then we interpret the facts in terms
of hashing and propose a new model. Many theorems come from [3]. Our work lies
in their correction, improvement and modification leading to a better and practical
result.

In the following sections we restrict ourselves only to the vector spaces over the
field Z2. If vector spaces are taken over other finite field than the field Z2, then
we can not expect such good results as shown in [3]. The original result proposes
hashing of m logm elements into a hash table of size of m slots and leads to the
bound O(logm log logm). Although the result may already be used for hashing m
elements, too, it is later improved for α ≤ 1.

When unsure about any exact definition or fact from linear algebra, see Ap-
pendix A where we exactly summarise and accurately state them.
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5.1 Models of the Random Uniform Choice

Our technical preparations for key statements include models of the random uniform
choice of a linear map. These models are used later to simplify proofs assuming the
random uniform choice of a linear transformation – choice of a hash function. The
simple random choice is transformed to the random uniform selection of two or more
objects that precisely correspond to the linear function.

We recall Definition 3.11 saying that for two vector spaces A and B, the sets

LT (A,B) = {T : A→ B | T is a linear transformation},
LTS(A,B) = {T : A→ B | T is a surjective linear transformation}

and Definition A.8 stating that for two affine vector spaces AA and BA, the set

LTA(AA, BA) = {TA : AA → BA | TA is an affine linear transformation}.
Definition 5.1 (Uniform selection). Let S = {s1, . . . , sn}. By the random uniform
selection of an element s ∈ S we understand the model of selection with

Pr (s ∈ S is selected) =
1

n
.

Definition 5.2 (Set of all permutations). Let b be a natural number. Then Πb

denotes the set of all permutations of the set {1, . . . , b}.
The first model shows the correspondence between the random uniform choice of

a basis of the source space that is mapped onto a fixed basis of the smaller target
space and the random uniform choice of a surjective linear transformation.

Remark 5.3 (Surjective linear map selection). Let B be the set of all bases of the
vector space Zf

2 and the set {~y1, . . . , ~yb} be a basis of the vector space Zb
2 where

b, f ∈ N and b ≤ f . Let us denote S the set of all subsets of {1, 2, . . . , f} of size

f − b. For the random uniform choice of a basis β = {~b1, . . . , ~bf} ∈ B, a set s ∈ S
and a permutation π ∈ Πb we define the linear map Tβ,s,π as

Tβ,s,π(bi) =

{
yπ(i) if i /∈ s
0 if i ∈ s.

If we perform the random uniform choices of a basis β ∈ B, a set s ∈ S and a
permutation π ∈ Πb, then we obtain a randomly and uniformly selected surjective
linear map Tβ,s,π.

Proof. First, remark that Tβ,s,π is a surjective linear map for every choice of β ∈ B,
s ∈ S and π ∈ Πb. From the fact that Tβ,s,π is defined for every vector of the basis β
we known it may be uniquely extended to a linear map. It is surjective since for every
vector ~yi, i ∈ {1, . . . , b}, there is a vector ~bj, j ∈ {1, . . . , f}, such that Tβ,s,π(~bj) = ~yi.

We show that for every surjective linear transformation T there is a choice of β, s
and π such that Tβ,s,π = T . Consider set T−1(~0), it certainly contains f − b linearly
independent vectors, denote them as β0.
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Now for every i = 1, 2, . . . , b choose ~ci ∈ T−1(~yi), then β1 = {~c1, ~c2, . . . , ~cb} is a
linearly independent set because the set {~y1, . . . , ~yb} is a basis of the vector space
Zb

2. Since T (β0) = {~0} we deduce that β = β0 ∪ β1 is a linearly independent set of
size f , thus it is a basis.

Let δ denote the number of all bases in the vector space Zf−b
2 and T be a fixed

surjective linear transformation. The number of choices generating the transforma-
tion T equals f !δt2f−b. To choose a basis β of Zf

2 the sets β0 and β1 are selected
independently of each other as already stated. Number of choices for β0 is δ. The
process of selection of β1 is already described and implies that the number of choices
is t2f−b. The factor f ! appears because the bases of the vector space Zf

2 are consid-
ered ordered. Since we want to create the fixed function T the choice for s and π is
already exactly determined by the previous choice of the basis β.

Remark 5.4. Let u, f, b be natural numbers such that b ≤ f . Assume the random
uniform choices of a linear transformation T0 : Zu

2 → Zf
2 among LT (Zu

2 ,Z
f
2) and a

surjective function T1 : Zf
2 → Zb

2 among LTS(Zf
2 ,Zb

2). Then we obtain the random
uniform choice of a linear transformation T = T1 ◦ T0 among LT (Zu

2 ,Zb
2).

Proof. The idea of the proof is to show that there exists a natural number γ such
that every linear map T is generated by γ choices of T0 and T1.

To prove this fact, let T1 be a fixed surjective linear map. First we show that the
number of choices of T0, such that T = T1 ◦ T0, equals u2f−b. Let β be a fixed basis
of the vector space Zu

2 . From Lemma A.10 it follows that for every ~y of β there are
2f−b choices of T0(~y) ∈ T−1

1 (T (~y)). Clearly T = T1 ◦ T0.
Now for every T there are exactly γ = u2f−b|LTS(Zf

2 ,Zb
2)| choices of transfor-

mations T0 and T1.

See Appendix A for the definitions and facts regarding the orthogonal comple-
ment, affine vector spaces and affine linear maps.

Remark 5.5. Let u, f, b ∈ N such that f ≥ b. Assume the random uniform choices
of T0 : Zu

2 → Zf
2 among LT (Zu

2 ,Z
f
2) and T1 : Zf

2 → Zb
2 among LTS(Zf

2 ,Zb
2). Set

T = T1 ◦ T0. Assume that ~y ∈ Zb
2 and denote UA = T−1(~y) and FA = T−1

1 (~y). If
UA 6= ∅, then T0|UA : UA → FA is a random affine linear map chosen uniformly from
the set LTA(UA, FA).

Proof. First set U = Zu
2 , U0 = T−1(~0), F0 = T−1

1 (~0) and U1 = U⊥0 .
Now we show that there is a one-to-one relationship among the linear transfor-

mations T0 : U → F and pairs of mappings T0|U0 and T0|U1 . Assume that β0 and
β1 are orthonormal bases of the vector spaces U0 and U1. The set β = β0 ∪ β1 is an
orthonormal basis of the vector space U , too. For a vector ~x ∈ β set the value T0(~x)
equal to T0|U0(~x) or T0|U1(~x), according to the presence of ~x in β0 or β1. Thus the
uniform choice of a mapping T0 corresponds to the uniform independent choices of
linear functions T0|U0 and T0|U1 .

From the observed fact it follows that the uniform choice T0 gives the uniform
selection of a linear transformation T0|U0 . When ~y = ~0, then, by the previous state-
ment, we simply perform the random uniform selection of a mapping T0|UA = T0|U0 .
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When ~y 6= ~0, we have to randomly and uniformly select an affine mapping T0|UA .
By setting T0|UA(~x) = T0(~v) + T0|U0(~x− ~v) for an arbitrary but fixed vector ~v ∈ UA,
the uniform choice of T0|U0 implies the uniform choice of T0|UA .

5.2 Probabilistic Properties

Many of the following claims are taken from [3]. It is convenient to show the original
proofs and then modify them according to our future needs. Technical definitions
and statements which follow are useful in order to show our goal – the bound on the
length of the longest chain.

Once again, see Appendix A for the exact definitions of the set

~v + A = {~v + ~a | ~a ∈ A}

and the set
A+B = {~a+~b | ~a ∈ A,~b ∈ B}.

Original Lemma 5.6 can be found in [24], however our proof is more exact and
clear.

Lemma 5.6. Let V be a finite vector space and A be its subset. Define µ = 1− |A||V |
as the inverse density of the set A in the vector space V . Let ~v ∈ V be a random
uniformly chosen vector independent of A. Then

E

(
1− |A ∪ (~v + A)|

|V |
)

= µ2

The expectation is taken over the possible choices of ~v ∈ V .

Proof. To simplify further computations define X~v = |A ∪ (~v + A)| as a random
variable taken over the random uniform choice of a vector ~v ∈ V . The most difficult
part of the proof is to compute E (X~v). From its definition we have

E (X~v) =
∑
~v∈V

|A ∪ (~v + A)| ·Pr (~v is chosen) =
∑
~v∈V

|A ∪ (~v + A)|
|V | .

The size of the set A ∪ (~v + A) can be expressed using the indicator function as

|A ∪ (~v + A)| =
∑
~u∈V

I(~u ∈ A ∨ ~u ∈ (~v + A)).

To compute the sum
∑

~v∈V |A∪ (~v+A)| we count the number of pairs of vectors
~u,~v ∈ V satisfying the indicator’s condition. Notice, if ~u ∈ A, then there are exactly
|V | vectors ~v ∈ V satisfying the above condition. To count the number of vectors
confirming to the second one assume that ~u /∈ A and ~a ∈ A. There is exactly one
vector ~v ∈ V for every choice of ~u and ~a such that ~a+~v = ~u. It follows that there are
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exactly |A|(|V | − |A|) such vectors ~u and ~v satisfying the condition. The remaining
choices are refused. Thus

|{(~u,~v) | ~u ∈ A ∨ ~u ∈ (~v + A), ~u,~v ∈ V }| = |A|(|V | − |A|) + |V ||A|
= 2|V ||A| − |A|2.

Substituting into the definition of E (X~v) and rewriting sums into the just com-
puted number of pairs gives that

E (X~v) =

∑
~v∈V

∑
~u∈V I(~u ∈ A ∨ ~u ∈ (~v + A))

|V |
=
|{(~u,~v) | ~u ∈ A ∨ ~u ∈ (~v + A), ~u,~v ∈ V }|

|V |
=

2|V ||A| − |A|2
|V | .

Now we finally compute the expected value

E

(
1− |A ∪ (~v + A)|

|V |
)

= 1− E (|A ∪ (~v + A)|)
|V |

= 1− E (X~v)

|V |
= 1− 2|V ||A| − |A|2

|V |2

=
|V |2 − 2|V ||A|+ |A|2

|V |2

=

(
1− |A||V |

)2

= µ2.

The next lemma and its corollaries are so simple that one can think they should be
omitted. However, they are used later in a few complicated situations. Sometimes it
is hard to realise why the inequalities hold and recalling this lemma and its corollaries
often helps.

Lemma 5.7. Let f : (0, 1)→ R be a decreasing function. Then the function xf(x) is
increasing in the interval (0, 1).

Proof. To prove the lemma assume that a, b ∈ (0, 1) and a < b. It follows that
f(a) > f(b). Observe that the function ax of variable x is decreasing and the
function xf(b) of variable x is increasing. Hence

af(a) < af(b) < bf(b).
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Corollary 5.8. The function xc+log log( 1
x) is increasing in the interval (0, 1) for every

c ∈ R.

Proof. Use Lemma 5.7 and note that the function log log
(

1
x

)
is decreasing.

Corollary 5.9. The function xc−log x−log log x is decreasing in the interval (1,∞) for
every c ∈ R.

Proof. Set the function g(y) = y−c+log( 1
y )+log log( 1

y ) for 0 < y < 1. From Lemma 5.7
for g(y) it follows that g is increasing in (0, 1). Then for every x > 1 the function
f(x) = xc−log x−log log x = g

(
1
x

)
. Thus the function f is decreasing since for 1 < a < b

we have

f(a) = g

(
1

a

)
> g

(
1

b

)
= f(b).

The following lemma is a very technical one and is taken from [24]. It is later
used to estimate probabilities of events related to the system of linear maps. These
events correspond to the existence of a large set having a singleton image – to the
existence of a long chain.

Lemma 5.10. Let 0 < µ0 < 1 be a constant and for every i, 1 ≤ i ≤ k, let µi be a
random variable. Let us assume that for every random variable µi, 1 ≤ i ≤ k, the
following holds:

0 ≤ µi ≤ µi−1

E (µi | µi−1, . . . , µ1) = µ2
i−1.

Then for every constant t ∈ [0, 1]

Pr (µk ≥ t) ≤ µ
k−log log( 1

t
)+log log

“
1
µ0

”
0 .

Proof. We prove the statement by induction over k.

The initial step, k = 0. Since µ0 is constant we have

Pr (µ0 ≥ t) =

{
0 if µ0 < t

1 if µ0 ≥ t.

From µ0 > 0 it follows that

µ
0−log log( 1

t )+log log
“

1
µ0

”
0 ≥ 0

and thus the estimate holds for 0 < µ0 < t.

If t ≤ µ0 < 1, then − log log
(

1
t

)
+ log log

(
1
µ0

)
≤ 0 and hence

µ
0−log log( 1

t )+log log
“

1
µ0

”
0 ≥ 1.

The statement thus holds for k = 0.
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The induction step. We prove the statement for k+1 using the assumption that
the lemma holds for k ≥ 0. Let t ∈ (0, 1) be fixed. For simplicity, let us denote
c = k − log log

(
1
t

)
. Then we have to prove

Pr (µk+1 ≥ t) ≤ µ
c+1+log log

“
1
µ0

”
0 .

Whenever exponent c + 1 + log log
(

1
µ0

)
≤ 0, the estimate holds because µ0 < 1.

We can restrict ourselves to the case when c + 1 + log log
(

1
µ0

)
> 0. To prove our

statement we fix the value of the variable µ1 and use the induction hypothesis for
k. For a value a ∈ [0, µ0] define g(a) = Pr (µk+1 ≥ t | µ1 = a). First, we give the
following claim.

Claim 5.11.

Pr (µk+1 ≥ t) =

µ0∫
0

Pr (µk+1 ≥ t | µ1 = a) Pr (µ1 = a) da = E (g(µ1)) .

Proof. This claim is a corollary of Lemma B.20.

The following functions are convenient for using the induction hypothesis. For
every x ∈ (0, 1) define functions f and f0 as

f0(x) =

{
xc+log log( 1

x) if 0 < x < 1

0 if x = 0,

f(x) = min{1, f0(x)}.
If β0 = a ∈ [0, µ0] is constant and for i = 1, . . . , k βi are random variables

satisfying the conditions of this lemma, then apparently Pr (βk ≥ t) = g(a).

Claim 5.12. For every a ∈ [0, µ0] we have g(a) ≤ f(a).

Proof. We omit the constant µ0 from the sequence of random variables and use the
previous fact for βi = µi+1 for i = 0, . . . , k. The induction hypothesis for k then

states g(a) ≤ f(a) = ak−log log( 1
t )+log log( 1

a).

These claims are used later in the proof. Now we investigate the behaviour of
the function f0

x
in the interval (0, 1). First, we compute the first derivation of the

function f0
x

for every x ∈ (0, 1).(
f0(x)

x

)′
=
xf0(x)

[
ln(x)

(
c+ log log

(
1
x

))]′ − f0(x)

x2

=

f0(x)

[
c+ log log

(
1
x

)
+ x · lnx

log( 1
x) ln 2

· x
ln 2
· −1
x2

]
− f0(x)

x2

=

(
c− 1 + log log

(
1

x

)
+ log e

)
f0(x)

x2
.
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The investigated function f0(x)
x

has the unique stationary point xs = 2−2−c+1−log e
.

First it is increasing in the interval (0, xs] and then decreasing in the interval [xs, 1).
Let us also define x1 = 2−2−c , the point where f0(x) reaches 1 for the first time,

f0(x1) = x1
c+log log

“
1
x1

”
= x1

c−c = 1.

Since −c > −c + 1 − log e, the inequality x1 < xs holds and thus point x1 is still
in the increasing phase of the function f0(x)

x
. By Corollary 5.8 the function f0(x)

is increasing in the interval [x1, 1). Therefore for every x ∈ [x1, 1) we have that
f0(x) ≥ f0(x1) = 1 and f(x) = min{1, f0(x)} = 1.

At last, define the third point x2 =
√
x1 = 2−2−c−1

. The inequality x2 > xs follows
from −c− 1 < −c+ 1− log e. The point x2 then lies in the decreasing phase of the
function f0(x)

x
. For x2 the following statement holds:

f0(x2)

x2

=

(
2−2−c−1

)c+log
“
− log

“
2−2−c−1

””

2−2−c−1

=

(
2−2−c−1

)c+log(2−c−1)

2−2−c−1

=

(
2−2−c−1

)−1

2−2−c−1

=
1

x2
2

=
1

x1

.

Claim 5.13. The following holds:

(1) f0(x1)
x1

= 1
x1

,

(2) f0(x2)
x2

= 1
x1

,

(3) f(x)
x
≤ f0(µ0)

µ0
if 0 < x ≤ µ0 ≤ xs,

(4) 1
x1
≤ f0(µ0)

µ0
if µ0 ∈ [xs, x2].

Proof. The first fact f0(x1)
x1

= 1
x1

, follows from the definition of x1 because f0(x1) = 1.
The proof of the second one is above.
The third one comes from the observation that the function f0(x)

x
is increasing in

the interval (0, xs]. In addition, f(x) ≤ f0(x) in the interval (0, 1).

The last one comes from the equality 1
x1

= f0(x2)
x2

and the fact that both µ0 and
x2 lie in the decreasing phase. Thus the relation µ0 ≤ x2 implies the result

f0(x2)

x2

≤ f0(µ0)

µ0

.
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The proof is now divided into three cases. The first and the second case take care

about the situation when the exponent c + 1 + log log
(

1
µ0

)
is non-negative. In the

first two cases it is proved that f(x) ≤ f0(µ0)x
µ0

for every x ∈ (0, µ0].

Constant µ0 is in the increasing phase, µ0 ≤ xs. From Claim 5.13(3) it follows
that

f(x)x

x
≤ f0(µ0)x

µ0

.

Constant µ0 is in the decreasing phase, xs ≤ µ0 ≤ x2.

Assume that x ∈ (0, x1]. The Claim 5.13(1) and the fact that the function is
increasing in the interval imply

f(x)

x
≤ f0(x)

x
≤ f0(x1)

x1

=
1

x1

.

Let x ∈ [x1, µ0]. Because of the choice x ≥ x1 we have that f(x) = 1 and it
follows that

f(x)

x
=

1

x
≤ 1

x1

.

For every x ∈ (0, µ0] we may estimate the function f(x) as

f(x) =
f(x)x

x
≤ x

x1

.

The Claim 5.13(4) proves that

f(x) ≤ x

x1

≤ f0(µ0)x

µ0

.

Proof of the lemma assuming either of the first two cases. In both cases
for every x ∈ (0, µ0] the following holds

f(x) ≤ f0(µ0)x

µ0

.

Now use the previous estimate, Claim 5.12, Claim 5.11 and properties of the expected
value stated in Lemma B.18 to prove the lemma,

Pr (µk+1 ≥ t) = E (g(µ1)) ≤ E (f(µ1)) ≤ E

(
f0(µ0)µ1

µ0

)
=
f0(µ0)

µ0

E (µ1 | µ0)

=
f0(µ0)

µ0

µ2
0 = µ0f0(µ0) = µ0

c+1+log log
“

1
µ0

”
.
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Constant µ0 is set so that the exponent is negative, µ0 ≥ x2. To prove the

lemma in this case, it is sufficient to show that the exponent, c + 1 + log log
(

1
µ0

)
,

is not positive. As already observed before the estimate is then at least 1. The
exponent is non-positive since

c+ 1 + log log

(
1

µ0

)
≤ c+ 1 + log log

(
1

x2

)
= c+ 1 + log

(
− log

(
2−2−c−1

))
= c+ 1 + log

(
2−c−1

)
= c+ 1− c− 1 = 0.

The inequality, Pr (µk+1 ≥ t) ≤ µ
c+1+log log

“
1
µ0

”
, holds for every of the three cases

and the induction step is thus complete.

Theorem 5.14 is also taken from [24] and is used to estimate the probability of
the event that a subset of the domain is not mapped onto whole target space.

Theorem 5.14. Let f, b ∈ N such that b ≤ f . Let S be a proper and non-empty
subset of the vector space Zu

2 . Set µ = 1 − |S|
2f

as the inverse density of the set S

in the vector space Zf
2 . Then for a random uniformly chosen surjective linear map

T : Zf
2 → Zb

2 we have

Pr
(
T (S) 6= Zb

2

) ≤ µf−b−log b+log log 1
µ .

Proof. Set k = f − b. Choose vectors ~v1, . . . , ~vk ∈ Zf
2 independently and randomly

using the uniform distribution. Note that the vectors ~v1, . . . , ~vk ∈ Zf
2 are not neces-

sarily linearly independent.
We perform the random uniform choice of a linear surjective transformation T

according to Model 5.3. First fix a basis of the target space Zb
2. Secondly, maximal

linearly independent subset of vectors ~v1, . . . , ~vk is extended to a random basis β of
the vector space Zf

2 . Now choose a random permutation π ∈ Πb as stated in the
mentioned model. Because of the random uniform selection of the vectors ~v1, . . . , ~vk,
the basis β may be chosen uniformly as well. If we place the vectors ~v1, . . . , ~vk into
the kernel of the created mapping, then they define a subset s′ of the needed set
s ∈ S. The set s′ is then uniformly extended to a set s ∈ S such that s′ ⊆ s so
that we perform the uniform choice of a set s ∈ S. The random uniform choice of a
surjective linear function T is finally complete. Just note that we have T (~vi) = ~0 for
all i = 1, . . . , k.

Let us define a bounded sequence of sets S0 = S and Si = Si−1 ∪ (Si−1 + ~vi) and

set µi = 1 − |Si|
2f

for i ∈ {1, . . . , k}. When considering µi random variables, then by
using Lemma 5.6 we can derive that E (µi) = µ2

i−1 for every i ∈ {1, . . . , k}. Because
every set Si is an extension of the previous set Si−1 it follows that 0 < µ = µ0 < 1
and µi ≤ µi−1 for all i = 1, . . . , k. The assumptions of Lemma 5.10 are now satisfied
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and we obtain

Pr
(
µk ≥ 2−b

) ≤ µk−log log( 1

2−b )+log log( 1
µ)

= µk−log b+log log( 1
µ)

= µf−b−log b+log log( 1
µ).

If we prove that the event T (Sk) = Zb
2 occurs whenever µk < 2−b, then the

statement will be almost proved. Since µk = 1 − |Sk|
2f

the size of the set Sk equals
2f (1 − µk). Using the assumption µk < 2−b it follows that |Sk| > 2f − 2f−b. To get
the contradiction we assume that there is a vector ~x ∈ Zb

2 − T (Sk) or equivalently
T (Sk) 6= Zb

2. Under these conditions it is clear that T−1(~x) and Sk are disjoint. From
Lemma A.10 we have |T−1(~x)| = 2f−b. It follows that

2f = |Zf
2 | ≥ |Sk ∪ T−1(~x)| > 2f − 2f−b + 2f−b = 2f .

This is a contradiction.
To prove the theorem rewrite the statement, µk < 2−b ⇒ T (Sk) = Zb

2, in terms
of probability:

Pr
(
µk < 2−b

) ≤ Pr
(
T (Sk) = Zb

2

)
.

Because Zf
2 is a vector space over the field Z2, by induction over i ∈ {1, . . . , k},

we obtain that Si = Si−1 ∪ (~vi + Si−1) = S0 + span (~v1, . . . , ~vi). Note that T (~vi) = ~0
because the mapping T is chosen so that every vector ~vi is placed in the kernel of T .
This simply implies T (Sk) = T (S).

The proof of the theorem is finished by putting the previous notes together,

Pr
(
T (S) 6= Zb

2

)
= Pr

(
T (Sk) 6= Zb

2

)
= 1−Pr

(
T (Sk) = Zb

2

)
≤ 1−Pr

(
µk < 2−b

)
= Pr

(
µk ≥ 2−b

)
≤ µf−b−log b+log log( 1

µ).

Theorem 5.15 shows the probability of the complementary event, T (S) = Zb
2, if

the set S is large enough. It is taken from [24] and is consequently improved by our
Statements 5.18 and 5.23.

Theorem 5.15. Let T : Zu
2 → Zb

2 be a random uniformly chosen linear map. For
every ε ∈ (0, 1) there is a constant cε > 0 such that for every subset S of the domain
Zu

2 with |S| ≥ cεb2
b we have that

Pr
(
T (S) = Zb

2

) ≥ 1− ε.
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Proof. The idea of the proof is to factorise the transformation T through the factor
space Zf

2 , where the dimension f is specified later, into two linear functions T0 and
T1 such that T = T1 ◦ T0. In fact, we estimate the probability of the complementary
event, T (S) 6= Zb

2. To successfully use the estimate from Theorem 5.14 we must
bound the inverse density µ. The bound is obtained by using the Law of Total
Probability, Theorem B.13 as

Pr
(
T (S) 6= Zb

2

)
= Pr

(
T (S) 6= Zb

2 ∧ |T0(S)| ≤ |S|
2

)
+ Pr

(
T (S) 6= Zb

2 ∧ |T0(S)| > |S|
2

)
.

Then we use the Markov’s inequality to estimate the expression Pr
(
|T0(S)| ≤ |S|

2

)
and Theorem 5.14 on the remaining one.

First set f =
⌈
log(2|S|

ε
)
⌉
. Let T1 : Zf

2 → Zb
2 be a random uniformly chosen

surjective linear mapping. Since cε is later chosen large enough, we have that f ≥ b
and thus such onto mapping T1 exists. Fix it. Secondly, perform the random uniform
choice of a linear mapping T0 : Zu

2 → Zf
2 . From Model 5.4 it follows that the linear

mapping T = T1 ◦ T0 is chosen randomly and uniformly, too.
Since the family of all linear mappings from Zu

2 into Zf
2 is 1-universal we conclude

that
Pr (T0(~x) = T0(~y)) = 2−f

for all distinct vectors ~x and ~y from the vector space Zu
2 . If dS is the number of all

pairs of distinct vectors ~x, ~y ∈ S with T0(~x) = T0(~y), then the expected value of the
random variable dS is

E (dS) =

(|S|
2

)
2−f .

If |T0(S)| ≤ |S|
2

then there exist at least |S|
2

pairs of distinct vectors ~x, ~y ∈ S with
T0(~x) = T0(~y). By the Markov’s inequality, Theorem B.21, for every k > 1 we have

Pr

(
dS ≥ k

(|S|
2

)
2−f
)
≤ 1

k
.

Thus if we set k = |S|2f

2(|S|2 )
, then

k ≥ 2|S|2
ε(|S|2 − |S|) ≥ 2ε−1 > 1

and

k

(|S|
2

)
2−f =

|S|2f
2
(|S|

2

)(|S|
2

)
2−f =

|S|
2

and, by the Markov’s inequality, we obtain

Pr

(
|T0(S)| ≤ |S|

2

)
≤ Pr

(
dS ≥ |S|

2

)
≤ 2

(|S|
2

)
|S|2f =

|S| − 1

2f
<
|S|
2f
≤ ε|S|

2|S| =
ε

2
.
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We can summarise that

Pr

(
T (S) 6= Zb

2 ∧ |T0(S)| ≤ |S|
2

)
≤ ε

2
.

Secondly we compute Pr
(
T (S) 6= Zb

2 ∧ |T0(S)| > |S|
2

)
. By Theorem 5.14 used

for the mapping T1 : Zf
2 → Zb

2 and the set T0(S) ⊆ Zf
2 we have

Pr

(
T (S) = T1(T0(S)) 6= Zb

2 ∧ |T0(S)| > |S|
2

)
≤ µf−b−log b+log log( 1

µ)

where µ = 1− |T0(S)|
2f

. Since 2f ≤ 4|S|
ε

, clearly

µ = 1− |T0(S)|
2f

< 1− |S|
2 · 2f ≤ 1− ε|S|

8|S| ≤ e−
ε
8 .

In the following constant cε is chosen as 4
(

2
ε

) 8
ε . Then we can estimate:

− ε

8

(
f − b− log b+ log log

(
1

µ

))
= − ε

8

(⌈
log

(
2|S|
ε

)⌉
− b− log b+ log log

(
1

µ

))

≤ − ε
8

log

8
(

2
ε

) 8
ε b2b

ε

− b− log b+ log log

(
1

µ

)
≤ − ε

8

(
3 +

8

ε
log

2

ε
− log ε+ log b+ b− b− log b+ log

(( ε
8

)
log e

))
= − ε

8

(
3− log ε+

8

ε
log

2

ε
+ log ε− 3 + log log e

)
= − ε

8

(
8

ε
log

2

ε
+ log log e

)
= log

ε

2
− ε

8
log log e

≤ log
ε

2
.

And for the calculated probability we derive:

Pr

(
T (S) 6= Zb

2 ∧ |T (S)| > |S|
2

)
≤ µf−b−log b+log log( 1

µ)

≤ e−
ε(f−b−log b+log log( 1

µ))
8

≤ elog( ε2) ≤ eln( ε2) =
ε

2
.

If we put both alternatives together, we deduce that

Pr
(
T (S) = T1(T0(S)) 6= Zb

2

) ≤ ε

2
+
ε

2
= ε.
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From this observation follows the required estimate:

Pr
(
T (S) = Zb

2

) ≥ 1− ε.

The biggest disadvantage of Theorem 5.15 is the great value of constant cε. As
follows from Theorem 5.38 and Theorem 5.40 it is necessary to decrease its value.
Since the other constants are proportional to it, we need to find the smallest value
of cε. It is the aim of the following theorems and corollaries. When we successfully
manage the goal, then we are able to propose a reasonable chain limit rule, bounding
the length of the longest chain.

As observed in the next corollary, we may apply Theorem 5.15 for two affine
vector subspaces and an affine linear transformation between them, too.

Corollary 5.16. Let UA and FA be affine vector subspaces of the vector spaces
Zu

2 and Zf
2 . Let TA : UA → FA be a random uniformly chosen affine linear map,

ε ∈ (0, 1), constant cε be chosen so that Theorem 5.15 is satisfied and SA ⊆ UA such
that |SA| ≥ cε|FA| log |FA|. Then

Pr (TA(S) = FA) ≥ 1− ε.

Proof. See Appendix A for the definitions of affine linear spaces and transformations.
Recall Definition A.3 saying that UA = ~u + U0 for a vector subspace U0 ≤ U and a
vector ~u ∈ U . Similarly we can assume that FA = ~f+F0 for F0 ≤ F and ~f ∈ F . From
Definition A.8 of the affine linear mapping TA it follows that TA(~x) = ~f + T0(~x− ~u)
for a fixed linear transformation T0 : U0 → F0 and for every vector ~x ∈ FA.

We known that U0, F0 are vector spaces. By setting S0 = SA − ~u ⊆ U0 it
follows that |S0| ≥ cε|F0| log |F0|. We can apply Theorem 5.15 and we obtain
Pr (T0(S0) = F0) ≥ 1− ε.

Now we must realise that the result is valid in the affine case, too. This is simple,
since T0(S0) = F0 if and only if TA(SA) = FA. From Lemma A.4 it follows that
FA = TA(~u) + F0. The relation T0(S0) = F0 ⇔ TA(SA) = FA holds since

( ~x0 ∈ S0 ⇒ T0( ~x0) ∈ F0)⇔ ( ~x0 ∈ S0 ⇒ TA(~u+ ~x0) ∈ TA(~u) + F0)

⇔ ( ~xA = ~u+ ~x0 ∈ SA, ~x0 ∈ S0 ⇒ TA( ~xA) ∈ FA).

5.3 Parametrisation of The Original Proofs

In order to obtain the minimal value of the constant cε we present a simple parametri-
sation of the proof of the previous theorem. Combination of this simple powerful
technique with the novel ideas of Statement 5.23 brings a new reasonable result. The
result is used later in Theorem 5.41 and exploited by the proposed model of hashing
in Chapter 6.
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As mentioned, parametrisation of the proof of Theorem 5.15 is done. The opti-
misation of the value cε itself is not performed analytically because of its complexity
caused by the emerged constraints. Instead, we created a straightforward computer
program that makes it numerically. Each parameter is assigned a value from a pre-
defined interval. The intervals were chosen manually so that the assumptions of the
theorems are satisfied and a reasonable result is achieved. Program enumerates the
values of the intervals uniformly with the prescribed step set for each interval. The
constant cε is then computed for every assignment and the minimal value is remem-
bered along with the parametrisation. The parameters then allow the verification of
all the assumptions of all the claims stated in the proof of a parametrised theorem.

In the following text we use the assumptions and notation from the proof of
Theorem 5.15. The next lemma allows a parametrisation of the size of the set T0(S).
In the moment when we use the Law of Total Probability we split the proof of
Theorem 5.15 into two cases. We distinguish between them according to the size of
the set T0(S). The question is what happens if another value than |S|

2
is chosen. The

parameter k, k ≥ 1, corresponds to the choice of a different size, now set to |S|
k

.

Lemma 5.17. Let T0 : Zu
2 → Zf

2 be a function, S ⊆ Zu
2 and k ∈ R such that k ≥ 1.

If |T0(S)| ≤ |S|
k

, then T0 has at least |S|(k−1)
2

collisions of elements from S.

Proof. Define the family {bi ∈ N0}i∈T0(S) such that bi =
∣∣S ∩ T−1

0 (i)
∣∣. First note

that
∑

i∈T0(S) bi = |S|. The Cauchy Bunyakovsky Schwarz inequality for the vectors

{~bi}i∈T0(S) and {~1}i∈T0(S) states that ∑
i∈T0(S)

b2
i

 ∑
i∈T0(S)

12

 ≥
 ∑
i∈T0(S)

bi · 1
2

∑
i∈T0(S)

b2
i ≥

|S|2
|T0(S)| .

The number of all colliding pairs can be computed now as

|{{x, y} | x 6= y ∈ S, T0(x) = T0(y)}| = 1

2

∑
i∈T0(S)

bi(bi − 1)

≥ |S|
2

( |S|
|T0(S)| − 1

)
≥ |S|(k − 1)

2
.

Statement 5.18. For every ε ∈ (0, 1) Theorem 5.15 holds if the constant cε for
some parameters k, l ≥ 1 satisfies the inequalities:

cε ≥ 2

log

0@„ε− ε
(k−1)2l

«
µ′

log ε−l−log log( 1
µ′ )

1A
log µ′ where µ′ = 1− ε

2k2l
(5.19)
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and
l + log cε + log b− logε ≥ 0.

Proof. We parametrise the original proof of Theorem 5.15 by two real variables k and
l. As already mentioned in the introduction of Lemma 5.17, the parameter k controls
the size of the set T0(S). The limit is changed to |S|

k
for k ∈ R, k ≥ 1. Another

constant is present in the dimension f of the factor space F , f =
⌈
log
(

2|S|
ε

)⌉
. The

second parameter l is obtained by setting f =
⌈
log
(

2l|S|
ε

)⌉
.

We summarise the claims of the original proof and recall its objects that are
present in the current one. We factorise a random uniformly chosen linear transfor-
mation T : Zu

2 → Zb
2 through the vector space Zf

2 . From Model 5.4 we obtained two
linear mappings T0 : Zu

2 → Zf
2 and a T1 from Zf

2 onto Zb
2. For the existence of a

surjective transformation T1 we need f ≥ b. Since

f =

⌈
log

(
2l|S|
ε

)⌉
≥ l + log cε + b+ log b− log ε

then from the inequality l + log cε + log b− log ε ≥ 0 it follows f ≥ b.
We continue by using the Law of Total Probability as in the original proof:

Pr
(
T (S) 6= Zb

2

)
= Pr

(
T (S) 6= Zb

2 ∧ |T0(S)| ≤ |S|
k

)
+ Pr

(
T (S) 6= Zb

2 ∧ |T0(S)| > |S|
k

)
≤ Pr

(
|T0(S)| ≤ |S|

k

)
+ Pr

(
T1(T0(S)) 6= Zb

2 ∧ |T0(S)| > |S|
k

)
.

To satisfy the required statement we show Pr
(
T (S) 6= Zb

2

) ≤ ε. The required
inequality is obtained by choosing a convenient value of cε. Of course, the value is
computed according to the values of the parameters. The estimate of cε is further
modified when compared to the original proof. Value of cε is computed directly
without any inevitable estimates only specifying its accuracy.

The probability of the first event, |T0(S)| ≤ |S|
k

, is estimated using the Markov’s

inequality, too. By Lemma 5.17 the number of collisions dS is at least |S|(k−1)
2

.

The expected number of collisions remains equal to

(|S|
2

)
2−u. We estimate the

probability as

Pr

(
|T0(S)| ≤ |S|

k

)
≤ Pr

(
dS ≥ |S|(k − 1)

2

)

≤

(|S|
2

)
2−f

|S|(k−1)
2

=
|S| − 1

(k − 1)2f
.

We state the obtained bound as a standalone claim.
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Claim 5.20.

Pr

(
|T0(S)| ≤ |S|

k

)
≤ |S| − 1

(k − 1)2f
.

Our estimate of the probability of the event, T1(T0(S)) 6= Zb
2 ∧ |T0(S)| > |S|

k
,

is based on Theorem 5.14. This is also similar to the original proof. Recall that
Theorem 5.14 is used for the set T0(S), the transformation T1, the source vector space

Zf
2 and the target vector space Zb

2. The corresponding inverse density is µ = 1− |T0(S)|
2f

.
Then

Pr

(
T1(T0(S)) 6= Zb

2 ∧ |T0(S)| > |S|
k

)
≤ µf−b−log b+log log( 1

µ).

The following upper bound on the inverse density µ becomes soon very useful.
In the last inequality we used a tight upper bound following from the definition of

the dimension f =
⌈
log
(

2l|S|
ε

)⌉
,

µ = 1− |T0(S)|
2f

≤ 1− |S|
k2f
≤ 1− ε

2k2l
.

The assumption of Theorem 5.14 placed on the set S

|S| ≥ cε2
bb

and the choice of the dimension f give that

f =

⌈
log

(
2l|S|
ε

)⌉
≥ l + log cε + b+ log b− log ε.

The bound on the investigated probability is obtained from Corollary 5.8 and by
putting together all the above inequalities:

Pr

(
T1(T0(S)) 6= Zb

2 ∧ |T0(S)| > |S|
k

)
≤ µf−b−log b+log log( 1

µ)

≤
(

1− ε

2k2l

)l+log cε+b+log b−log ε−b−log b+log log

„
1

1− ε
2k2l

«

≤
(

1− ε

2k2l

)l+log cε−log ε+log log

„
1

1− ε
2k2l

«
.

Put µ′ = 1− ε
2k2l

. These ideas completed an important part of the proof and are
summarised in the following claim.

Claim 5.21.

Pr

(
T1(T0(S)) 6= Zb

2 ∧ |T0(S)| > |S|
k

)
≤ µ′

l+log cε−log ε+log log
“

1
µ′

”
.

52



The probability estimate of Pr
(
T (S) 6= Zb

2

)
follows from Claim 5.20 and Claim

5.21.

Pr
(
T (S) 6= Zb

2

)
≤ Pr

(
|T0(S)| ≤ |S|

k

)
+ Pr

(
T1(T0(S)) 6= Zb

2 ∧ |T0(S)| > |S|
k

)
≤ |S|

(k − 1)2f
+ µl+log cε−log ε+log log( 1

µ)

≤ ε|S|
(k − 1)|S|2l + µ′

l+log cε−log ε+log log
“

1
µ′

”

≤ ε

(k − 1)2l
+ µ′

l+log cε−log ε+log log
“

1
µ′

”
.

Our goal is to choose cε such that it is minimal possible and this probability will
be less than ε. Thus we can compute

ε

(k − 1)2l
+ µ′

log cε+l−log ε+log log
“

1
µ′

”
≤ ε

µ′
log cεµ′

l−log ε+log log
“

1
µ′

”
≤ ε− ε

(k − 1)2l(
ε− ε

(k − 1)2l

)
µ′

log ε−l−log log
“

1
µ′

”
≥ µ′

log cε

log

((
ε− ε

(k−1)2l

)
µ′

log ε−l−log log
“

1
µ′

”)
log µ′

≤ log cε.

Thus cε may be chosen minimal so that it satisfies Inequality 5.19:

cε ≥ 2

log

0@„ε− ε
(k−1)2l

«
µ′

log ε−l−log log( 1
µ′ )

1A
log µ′ .

In order to obtain a better value of cε we parametrised the proof of Theorem
5.15. The value is computed for every choice of parameters k and l directly from the
above expression. The next corollary states the best value of cε we have managed to
achieve.

Corollary 5.22. For ε = 0.98 the value of the constant cε may be chosen as 67.77.

Proof. Choose k = 3.28 and l = 0.5, then certainly f ≥ b. Since there are no other
assumptions this choice is valid.
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5.4 Improving the Results

When we use the estimate of Statement 5.18 in Theorem 5.38, of course, we get
smaller values of the multiplicative constant in the estimate of E (lpsl). However,
the constant is on the border of being practical. More precisely said, usage of the
bound becomes suitable only for hashing enormous sets. Although such sets are not
uncommon, they are rarely present in everyday use. The worst case guarantee plays
even more important role for such large sets. However the question is, if we are
able to further improve it. And the answer is yes, if we bring some new ideas. In
addition, the chain limit rule based on the proposed improvement starts beating the
linear one, lpsl ≤ n, for n in the order of hundreds.

We bring novel ideas and again improve the value of cε in the next statement.

Statement 5.23. For every ε ∈ (0, 1) Theorem 5.15 holds if the constant cε for
some parameters k, l ≥ 1 satisfies the inequalities:

cε ≥ 2

log

0@„ε− 2l

2lk−2

«
·µ′
l−log log( 1

µ′ )
1A

log µ′ where µ′ = 1− 1

k
(5.24)

and
log b+ log cε − l ≥ 0.

Proof. The proof we present is fully parametrised like that of Statement 5.18. We
can choose values of its arguments to optimise the value of the constant cε. To briefly
present the sketch of the proof recall that we need a factor space Zf

2 , f ≥ b. Then
we decompose a uniformly chosen random linear map T into two mappings T0 and
a surjective T1 such that T = T1 ◦ T0 going through the vector space Zf

2 .
Instead of making the factor space Zf

2 larger than the set S, we bound its size

between |S|
2l

and 2|S|
2l

where l ≥ 1 is a parameter. In order to exist a surjective

linear transformation from Zf
2 onto Zb

2 it must be |Zf
2 | ≥ |Zb

2|. By the inequality
log b+ log cε − l ≥ 0 and the requirement |S| ≥ cεb2

b it will be satisfied.

For every value |S|
2l

, l ∈ R, l ≥ 1, there is an uniquely determined number f ∈ N
such that |S|

2l
≤ 2f ≤ 2|S|

2l
. More formally f =

⌈
log
(
|S|
2l

)⌉
. Then

f = dlog |S|e − l ≥ dlog cε + log be − l + b ≥ b.

The second novel idea is not to make the size of the set T0(S) relative to that
of the set S. We refer to the size of the factor space Zf

2 instead. We introduce a

new parameter k ∈ R, k ≥ 1. We show, if |T0(S)| ≤ 2f

k
, then there are at least

|S|
2

(
k|S|
2f
− 1
)

collisions caused by T0. If |T0(S)| ≤ |S|
k′

for some k′ ≥ 1 then, by

Lemma 5.17, there are at least |S|(k
′−1)

2
collisions for S and T0. Hence if |S|

k′
= 2f

k
,

then k′ = k|S|
2f

and thus if |T0(S)| ≤ S
k′

= 2f

k
, then there exist at least |S|

2
(k|S|

2f
− 1)

collisions for S and T0.
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As in the previous proof we estimate the two probabilities obtained by the Law
of Total Probability. Recall that the random variable dS denotes the number of colli-

sions and E (dS) =

(|S|
2

)
2−f . The bound on the first probability, Pr

(
|T0(S)| ≤ 2f

k

)
,

is found again using the Markov’s inequality,

Pr

(
|T0(S)| ≤ 2f

k

)
≤ Pr

(
dS ≥ |S|

2

(
k|S|
2f
− 1

))
≤ |S|(|S| − 1)

2 · 2f |S|
2

(
k|S|
2f
− 1
)

≤ |S|
k|S| − 2f

≤ |S|
k|S| − 2|S|

2l

=
2l

2lk − 2
.

As in the previous statement we state the fact in a claim.

Claim 5.25.

Pr

(
|T0(S)| ≤ 2f

k

)
≤ 2l

2lk − 2
.

The remaining case occurs when |T0(S)| > 2f

k
. Define µ as the inverse density of

the set T0(S) in the factor space Zf
2 . Then the assumption |T0(S)| > 2f

k
implies

µ = 1− |T0(S)|
2f

< 1− 1

k
< 1.

From the choice of the dimension f and the assumption of Theorem 5.14

|S| ≥ cεb2
b

it follows that

f =

⌈
log

( |S|
2l

)⌉
≥ log cε + log b+ b− l.

From Theorem 5.14 used for the set T0(S), the source space Zf
2 , the inverse

density µ, the target space Zb
2 and the transformation T1 we have

Pr

(
T (S) 6= Zb

2 ∧ |T0(S)| > 2f

k

)
≤ µf−b−log b+log log 1

µ

≤ µlog cε+log b+b−l−b−log b+log log 1
µ

≤
(

1− 1

k

)log cε−l+log log

„
1

1− 1
k

«
.

This result is worth remembering.
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Claim 5.26.

Pr

(
T (S) 6= Zb

2 ∧ |T0(S)| > 2f

k

)
≤
(

1− 1

k

)log cε−l+log log

„
1

1− 1
k

«
.

Recall, we use the Law of Total Probability, Theorem B.13, to split the expression
Pr
(
T (S) 6= Zb

2

)
. To prove the statement, the probability of event T (S) 6= Zb

2 must
be less than ε. Hence it suffices

Pr
(
T (S) 6= Zb

2

)
= Pr

(
T (S) 6= Zb

2 ∧ |T0(S)| ≤ 2f

k

)
+ Pr

(
T (S) 6= Zb

2 ∧ |T0(S)| > 2f

k

)
≤ Pr

(
|T0(S)| ≤ 2f

k

)
+ Pr

(
T (S) 6= Zb

2 ∧ |T0(S)| > 2f

k

)
≤ ε.

Put µ′ = 1− 1
k
. From Claims 5.25 and 5.26 we obtain

2l

2lk − 2
+ µ′

log cε+log log
“

1
µ′

”
−l ≤ ε(

ε− 2l

2lk − 2

)
· µ′l−log log

“
1
µ′

”
≥ µ′

log cε

log

((
ε− 2l

2lk−2

)
· µ′l−log log

“
1
µ′

”)
log µ′

≤ log cε.

Thus the value of the constant cε may be chosen as the minimal one satisfying
for some k, l ≥ 1 the inequality:

cε ≥ 2

log

0@„ε− 2l

2lk−2

«
·µ′
l−log log( 1

µ′ )
1A

log µ′ .

The following corollary shows an interesting value of cε achieved by the previous
statement.

Corollary 5.27. For ε = 0.8967 the value of the constant cε may be chosen as 17.31.

Proof. Use the previous statement for k = 2.06 and l = 2. Clearly,

log cε + log b− l ≥ 0.
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5.5 Probability Distribution of the Variable lpsl

Theorems 5.14 and 5.15 and Corollaries 5.8, 5.9 and 5.16 give us enough power to
achieve our first goal – asymptotic restriction of the expected length of the chain
length. But first, we find the probability distribution of the variable lpsl for various
situations depending on the size of the stored set.

In the original article [3] authors suppose hashing even super-linear amount of
m logm elements into a table consisting of m slots. Common models use load factors
lower than one and we suppose hashing of αm elements. When storing sets of size
equal to αm for a bounded load factor α, the expected length can not grow, if
compared to hashing m logm elements. Every stored set can be further extended
into m logm elements and the estimate must still remain valid. Unfortunately, this
argument does not bring a reasonable result.

Therefore we further generalise and refine our statements. We discover an impor-
tant dependence of E (lpsl) on the table’s load factor. We later state that E (lpsl)
is proportional to the load factor α.

First let us summarise what is shown in the following pages. We use two basic
ideas – factorisation and probability estimates of two highly correlated events. The
two events E1 and E2 allow us to estimate the probability of the existence of a chain
with length at least l, l ∈ N.

Then we show Remark 5.36 that comes from the original work [3]. It is immedi-
ately improved and the results are later applied for hashing. The theorems we state
are not expressed in the notation of hashing. Rather we say them in general terms
of linear algebra. Then we use the theorems in the model proposed by us.

The notation of the section is the following. The source space, represents later
the universe, is the vector space Zu

2 . The target space, becomes a representation of
the hash table, is denoted by Zb

2. As done many times before, we factor a random
uniformly chosen linear transformation T ∈ LT (Zu

2 ,Zb
2) through the factor space Zf

2 .
Model 5.4 shows the existence of two linear functions T0 : Zu

2 → Zf
2 and T1 : Zf

2 → Zb
2.

In addition the last one is surjective and they are chosen uniformly among LT (Zu
2 ,Z

f
2)

and LTS(Zf
2 ,Zb

2). Definitions 5.28 and 5.29, Remarks 5.31, 5.33 and Remark 5.36
stating the basic probability estimate and Theorem 5.38 giving the basic estimate of
E (lpsl) are from [24], too.

Definition 5.28 (Event E1(S, T, l)). Let l ∈ N, T : Zu
2 → Zb

2 be a linear transfor-
mation and S ⊂ Zu

2 . Event E1(S, T, l) occurs if there is a subset of S containing at
least l elements mapped by the function T on a singleton,

E1(S, T, l) ≡ ∃~y ∈ Zb
2 : |T−1(~y) ∩ S| > l.

The event E1 corresponds to the existence of a chain of length at least l. The
second event is defined to simplify the estimate of probability of the event E1. It
may seem quite unnatural but it fits the scheme of Theorem 5.14 as shown later.

Definition 5.29 (Event E2(S, T0, T1)). Let T0 : Zu
2 → Zf

2 , T1 : Zf
2 → Zb

2 be linear
transformations with T1 being surjective and S ⊂ Zu

2 . Event E2(S, T0, T1) occurs if

E2(S, T0, T1) ≡ ∃~y ∈ Zb
2 : T−1

1 (~y) ⊆ T0(S).

57



Zb
2

Zf
2

T0(S)

~y
T−1

1 (~y)

T1

Figure 5.1: Occurrence of the event E2.

Remember that when it is clear what we mean by S, T0, T1 and l we omit the
parametrisation of the events and just use E1 or E2.

Now we will point an equivalent definition of the event E2 showing why it may
be used with Corollary 5.16.

Remark 5.30. Let T0 : Zu
2 → Zf

2 , T1 : Zf
2 → Zb

2 be linear transformations with
T1 being surjective and S ⊂ Zu

2 . Then the event E2(S, T0, T1) occurs if and only if
T1(Zf

2 − T0(S)) 6= Zb
2. Equivalently

(E2(S, T0, T1) ≡ ∃~y : T−1
1 (~y) ⊆ T0(S))⇔ (T1(Zf

2 − T0(S)) 6= Zb
2).

Proof. To prove the direction from the left to the right assume that the event E2

occurs. This happens if there is a vector ~y ∈ Zb
2 such that T−1

1 (~y) ⊆ T0(S). Hence
transformation T1 can not map the set Zf

2 − T0(S) onto the vector space Zb
2 since

~y /∈ T1(Zf
2 − T−1(~y)) ⊇ T1(Zf

2 − T0(S)) or equivalently Zb
2 6= T1(Zf

2 − T0(S)).
Now we show the reverse direction. If Zb

2 6= T1(Zf
2−T0(S)), then there is a vector

~y ∈ Zb
2 such that ~y /∈ T1(Zf

2−T0(S)). Since T1 is surjective we have that T1(Zf
2) = Zb

2.
Since there is no point in Zf

2 − T0(S) mapped onto ~y it follows that the preimage of
~y must be contained in T0(S). Thus T−1

1 (~y) ⊆ T0(S).

Now, in the next remark, we use the previous equivalence to estimate the prob-
ability of the event E2.

Remark 5.31. Let T0 : Zu
2 → Zf

2 , T1 : Zf
2 → Zb

2 be linear transformations with T1

being surjective and S ⊂ U . Set d =
|Zf2 |
b2b

. If |S| ≤ b2b and d > 1, then

Pr (E2(S, T0, T1))) ≤ d− log d−log log d.

Proof. We apply Theorem 5.14 for the transformation T1, the set Zf
2 − T0(S), the

target space Zb
2 and the inverse density µ = 1− |Zf2−T0(S)|

|Zf2 |
and we obtain

Pr
(
T1(Zf

2 − T0(S)) 6= Zb
2

)
≤ µf−b−log b+log log 1

µ .
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We can estimate µ using only the value d as

µ = 1− |Z
f
2 − T0(S)|
|Zf

2 |
= 1− |Z

f
2 | − |T0(S)|
|Zf

2 |
=
|T0(S)|
|Zf

2 |
≤ |S||Zf

2 |
≤ b2b

|Zf
2 |

=
1

d
< 1.

To obtain the bound claimed by the remark rewrite the logarithm of the value d,

log d = log
|Zf

2 |
b2b

= log |Zf
2 | − log(b2b) = f − b− log b.

In the following computation we use Corollary 5.8 to remove the inverse density
µ. Since E2 ≡ T1(Zf

2 − T0(S)) 6= Zb
2 and µ ≤ 1

d
we have the needed bound,

Pr (E2) ≤ µf−b−log b+log log( 1
µ)

= µlog d+log log( 1
µ)

≤
(

1

d

)log d+log log d

= d− log d−log log d.

To meet the assumptions of Theorem 5.14, we must have that ∅ 6= Zf
2 − T0(S)

and Zf
2 − T0(S) 6= Zf

2 . Since the S 6= ∅, it certainly holds that Zf
2 − T0(S) 6= Zf

2 .

Because d =
|Zf2 |
|S| > 1, it follows that |Zf

2 | > |S| ≥ |T0(S)| and the set Zf
2 − T0(S)

then can not be empty.

We show similar remarks fitting the situation when the size of the set S is pro-
portional to that of the target space Zb

2. This corresponds to the situation when
hashing only αm elements.

Statement 5.32. Let T0 : Zu
2 → Zf

2 , T1 : Zf
2 → Zb

2 be linear transformations with
T1 being surjective and S ⊂ U . Let α ∈ R, α > 0 and assume that |S| = α2b.

1. If d = 2f

αb2b
and d > 1, then Pr (E2(S, T0, T1))) ≤ d− logα−log d−log log d.

2. If d = 2f

α2b
and d > 1, then Pr (E2(S, T0, T1))) ≤ dlog b−logα−log d−log log d.

Proof. We slightly changed the choice of the variable d and naturally moved to a
different size |S|. The proof itself remains almost the same.

First, we show µ ≤ 1
d
< 1 in either case. Observe that

µ = 1− |Z
f
2 − T0(S)|
|Zf

2 |
=
|T0(S)|
|Zf

2 |
≤ |S||Zf

2 |
=
α2b

2f
.

In the first case, d = 2f

αb2b
, we have

µ ≤ α2b

2f
≤ αb2b

2f
=

1

d
< 1.
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In the second case, d = 2f

α2b
:

µ ≤ α2b

2f
=

1

d
< 1.

The wanted estimate thus holds.
Secondly, we find the log d in either case. In the first one, d = 2f

αb2b
:

log d = f − logα− b− log b.

In the second one, d = 2f

α2b
, we have

log d = f − logα− b.
From µ < 1 and |S| = α2b > 0 we have the assumption ∅ 6= Zf

2 − T0(S) 6= Zf
2

of Theorem 5.14 met. Now we use Theorem 5.14 for the transformation T1, the set
Zf

2 − T0(S) and the inverse density µ and obtain

Pr (E2) ≤ µf−b−log b−log log( 1
µ).

To prove the statement, we continue similarly as in the proof of Remark 5.31.
The next estimates follow from Corollary 5.8 and the fact that µ ≤ 1

d
. In the first

case we have that

Pr (E2) ≤ µf−b−log b+log log( 1
µ)

= µlog d+logα+log log( 1
µ)

≤
(

1

d

)log d+logα+log log d

= d− logα−log d−log log d.

In the second case we have that

Pr (E2) ≤ µf−b−log b+log log( 1
µ)

= µlog d+logα−log b+log log( 1
µ)

≤
(

1

d

)log d+logα−log b+log log d

= dlog b−logα−log d−log log d.

A similar remark for an estimate of the conditional probability of the event E2 | E1

now follows.

Remark 5.33. Let T0 : Zu
2 → Zf

2 and T1 : Zf
2 → Zb

2 be random uniformly chosen
linear transformations with T1 being surjective and T = T1 ◦ T0. Let cε be a constant
for which Theorem 5.15 is satisfied, S ⊂ Zu

2 , ε ∈ (0, 1) and l ∈ N, l ≥ cε(f − b)2f−b.
Then

Pr (E2(S, T0, T1) | E1(S, T, l)) ≥ 1− ε.
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Zu
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2

Zb
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T

~0 ~0

UA = T−1(~y)

FA = T−1
1 (~y)

S

SA = S ∩ UA

~0

TA|UA

T1

Figure 5.2: Image depicting the situation in the proof.

Proof. According to Model 5.4 we have that the linear transformation T = T1 ◦ T0

is chosen uniformly.
Assume that the event E1 occurs, then there is a vector ~y ∈ Zb

2 : |T−1(~y)∩S| > l.
We fix the vector ~y and let UA = T−1(~y) and FA = T−1

1 (~y). So there is a maximal
subset SA ⊆ S, |SA| > l mapped to ~y. Notice that SA = UA ∩ S. According to
Lemma A.10 the sets UA and FA are affine vector subspaces and |FA| = 2f−b.

Since T0 is a random uniformly chosen linear mapping from Model 5.5 it follows
that its restriction T0|UA is also a random uniformly chosen affine linear transforma-
tion.

Now we use Corollary 5.16 for the source space UA, the set SA ⊆ UA, the target
space FA and mapping T0|UA and obtain that

Pr (T0|UA(SA) = FA | E1) ≥ 1− ε.

If FA = T−1
1 (~y) ⊆ T0(S), then the event E2 certainly occurs. Stated in the

language of probability:

Pr (FA ⊆ T0(S) | E1) ≤ Pr (E2 | E1) .

From FA = T0|UA(S) ⊆ T0(S) it follows that:

Pr (E2 | E1) ≥ Pr (FA ⊆ T0(S) | E1) ≥ Pr (FA = T0|UA(SA) | E1) ≥ 1− ε.

Thus the proof of Remark 5.33 finishes.
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The next corollary puts Remark 5.33 and Lemma B.10 together.

Corollary 5.34. Let T0 : Zu
2 → Zf

2 and T1 : Zf
2 → Zb

2 be a random uniformly chosen
linear transformations with T1 being surjective. Let ε ∈ (0, 1), S ⊂ Zu

2 and l ∈ N,
l ≥ cε(f − b)2f−b. Then

Pr (E1(S, T, l)) ≤ 1

1− εPr (E2(S, T0, T1)) .

Proof. The proof is a straightforward use of Remark 5.33 and Lemma B.10. They
imply that

Pr (E1) ≤ Pr (E2)

Pr (E2 | E1)
≤ 1

1− εPr (E2) .

Definition 4.3 of the variable lpsl comes from the area of hashing and uses the
notation of chains and their lengths. However we can refer to it now, too. Assume
that the universe is equal to the vector space Zu

2 and the hash table is represented by
the vector space Zb

2 and S ⊂ U . The randomness is brought by the uniform choice
of a linear transformation T : Zu

2 → Zb
2 among LT (Zu

2 ,Zb
2). Realise that the random

variable psl(~b) = |T−1(~b) ∩ S| for a vector ~b ∈ Zb
2. By setting lpsl = max

~b∈Zb2
psl(~b)

their meanings remain the same.

Lemma 5.35. If T : Zu
2 → Zb

2 is a random uniformly chosen linear transformation,
S ⊂ Zu

2 and l ∈ N, then E1(S, T, l)⇔ lpsl > l.

Proof. The event E1(S, T, l) denotes the existence of a vector ~y ∈ Zb
2 such that

|T−1(~y) ∩ S| > l. Observe that such vector ~y exists if and only if the variable
lpsl > l because

(∃~y ∈ Zb
2 : |T−1(~y) ∩ S| > l)⇔ (∃~y ∈ Zb

2 : psl(~y) > l)⇔ (lpsl > l).

We are able to bound the probability density function of the random variable
lpsl when referring to its above definition.

Remark 5.36. Let T : Zu
2 → Zb

2 be a random uniformly chosen linear map, ε ∈ (0, 1)
and S ⊂ Zu

2 , |S| ≤ b2b. Then for every r ≥ 4

Pr (lpsl > 4cεrb log b) ≤ 1

1− ε
(

r

log r

)− log( r
log r )−log log( r

log r )
.

Proof. In the proof we conveniently use Corollary 5.34, Remark 5.31 and Lemma
5.35. We only have to choose their parameters. First we create a factor space
Zf

2 , its dimension is specified later. From Model 5.5 and the random uniform and
independent selection of two linear transformations T0 : Zu

2 → Zf
2 and surjective
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T1 : Zf
2 → Zb

2 it follows that the linear mapping T : Zu
2 → Zb

2 such that T = T1 ◦ T0

is chosen uniformly as well. Fix the mappings T0, T1 and T .
Now set

f = bb+ log b+ log r − log log r + 1c ,

l = 4cεrb log b,

d =
2f

b2b
≥ b2b

b2b
· r

log r
=

r

log r
≥ 2.

The choice of f implies that |Zf
2 | ≥ Zb

2| because

f ≥ b+ log b+ log r − log log r ≥ b.

Hence a surjective function T1 exists and may be fixed. Notice that the choices meet
all the assumptions, d > 1, of Remark 5.31. To verify the condition l ≥ cε(f − b)2f−b
of Remark 5.36 we first show that

2f−b ≤ 2b+log b+log r−log log r+1−b =
2rb

log r
.

From the fact, f − b ≤ log
(

2rb
log r

)
≤ log b log r, we have that the assumption holds

since

cε(f − b)2f−b ≤ cε
2rb

log r
log

(
2rb

log r

)
≤ 2cεb

r

log r
log b log r

≤ 4cεrb log b

= l.

From Corollary 5.34, Remark 5.31 and Corollary 5.9 it follows that

Pr (E1) ≤ 1

1− εPr (E2)

≤ 1

1− εd
− log d−log log d

≤ 1

1− ε
(

r

log r

)− log( r
log r )−log log( r

log r )
.

According to Lemma 5.35 the event E1 occurs if and only if lpsl > l. The proof
is completed by writing down the facts obtained so far

Pr (lpsl > l) = Pr (lpsl > 4cεrb log b)

= Pr (E1(S, T, 4cεrb log b))

≤ 1

1− ε
(

r

log r

)− log( r
log r )−log log( r

log r )
.
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We modify the previous remark for the set S having |S| = α2b.

Remark 5.37. Let T : Zu
2 → Zb

2 be a random uniformly chosen linear mapping,
ε ∈ (0, 1), r ≥ 4 and α ∈ (0.5, log r

2
). If S is a subset of Zu

2 such that |S| = α2b, then

Pr (lpsl > 4cεαrb log b) ≤ 1

1− ε
(

r

log r

)− logα−log( r
log r )−log log( r

log r )
and

Pr (lpsl > 2αcεr) ≤ 1

1− ε
(

r

log r

)log b−logα−log( r
log r )−log log( r

log r )
.

Proof. We do not repeat the whole proof of Remark 5.36 since the approach remains
the same. Like in the previous proof, fix the linear mappings T0, surjective T1 with
T = T1 ◦ T0 and let Zf

2 be the factor space. We just show the choices that prove the
remark. The choices for the first claim are indexed with 1 and in the second case
we use the index 2. When we refer to a chosen variable without an index, then the
statement, in which it appears, must be valid for either choice. Now perform the
choices by setting

f1 = bb+ log b+ log r − log log r + logα + 1c ,

f2 = bb+ log r − log log r + logα + 1c ,

d1 =
2f1

αb2b
,

d2 =
2f2

α2b
,

l1 = 4cεαrb log b,

l2 = 2αcεr.

So that T1 exists, we have to verify that |Zf
2 | ≥ |Zb

2|. It is enough to have f ≥ b.
The inequality f ≥ b follows from the fact log r − log log r + logα ≥ 0 and from our
choice of f since

f1 ≥ b+ log b+ log r − log log r + logα ≥ b,

f2 ≥ b+ log r − log log r + logα ≥ b.

Secondly, we show that the assumptions of Statement 5.32 are met for both
choices of d. Precisely we need d > 1 and this is satisfied because

d1 =
2f1

αb2b
≥ r

log r
≥ 2,

d2 =
2f2

α2b
≥ r

log r
≥ 2.

Naturally, we want to meet the condition placed on the variable l of Corollary
5.34. Recall the assumption α < log r

2
, which is equivalent to log 2α

log r
< 0, that is

used in either case. Let us discuss the first case:

f1 − b ≤ log b+ log r − log log r + logα + 1 ≤ log b+ log r ≤ log b log r.
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Thus for the value of the variable l1 we have that

cε(f1 − b)2f1−b < cε

(
2αbr

log r

)
(log b log r)

≤ 4cεαrb log b

= l1.

The validity in the second case follows from

cε(f2 − b)2f2−b ≤ cε

(
2αr

log r

)
log

(
2αr

log r

)
≤ 2cεα

r

log r
log r

= 2cεαr = l2.

Thus we are able to refer to Corollary 5.34. Now use Lemma 5.35, Corollary 5.34,
Remark 5.31 and Corollary 5.9 in either case. In the first one we have

Pr (lpsl > 4cεαrb log b) = Pr (lpsl > l1)

= Pr (E1(S, T, l1))

≤ 1

1− εPr (E2)

≤ 1

1− εd
− logα−log d−log log d

=
1

1− ε
(

r

log r

)− logα−log( r
log r )−log log( r

log r )
.

And in the second case we have

Pr (lpsl > 2αcεr) = Pr (lpsl > l2)

= Pr (E1(S, T, l2))

≤ 1

1− εPr (E2)

≤ 1

1− εd
log b−logα−log d−log log d

≤ 1

1− ε
(

r

log r

)log b−logα−log( r
log r )−log log( r

log r )
.

5.6 The Expected Value of the Variable lpsl

In this section we estimate the expected value of the variable lpsl, E (lpsl). We ex-
ploit bounds from Section 5.5 which give its cumulative probability density function.
We are interested in this expected value because it corresponds to the length of the
longest chain when using the system of linear transformations as a universal class.
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Theorem 5.38. Let T : Zu
2 → Zb

2 be a random uniformly chosen linear transfor-
mation and ε ∈ (0, 1). If S is a subset of the vector space Zu

2 such that |S| ≤ b2b,
then

E (lpsl) ≤ 4cε(4 + Iε)b log b.

The value Iε is defined as:

Iε =

∞∫
4

1

1− ε
(

r

log r

)− log( r
log r )−log log( r

log r )
dr. (5.39)

Proof. First set Kε = 4cεb log b. In order to prove the theorem we use the probability
distribution of the variable lpsl from Remark 5.36. For every r ≥ 4 it states that

Pr (lpsl ≥ rKε) ≤ 1

1− ε
(

1

log r

)− log( r
log r )−log log( r

log r )
.

Lemma B.24 implies

E (lpsl) =

∞∫
0

Pr (lpsl > l) dl

≤ 4Kε +

∞∫
4Kε

Pr (lpsl > l) dl

= 4Kε +Kε

∞∫
4

Pr (lpsl > rKε) dr

≤ 4Kε +Kε

∞∫
4

1

1− ε
(

r

log r

)− log( r
log r )−log log( r

log r )
dr

= Kε(4 + Iε) ∈ O(Kε) = O(b log b).

The fact that the integral Iε is convergent for every ε ∈ (0, 1) is shown later in
Lemma 5.45.

Multiplicative constant 4cε(4 + Iε) plays an important role for a practical use
of the result. For example when choosing ε equal to 1

2
the value of the constant

cε equals 417 when using the original estimate. Our next goal is to show a better
estimate when assuming that α ≤ 1 and using our results.

Theorem 5.40. Let T : Zu
2 → Zb

2 be a random uniformly chosen linear transforma-
tion, ε ∈ (0, 1) and α ∈ [0.5, 1]. If S is a subset of the vector space Zu

2 such that
|S| = α2b, then

E (lpsl) ≤ 4αcε(4 + Iε)b log b.

The value Iε is defined in Equality 5.39.
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Proof. Set Kε = 4cεb log b. When estimating Pr (lpsl > rαKε) we use Remark 5.37.
Its assumptions are satisfied since we use it for r ≥ 4 and α ≤ 1 ≤ log r

2
. It states

that

Pr (lpsl > rαKε) ≤ 1

1− ε
(

r

log r

)− logα−log( r
log r )−log log( r

log r )
.

Since α ≤ 1, then logα ≤ 0 and thus we conclude that

Pr (lpsl > rαKε) ≤ 1

1− ε
(

r

log r

)− log( r
log r )−log log( r

log r )
.

Now we compute the expected value using Lemma B.24 as

E (lpsl) =

∞∫
0

Pr (lpsl > l) dl

≤ 4αKε +

∞∫
4αKε

Pr (lpsl > l) dl

= 4αKε + αKε

∞∫
4

Pr (lpsl > rαKε) dr

≤ 4αKε + αKε

∞∫
4

1

1− ε
(

r

log r

)− log( r
log r )−log log( r

log r )
dr

= αKε(4 + Iε) ∈ O(αKε) = O(αb log b).

5.7 The Achieved Bound

The improved estimate of cε combined with the last claim of Remark 5.37 are used
together to show a tighter bound on E (lpsl).

Theorem 5.41. Let b ∈ N, b ≥ 4, T : Zu
2 → Zb

2 be a random uniformly chosen
linear transformation, ε ∈ (0, 1) and α ∈ [0.5, 1]. If S is a subset of the vector space
Zu

2 such that |S| = α2b, then

E (lpsl) ≤ 4cεα

1− εb log b+ 2cεα

(
Jα,b − 4

1− ε + 4

)
.

The value Jα,b is defined as

Jα,b =

∞∫
2b log b

(
r

log r

)log b−logα−log( r
log r )−log log( r

log r )
dr. (5.42)
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Proof. From Remark 5.37, Lemma B.24 and Lemma 5.46 it follows that

E (lpsl) =

∞∫
0

Pr (lpsl > l) dl

≤ 8cεα +

∞∫
8cεα

Pr (lpsl > l) dl

= 8cεα + 2cεα

∞∫
4

Pr (lpsl > 2cεαr) dr

= 2cεα

4 +
1

1− ε

∞∫
4

min

(
1,

(
r

log r

)log b−logα−log( r
log r )−log log( r

log r )
)
dr


≤ 2cεα

(
4 +

1

1− ε (2b log b− 4 + Jα,b)

)
.

Let the value J ′α,b denote the integral,

J ′α,b =

∞∫
4

min

(
1,

(
r

log r

)log b−logα−log( r
log r )−log log( r

log r )
)
dr. (5.43)

Later, in Lemma 5.46 we estimate the integral J ′α,b by 2b log b− 4 + Jα,b, where
The whole bound on the expected value, E (lpsl), then looks like:

E (lpsl) ≤ 4cεα

1− εb log b+ 2cεα

(
Jα,b − 4

1− ε + 4

)
.

In advance, let us note that from Lemma 5.46 it follows that Jα,b ≤ 3.36. The
bound thus exists for every α ∈ [0.5, 1].

Corollary 5.44. Let b ∈ N, b ≥ 4, T : Zu
2 → Zb

2 be a random uniformly chosen
linear transformation and α ∈ [0.5, 1]. If S is a subset of the vector space Zu

2 such
that |S| = α2b, then

E (lpsl) ≤ 538αb log b+ 44.

Proof. The best estimate on the expected value E (lpsl) is achieved by the parametri-
sation technique using the estimate of cε from Statement 5.23. For the choice of
ε = 0.8 and by settings parameters k = 2.26, l = 2 of Statement 5.23 we get the
required bound.

5.8 Minimising the Integrals

This integral Iε is a part of the multiplicative constant 4cε(4 + Iε). The next lemma
states a way how to estimate it and compute the value of the multiplicative constant
so that it is minimal.
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In the original proof of Theorem 5.38 in [3] only the special case I 1
2

is considered.

We moved to Iε because choosing other values for ε ∈ (0, 1) may bring an improve-
ment for the value of the multiplicative constant. Indeed, if we select different value
of ε and use better estimates for the constant cε, then we really obtain a smaller
value of the multiplicative constant and a tighter bound on E (lpsl).

Lemma 5.45. The integral Iε from Equality 5.39 converges for every ε ∈ (0, 1) and

Iε ≤ 4.8

1− ε .

Proof. We recall that the integral Iε equals

Iε =
1

1− ε

∞∫
4

(
r

log r

)− log( r
log r )−log log( r

log r )
.

Evaluation of the integral Iε is split into two parts. We compare the integrand
of Iε to a function f : R→ R which has a convergent improper integral

∫∞
4
f(x)dx.

The function f chosen here is x−1.5.
The function f majors the integrand only for r ≥ 16. Therefore we bound the

value of the integral Iε in the interval [4, 16] by its upper Riemann sum.
For r = 16, the function f equals f(r) = r−1.5 = 1

64
. The value of the integrand

equals (
16

log 16

)− log( 16
log 16)−log log( 16

log 16)
= 4−2−1 =

1

64
.

By combining our estimates we obtain that

Iε ≤ 1

1− ε

 15∑
r=4

(
r

log r

)− log( r
log r )−log log( r

log r )
+

∞∫
16

1

r1.5
dr


≤ 1

1− ε
(

4.3 +
1

2

)
=

4.8

1− ε .

The estimate of the Riemann sum can be computed numerically.

Lemma 5.46. Let b ∈ N, b ≥ 4, α ∈ [0.5, 1], J ′α,b be the integral defined in Equality
5.43 and Jα,b be the integral defined in Equality 5.42. Then

J ′α,b ≤ 2b log b− 4 + Jα,b and

Jα,b ≤ 3.36.

Proof. We estimate the integral

J ′α,b =

∞∫
4

min

(
1,

(
r

log r

)log b−logα−log( r
log r )−log log( r

log r )
)
dr
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in a similar way to the previous one.
However, the situation is slightly complicated. First we must realise that if the

exponent is negative, the integrand is certainly less than one. We show that if
r > 2b log b, then the exponent is negative.

First we show that r > 2b log b implies log
(

r
log r

)
≥ log b since

r

log r
≥ 2b log b

1 + log b+ log log b

=
2b

1 + 1
log b

+ log log b
log b

≥ 2b

2
= b.

Since we assume b ≥ 4, we have that r > 2b log b ≥ 16. So if r > 2b log b, then
for the remaining part of the exponent we have that

− logα− log log

(
r

log r

)
< − log 0.5− log log

16

4
= 0.

Indeed, if r > 2b log b, then the exponent is negative.
Now the integral J ′α,b is split into two parts according to the value of the variable r.

If r ∈ [4, 2b log b], then we estimate the integrand by one. In the interval [2b log b,∞)
we use the value

Jα,b =

∞∫
2b log b

(
r

log r

)log b−logα−log( r
log r )−log log( r

log r )
dr.

So
J ′α,b ≤ 2b log b− 4 + Jα,b.

The integral Jα,b is determined in the similar way as the value of the integral Iε
in Lemma 5.45. The integrand is majored by the function x−1.3 for x ≥ 2048. In the
interval [16, 2048] we estimate the integral by its upper Riemann sum. We partition
the interval uniformly with the norm equal to 0.1. For simplicity put g(r) = r

log r

and estimate the integral Jα,b as

Jα,b =

∫ ∞
2b log b

g(r)log b−logα−log g(r)−log log g(r)dr

≤
∞∫

16

g(r)1−log log g(r)dr

≤
∑

r∈{16,16.1,...,2048}

g(r)1−log log g(r)

10
+

∞∫
2048

r−1.3dr

≤ 3.01 +
2048−0.3

0.3
≤ 3.36.
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Chapter 6

The Model of Universal Hashing

The hashing scheme we propose later in this chapter is a solution to the set represen-
tation problem. Solution of this problems usually provide some basic operations such
as Insert, Delete and Find. These operations allow querying if an element is stored
within the represented set, accessing the stored elements and inserting an element.
Some schemes, e.g. double hashing, do not implement the element removal at all or
the efficient implementation is not known.

The must important are the operations’ running times. Various solutions to
many algorithmic problems prefer different operations when representing sets. For
instance some applications query the stored data rarely, e.g. log files. On the other
hand, other applications of the set representation problem may store the data that
is almost never changed – find operation is preferred. Therefore the running times
of only selected operations are considered crucial.

In the case of a simple array we have O(1) time for the find procedure provided
that we know an element’s index. But insertion or deletion may take O(n) time.
Better bounds for dynamic arrays can be obtained using the amortised complexity.
Another example are balanced trees, they have running times typically bounded by
the logarithmic time. As already mentioned, the right answer which data structure
should be used lies in the estimated structure of the operations. The right choice
may be an asymptotic improvement. Anyway, this does not change the fact that
short running times are appreciated.

In this chapter we analyse the running times of the universal hashing. We start
by mentioning the known facts. Then, we analyse the universal hashing using the
system of linear transformations over vector spaces. Finally, we propose a model
that guarantees the worst case complexity of the find operation.

6.1 Time Complexity of Universal Hashing

In this section we assume that the system of hash functions, which we use, is at
least c-universal. The running time of the find operation is certainly proportional to
the length of the chain of an element’s bucket. The obvious worst case time is O(n)
where n is the number of elements hashed. The universal hashing gives a far better
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expected estimate, O(1).
Recall the definitions and notation from Chapter 2. The value n denotes the size

of the represented set and m is the size of the table. The load factor of a hash table
is denoted by α = n

m
.

Theorem 6.1. Assume that we store a set S in a hash table using a c-universal class
of functions H. Let the table’s load factor α be upper bounded. Then the expected
length of a chain is lower or equals cα.

Proof. We find the expected length of a chain containing arbitrary element x ∈ U .
The expectation is taken over the uniform choice of a function from the universal
family of functions. From the definition of the expected value we have that

E (psl) =

∑
h∈H psl(h(x), h)

|H|
=

∑
h∈H

∑
y∈S I(h(x) = h(y))

|H|
=

∑
y∈S
∑

h∈H I(h(x) = h(y))

|H|
=
∑
y∈S

Pr (h(x) = h(y))

≤ cn

m
= cα.

Corollary 6.2. If we hash using a c-universal class and α denotes the table’s load
factor, then the expected time of Find operation is 1 + cα.

Proof. The running time of the find operation is proportional to the length of the
chain in which the searched element belongs. In the worst case Find operation
iterates the whole chain. We also add time for retrieving the element’s hash value
and for checking if the chain is not empty. These operations are usually performed
in a constant time. From Theorem 6.1 it follows that the expected length of a chain
is cα. Since we have no assumptions on the distribution of the input, the expected
running time is then bounded by 1 + cα.

Corollary 6.3. The expected time of Find operation in every model of universal
hashing is O(1) when the load factor is bounded.

Proof. Follows from Corollary 6.2.

6.2 Consequences of Trimming Long Chains

The model of hashing we propose guarantees the worst case bound on the length of
the longest chain. Hence it bounds the running times of the operations. Knowledge
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E (lpsl) enables us to state a bound on the length of a chain. If a chain, whose
length is greater than our bound, is found, then we choose another function in our
c-universal system and we rehash the represented set using the new function. This
bound corresponds to the probability of the existence of a long chain. In fact, we set
the bound according to this probability. Now let us examine consequences of such
limits on models of universal hashing.

Following computations support and motivate our later ideas. By the Markov’s
inequality, we have that for every k > 1

Pr (lpsl > kE (lpsl)) ≤ 1

k
.

This fact means that less than half of all the universal functions create longest chains
longer than 2E (lpsl) for arbitrary stored set. For instance, in case of the system of
linear transformations we may choose the limit as 2E (lpsl) ≤ 1 076 logm log logm+
88. This bound follows from Corollary 5.44.

The expected length of the longest chain gives us a generic hint when the table
should be rehashed if the worst case time for the find operation has to be guaranteed.
The lower the value E (lpsl), or the tighter its estimate is, the better worst case limit
is achieved.

Mentioned bound on the length of a chain, which is computed using the Markov’s
inequality and the expected value, can be further improved. If the probability density
function of the random variable lpsl is known, then the density function may be used
directly. Such limit l is associated with a probability p ∈ (0, 1) that can be computed
from the density function as Pr (lpsl > l) ≤ p. And we can also go the other way,
for the probability p we may find a minimal limit l with Pr (lpsl > l) ≤ p.

In addition, for the system of linear transformations we already have the proba-
bility density function and we use it in Section 6.3, indeed. To sum up, the approach
with the expected length and the Markov’s inequality is more general but achieves
greater limits. The approach with the probability density function gives better re-
sults. It is less general because if we know the probability density function of lpsl,
then we are able to find E (lpsl).

Definition 6.4 (Chain length limit function, long chain, p-trimmed-system, trim-
ming rate). Let H be a universal system of functions that map a universe U to a hash
table B. Let m be the size of the hash table, S ⊂ U be the stored set with n = |S|
and α = n

m
be the table’s load factor.

Then function l : N × R+
0 → N of variables m and α, l(m,α), is a chain length

limit function.
We say that function h ∈ H creates a long chain when hashing the set S if there

is a chain of length strictly greater than the limit value l(m,α).
Moreover let p ∈ (0, 1) be probability such that Pr (lpsl > l(m,α)) ≤ p, then the

system

HS
p = {h ∈ H | h does not create a long chain when hashing the set S}

is called a p-trimmed system. The probability p is called the trimming rate.
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The probability bound p ∈ (0, 1) of the existence of a long chain has important
consequences for the model that limits its chains.

• At most p|H| of all the functions in the original universal system H create long
chains – longer than the prescribed limit l(m,α).

• The probability that the table needs to be rehashed, equivalently probability of
selecting an inconvenient function, is lower than p provided the uniform choice
of a hash function.

• During rehashing caused by an occurrence of a long chain, the probability of
finding a suitable function is at least 1− p when assuming the uniform choice
of a hash function.

Lemma 6.5. If HS
p is a p-trimmed system, then |HS

p | ≥ (1− p)|H|.
Proof. Simply use the definition of HS

p and that of the trimming rate p:

|HS
p | = |{h ∈ H | h does not create a long chain}|

= Pr (lpsl ≤ l(m,α)) |H|
= (1−Pr (lpsl > l(m,α))) |H|
≥ (1− p)|H|.

Regarding that every function is chosen uniformly and the unsuitable ones are
discarded, we still perform the uniform selection of a hash function. The choice is
restricted to the functions that do not create long chains; to the class HS

p . Note that
the restriction to the functions of the original universal system H comes from an
information about the stored set.

Previous remarks are quite interesting. So now, we ask, if it is possible to use
the family HS

p as a universal one.

Theorem 6.6. Let H be a c-universal system of hash functions, U be a universe
and B be a hash table. Let p ∈ (0, 1) be the trimming rate and set m = |B|. Then
for every S ⊂ U the system of functions HS

p is c
1−p-universal. Equivalently:

Pr
(
h(x) = h(y) for h ∈ HS

p

) ≤ 1

1− pPr (h(x) = h(y) for h ∈ H) .

Proof. From Lemma 6.5 and from the assumption of c-universality of the original
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system it follows that

Pr
(
h(x) = h(y) for h ∈ HS

p

)
=
|{h ∈ H | h(x) = h(y) ∧ h does not create long chains}|

|{h ∈ H | h does not create long chains}|
≤ |{h ∈ H | h(x) = h(y) ∧ h does not create long chains}|

(1− p)|H|
≤ |{h ∈ H | h(x) = h(y)}|

(1− p)|H|
=

1

1− pPr (h(x) = h(y) for h ∈ H)

≤ c

(1− p)m .

Hence the system HS
p is c

1−p -universal.

Similar statements hold for the strongly universal systems. The probability of
a collision in the system HS

p is always 1
1−p times higher than the probability of a

collision in the original system H.
Next statement summarises results for the systems of linear transformations.

Corollary 6.7. For every trimming rate 0 < p < 1 the p-trimmed system of linear
transformations, LT (U,B)Sp , is 1

1−p-universal.

Proof. System of linear transformations is 1-universal as seen in Remark 3.13. The
fact then follows from Theorem 6.6.

Every chain length limit function l(m,α) comes with an associated trimming
rate, probability of the event lpsl > l(m,α). This probability not only determines
the probability of failure for a single function but it also determines the expected
number of trials to find a suitable function, as stated in Lemma 6.8.

Lemma 6.8. Let l be a chain length limit function and p ∈ (0, 1) be the trimming
rate such that Pr (lpsl > l(m,α)) ≤ p. Then the expected number of trials to find a
function, which does not create a long chain, is at most 1

1−p and the variance of this
number is bounded by p

(1−p)2 .

Proof. The probability of k independent unsuccessful searches of a function with
bounded chains is at most pk and thus the distribution of the first successful attempt
is bounded by the geometric distribution. For an estimate of the expected value and
the variance of the first successful attempt we need the following facts, that may be
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found in [29],

∞∑
i=0

pi =
1

(1− p) ,

∞∑
i=0

ipi =
p

(1− p)2
,

∞∑
i=0

i2pi =
p(1 + p)

(1− p)3
.

The expected time of success is then given by:

∞∑
i=0

(i+ 1)pi(1− p) = (1− p)
∞∑
i=0

pi + (1− p)
∞∑
i=0

ipi =
1− p
1− p +

(1− p)p
(1− p)2

=
1

(1− p) .

Now we estimate the variance:

∞∑
i=0

(
i+ 1− 1

(1− p)
)2

pi(1− p)

=
∞∑
i=0

(i+ 1)2 pi(1− p)−
∞∑
i=0

2(i+ 1)pi +
∞∑
i=0

pi

(1− p)

=
1− p
p

(
∞∑
i=0

i2pi

)
− 2

(1− p)2
+

1

(1− p)2

=
1− p
p

p(1 + p)

(1− p)3
− 1

(1− p)2

=
1 + p

(1− p)2
− 1

(1− p)2

=
p

(1− p)2
.

So the schema to obtain a chain length limit function is as follows. For a pre-
scribed probability of failure – trimming rate p we find a minimal chain length limit
function l(m,α) such that Pr (lpsl > l(m,α)) ≤ p. The probability p is chosen ac-
cording to the expected number of trials required to find a function which does not
create a long chain. For example in our model, we choose two trails and thus p = 0.5.

The lower the trimming rate p is the greater values of l(m,α) are obtained in
order to meet Pr (lpsl > l(m,α)) ≤ p. In addition, from Corollary 6.7 it follows that
the smaller the trimming rate p is, the better expected results are obtained. And
Theorem 6.1 implies that the expected chain length still remains constant provided
that the load factor α is bounded. So the small values of p give good expected results
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and low number of trails required to obtain a function. On the other hand choosing
a low trimming rate p gives only a poor worst case warranty.

The most interesting and the most important idea of trimming is that every
p-trimmed system is an adaptation of the original class H to the stored set S.

6.3 Chain Length Limit

From now we concentrate our effort to obtain the tightest bound on the chain length
for a given trimming rate p ∈ (0, 1). The corresponding bound is determined from
the density function shown in Remark 5.37. This limit is used later in our model in
Section 6.4.

In Theorem 6.9 the set Se is not directly the stored set. Instead, we use the set
Se that comes from the analysis of our model shown in Theorems 6.18 and 6.20. On
the other hand every set Se is a subset of the stored set S. The size of the set Se is
bounded according to the requirements of our analysis.

Theorem 6.9. Let T : Zu
2 → Zb

2 be a random uniformly chosen linear transforma-
tion, m = 2b, α′ ∈ {1, 1.5}, Se ⊂ Zu

2 such that |Se| ≤ α′m and p ∈ (0, 1) be the
trimming rate.

Then there is a chain length limit function l(m) = a logm log logm+ b logm for
some a, b ∈ R depending only on α′ and p. For the chain length limit function l(m)
we have Pr (lpsl > l(m)) ≤ p.

• When α′ = 1.5 and p = 0.5, set l(m) = 57.29 logm log logm.

• When α′ = 1 and p = 0.5, set l(m) = 47.63 logm log logm.

Proof. It is enough to prove the statement for |Se| = α′m. For a smaller set Se,
with |Se| < α′m, it follows that Pr (lpsl > l(m)) ≤ p, since it may be extended to a
set that has exactly α′m elements and confirms to the bound. Hence the statement
holds for every Se such that |Se| ≤ α′m provided that it holds for every Se with
|Se| = α′m.

Now assume that |Se| = α′m and set f(x) = xlog b−logα′−log x−log log x. From Corol-
lary 5.9 it follows that the function f(x) is decreasing in the interval [2,∞).

First, we introduce a parameter ε ∈ (0, 1) which is used later in the proof to

minimise the value of the limit function. If r ≥ 4, α′ ∈
(

0.5, r
log f

)
and ε ∈ (0, 1),

then by Remark 5.37 we have

Pr (lpsl > 2α′cεr) ≤ 1

1− εf
(

r

log r

)
.

We find the minimal value of r such that 1
1−εf

(
r

log r

)
≤ p. By setting the value of

the variable r we also obtain the chain limit confirming to the prescribed trimming
rate p.
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Our next step is to define a lower bound d, d ≥ 2, of the expression r
log r

. Since

d ≤ r
log r

we have that f(d) ≥ f
(

r
log r

)
because the function f is decreasing in the

interval [2,∞). Whenever we have a value of the variable d such that f(d) ≤ (1−ε)p,
then f

(
r

log r

)
≤ (1 − ε)p, too. If we manage to find the minimal value of r from

d ≤ r
log r

, then we set the chain limit to 2α′cεr and the trimming rate p is achieved
as well.

First, we show a way how to estimate the value of the variable r for a given d ≥ 2.

Claim 6.10. If d ≥ 2 and r = 2d log d, then d ≤ r
log r

and r ≥ 4.

Proof. Since we selected d as a lower bound for r
log r

we have to find minimal r from
the inequality r

log r
≥ d. Observe that for every d ≥ 2 we have that log d ≥ 1+log log d

and hence
log d+ log d

1 + log d+ log log d
≥ 1.

Putting r = 2d log d satisfies the inequality since

r

log r
=

2d log d

1 + log d+ log log d
=

d(log d+ log d)

1 + log d+ log log d
≥ d.

The value of r is thus r = 2d log d ≥ 4.

The probability estimate of the event lpsl > 2cεα
′r requires that r ≥ 4. For the

choice of the value r from Claim 6.10 it follows that r ≥ 4 when d ≥ 2. Because we
choose d ≥ 2, we no longer pay attention to the assumption of Remark 5.37. The
remaining one α′ < log r

2
may cause a problem. Its validity must be verified at the

end, immediately after we state the exact choice of r.
To finish the proof set the lower bound d = jb for a positive constant j. Instead of

finding exact value of d, it is sufficient to find a minimal value of j. The simplification
is motivated by the fact that the order of the asymptotic growth of E (lpsl) is b log b.
In Claim 6.11 we show that putting d = jb respects this asymptotic growth. So now
we just need to find the multiplicative constant as small as possible.

Claim 6.11. Let j be a positive constant such that d = jb ≥ 2, then the chain limit
rule we propose has the form

4cεα
′jb(log b+ log j).

Proof. We choose the value of r from Claim 6.10 as

r = 2d log d = 2jb(log b+ log j).

Hence our chain limit can be finally rewritten as:

4cεα
′r = 4cεα

′jb(log b+ log j).
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Claim 6.12. To find the minimal value of d, d ≥ 2 satisfying f(d) ≤ (1 − ε)p use
the inequality

(jb)− logα′−log j−log log(jb) ≤ (1− ε)p. (6.13)

Proof. From remark Remark 5.37 we obtain the following inequality that allows us
to find the minimal suitable value of d:

f(d) = dlog b−logα′−log d−log log d ≤ (1− ε)p.

We substitute jb into d to get the required result:

dlog b−logα′−log d−log log d = (jb)− logα′−log j−log log(jb) ≤ (1− ε)p.

Recall that we use the hash table B = Zb
2 and refer to m = 2b as to its size.

Inequality 6.13 may have various interpretations.

• For fixed 0 < p, ε < 1 and a positive constant j we get a lower bound on
m when our estimate becomes valid. Realise, that we can obtain arbitrarily
low multiplicative constant. This follows from the fact that we are allowed
to choose values for the constant j. Such estimates are valid only for large

numbers of stored elements, since we need d = jb ≥ 2 and n ≥ m
2
≥ 2

2
j
−1.

• Or we can find the parameters ε and j such that multiplicative constant 4cεα
′j

is the smallest possible for the trimming rate p and the size of the hash table
m. This statement is used to find the required estimate for m ≥ 4 096.

We use Inequality 6.13 to obtain the chain limit. The limit is computed for tables
consisting of at least 4 096 buckets and the probability bound is set to 0.5. These
choices were not random. When we used the formula for the first time, we gained
the multiplicative constants in the order of tens. Estimates with the multiplicative
constant in the order of tens start beating the most basic linear estimate, lpsl ≤ α′m,
when hashing thousands of elements.

Program optimising the value of the multiplicative constant only minimises the
value 4cεα

′j and does not pay any attention to the other constant. After the mini-
mal value is retrieved, together with the values of the parameters, the value of the
constant, 4cεj log jb, is determined. To find the value of the constant cε according to
Inequality 5.24 of Statement 5.23, additional parameters k and l are required. We
use Algorithm 5 to solve this optimisation problem.
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Algorithm 4 Calculate the multiplicative constant for parameters p,m, α′, ε, k, l.

cε ← constant cε computed with parameters k, ε and l
r ← (1− ε)p {Right side, inevitably achieved bound.}
j ← 1

{Lower the value of j so that the right side is skipped.}
l← (j logm)− log(α′)−log(j)−log(log(j logm))

while l < r and j > 0 do
j ← j − STEP ;
l← (j logm)− log(α′)−log(j)−log(log(j logm))

end while

j ← j + STEP
return 4cεα

′j

Algorithm 5 Calculate the smallest limit for p = 0.5, m ≥ 4 096 and prescribed α′.
c←∞
for k ∈ [2, 4] with STEP do

for l ∈ [1.3, 3] with STEP do
for ε ∈ [0.85, 0.99] with STEP do

if c > multiplicative constant for p = 0.5,m = 4 096, α′, ε, k, l then
c← computed multiplicative constant

end if
end for

end for
end for

return c

The form of the chain length limit function follows from Claim 6.11 and Algorithm
5, which is able to compute the minimal constant a and the corresponding constant
b.

The best result achieved for α′ = 1.5, m = 2b ≥ 4 096 is for ε = 0.96, j = 0.74
and equals 4cεα

′j = 57.29. The same approach gives multiplicative constant 47.63
for α′ = 1. The assumption α′ < r

2
holds since α′ ≤ 1.5 < 6 < jb ≤ d log d = r

2
.

Now compare this limit with the linear estimate, lpsl ≤ α′m, for the size of the
hash table m ≥ 4 096 and the number of stored elements n ≥ α′m = 0.5 · 4 096 =
2 048. Linear estimate on the length of the longest chain equals n = 2 048. Our
estimate equals approximately 57.29 logm log logm ≤ 57.29 · 12 · 2.27 ≤ 1 555 which
is already far better.

These limits may be improved since we neglected the part 4cεα
′j log j logm which

is negative.
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6.4 The Proposed Model

The model we propose is a slight modification of the simplest model of universal
hashing scheme with separated chains. We distinguish the two cases – when Delete
operation is not allowed or when the stored elements can be removed.

• Universal class. We use the system of linear transformations as the universal
family of functions. The universe U = Zu

2 and the target space, the hash table,
is referred to as B = Zb

2. We may imagine the situation as hashing u-bit binary
numbers to the space of b-bit binary numbers. We refer to the size of the hash
table as to m = |B| = 2b.

• Load factor rule. The load factor of the table is kept in the predefined
interval. If the load factor is outside the interval, whole table is rehashed into
a greater or smaller table. New size is chosen so that the load factor was as
near 0.5 as possible. Load factor is maintained in the interval [0.5, 1] for the
scheme without the delete operation. We need the interval [0.25, 1] if the delete
operation is allowed.

• Chain limit rule. When there is a chain longer than the limit value l(m), then
the hash table is rehashed. The value l(m) is chosen according to Theorem 6.9
with the trimming rate p = 0.5. The chain length limit function of our model
does not depend on the table’s load factor so we omit the parameter α and use
just l(m).

The exact chain length limit function comes from Theorem 6.9. If Delete
operation is forbidden, then set the limit value l(m) = 47.63 logm log logm
and use α′ = 1. When Delete operation is allowed, the chain length limit
function l(m) = 57.29 logm log logm and α′ = 1.5.

Estimates for the chain limit rule are valid for the tables consisting of at least
4 096 slots. There are two ways how to deal with this problem. First, we may set
the initial size of the table to 4 096 buckets. If the size of the table is 4 096 buckets,
then the lower bound of the load factor rule is not applied and we allow the table’s
load factor to be in the interval [0, 1).

Since not every hash table grows to a size of 4 096 buckets, this overhead becomes
unacceptable. The other option lies in turning off the chain limit rule when the table
has less than 4 096 buckets.

6.5 Time Complexity of Computing a Hash Value

Since our model is based on the system of linear transformations, what is quite
unusual, we have to deal with the time complexity of computing an element’s hash
value. We ask if the time required to compute the hash value is still constant. When
we bound the size of the universe |U |, certainly it is. But this time may be worse,
when compared to the time required by linear system 3.7.
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Linear system uses a constant number of arithmetic operations. If we do not
bound the size of the universe |U |, we may compute them in O(log2 |U |) time.

Our system, system of linear transformations, represents every transformation by
a binary matrix M ∈ Zb×u

2 . Every element ~x ∈ U is a vector consisting of u bits. To
obtain its hash the matrix-vector multiplication M~x is performed. We can certainly
do it in O(ub) = O(log |U | log |B|) time.

If the size of the universe is bounded, this time is constant. Despite the better
asymptotic bound, in practise, the time is worse than that of linear system. Assume,
that we represent elements by a word determined by the computer’s architecture. In
this case linear system needs just three operations, one multiplication, one addition
and a modulo. Computing a matrix-vector multiplication can be optimised, but is
not so fast.

In addition, when hashing is applied, elements usually fit in the word of the
underlying architecture. Therefore the arithmetic operations become constant and
this is our case, too. To deal with the longer running times of computing a hash value,
sometimes, it is possible to cache once computed hash value within the element. This
solution is a trade-off that improves the time complexity but consumes additional
memory.

6.6 Algorithms

In Section 6.4 we propose a model of universal hashing without any exact definition.
Precise algorithms, showing how the operations work, are required. Despite the fact
that the algorithms are very similar to those shown in Chapter 2, now they are
described exactly.

First, let us describe the hash table’s variables and notation. Hash table contains
variables storing its size Size, the number of represented elements Count and array
T is the hash table itself. Function Limit denotes the chain length limit function
and Hash is the current universal function – a linear transformation represented by
a binary matrix. Every bucket T [i] contains two variables T [i].Size, the number of
elements inside the slot, and T [i].Chain, the linked list of the elements in the bucket.

Initialisation. We use Algorithm 5 from the proof of Theorem 6.9 to compute the
bound for α′ ∈ {1, 1.5}, according to the status of Delete operation, and for p = 0.5.
Theorem 6.9 states that the limit function is in the form a logm log logm + b logm
for a, b ∈ R depending only on α′ and p. Thus we need to store just two real numbers
a and b to represent the chain length limit function. Let us note that Theorem 6.9
gives the chain length limit function for a different parametrisation, too. However,
in such case the amortised analysis must be changed.

Initialisation creates a new empty table with the prescribed size. It also chooses
a universal function by the random initialisation of the bits in the matrix Hash.
The values of bits are chosen randomly each bit having the same probability 0.5. If
the delete operation is allowed αmin = 0.25, αmax = 1 and α′ = 1.5, if it is not, then
αmin = 0.5, αmax = 1 and α′ = 1.
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Algorithm 6 Initialisation of the hash table

Require: p ∈ (0, 1), default 0.5
Require: m ∈ N, default 4 096

Ensure: the random uniform choice of a linear transformation Hash

initialise the value α′ according to the delete operation
use Algorithm 5 to compute the bound Limit(m) for the prescribed p and α′

initialise the variables αmin and αmax
create the table T of size m
Size← m
Count← 0
choose the hash function – random binary matrix Hash

Algorithm 7 Rehash operation

Require: m ∈ N, default Size {New size of the hash table.}

repeat
T ′.Initialise(m)
turn off the chain limit rule in T ′

turn off the load factor rule in T ′

for all element x stored in the hash table do
T ′.Insert(x)

end for
until chain limit rule is satisfied in T ′

swap T and T ′

turn on the chain limit rule in T ′

turn on the load factor rule in T ′

free T

Algorithm 8 Find operation

Require: x ∈ U
i← h(x)
if T[i].Chain.Contains(x) then

return true {Successful find.}
else

return false {Unsuccessful find.}
end if
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Algorithm 9 Insert operation

Require: x ∈ U
i← h(x)
if T[i].Chain.Insert(x) then
{Set the number of stored elements.}
Count← Count+ 1
T [i].Size← T [i].Size+ 1

Rehash← false
{The load factor rule may be violated.}
if Count > Size ∗ αmax then
NewSize← 2 ∗ Size
Rehash← true

else
NewSize← Size

end if

{The chain limit rule may be violated.}
if T [i].Size > Limit(Size) then
Rehash← true

end if

{Rehash the table if needed, new function is chosen.}
if Rehash then
Rehash(NewSize)

end if

return true {Successful insert.}
else

return false {Unsuccessful insert.}
end if

84



Algorithm 10 Delete operation

Require: x ∈ U
i← h(x)
if T[i].Chain.Remove(x) then
Count← Count− 1
T [i].Size← T [i].Size− 1

if Count < Size ∗ αmin then
Rehash(Size/2)

end if

return true {Successful delete.}
else

return false {Unsuccessful delete.}
end if

Rehash operation To enumerate the stored elements in Rehash operation, Algo-
rithm 7, we iterate every chain of the table. A common optimisation is to place all
the stored elements into a linked list. This allows faster enumeration but causes a
space overhead.

Whenever a load factor rule or the chain limit rule is violated, the table is re-
hashed using a new function chosen in initialisation. Both Initialisation and Rehash
operation, Algorithms 6 and 7, take an argument m specifying the new size, so that
it is possible to rehash the table into a larger or smaller one.

Find, Insert and Delete operations Find is very straightforward. Let us notice
that the linked list manipulation operations return true in the successful case, if an
element is found, deleted or inserted, and otherwise return false. Insert and Delete
operations are slightly complicated compared to the original ones because of the both
rules that are required to hold.

6.7 Potential Method

In Section 6.8 we estimate the expected amortised time complexity using the poten-
tial method. So let us explain it first. Assume that we have a data structure and
a sequence of operations {oi}ni=1 performed on it. We want to estimate the running
time of the sequence. Of course, we can use the worst case time for each operation
but this may be very misleading.

Consider a simple array. The elements are placed at the array’s end. If there
is a free position, we store the element. When the array is full, then we double its
size and store the element. Clearly, if we store n elements inside the array, then
the worst case time required to insert another one is O(n). We ask, what time is
required to store n elements in such an array. The estimate using the worst case time
for each operation gives the result O(n2) = O(

∑n
i=1 i). Amortised analysis gives a
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far better result, O(n). This result can be explained by the fact that the fast inserts
accumulate a potential that is used later by a following slow insert.

Now we describe the potential method – a method how to estimate the amortised
complexity. The potential of the data structure and an operation’s amortised cost
are tools which distribute the running time of a sequence among the operations more
evenly. Assume that we have a data structure at the initial state s0 and we perform
a sequence of n ∈ N operations {oi}ni=1. Every operation oi changes the state of the
data structure from si−1 to si, i ∈ {1, . . . , n}.

Every state has a real-valued potential given by the potential function p. Hence
we obtain a sequence of potentials pi for every i ∈ {0, . . . , n}. The potential p0 is
the initial potential and is often chosen as zero. So the operations not only change
the data structure, they change its potential, too. We define ai = ti + pi − pi−1 as
the amortised cost of the ith operation where ti is its running time.

Definition 6.14 (Amortised complexity). Assume that we perform an operation of
a data structure. Let t be the time required to perform the operation. Let pb be the
potential of the data structure before performing the operation and pa be the potential
after. Then the amortised complexity of the operation

a = t+ pa − pb.
The time taken by the operations in a sequence o, To =

∑
n
i=1ti, may be estimated

by the amortised time of the sequence, Ao =
∑

n
i=1ai, as

To =
n∑
i=1

ti =
n∑
i=1

(ai − pi + pi−1) = Ao + p0 − pn.

Let us show some facts regarding the potential functions and the amortised com-
plexity of a sequence of operations.

Claim 6.15. Assume that we estimate the amortised complexity by a potential func-
tion p. Let o = {oi}ni=1 be the performed sequence of operations, p0 be the starting
potential and pn be the potential after performing the last operation.

(1) If p ≥ 0, then To ≤ Ao + p0.

(2) If p ≤ 0, then To ≤ Ao − pn.

(3) If p0 = 0, then To = Ao − pn.

For randomised algorithms we may take the expected time consumed by an op-
eration.

Definition 6.16 (Expected amortised complexity). Assume that an operation of a
randomised data structure is performed and the operation runs in time t. Let pb be
the potential before performing the operation and pa be the potential after. Then the
expected amortised complexity of the operation is defined as

a = E (t+ pa − pb) .

A description of the potential method may be found in [23] and [25].
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6.8 Expected Amortised Complexity

Expected amortised time complexity of the introduced scheme is analysed in the
next two theorems in either of the two cases – when Delete operation is allowed or
not.

Let us discuss the situation of Lemma 6.17. We are given a sequence of sets
S1 ⊆ · · · ⊆ Sk ⊆ Se that should be represented in a hash table. We start with the
initial hash function h0. Set S1 causes violation of the chain limit rule for function
h0. In order to enforce the rule, we select random functions h1, h2, . . . until we find a
suitable function for the set S1, denote it hi1 . Later, after some inserts, we obtain a
set S2 and the function hi1 is no longer suitable. We continue by selecting functions
hi1+1, . . . , hi2 with hi2 being suitable for the set S2. The chain length limit function
is chosen for the set Se and for the trimming rate p from Theorem 6.9. We need
to find the expected number of trials, the number of selected functions, needed to
enforce the chain limit rule for the sets S1, . . . , Sk. The set Se is a set that comes
from the analysis, we use the same set Se is in Theorem 6.9.

Lemma 6.17. Let Zu
2 be the universe, Zb

2 be the hash table with the size m = 2b,
p ∈ (0, 1) be the trimming rate and α′ ∈ {1, 1.5}. Let the chain length limit function
be chosen according to Theorem 6.9 for α′ and p.

Let S1 ⊆ · · · ⊆ Sk be a sequence of represented sets and Se ⊂ Zu
2 be a set such

that |Se| ≤ α′m and Sk ⊆ Se. Let h0, h1, . . . , hl be a sequence of random uniformly
chosen linear transformations selected to enforce the chain limit rule for the sequence
of sets. Assume that 0 = i0 < · · · < ik = l is the sequence such that

(1) the functions hij , hij+1, . . . , hij+1−1 create a long chain for the set Sj+1 for every
j ∈ {0, . . . , k − 1},

(2) the function hij does not create a long chain for the set Sj, j ∈ {1, . . . , k}.
Then E (l) = 1

1−p .

Proof. First, observe that if a function h is suitable for the set Se, then it is suitable
for every set S1, . . . , Sk.

By Lemma 6.8 the expected number of trials needed to represent the set Se
without a long chain is 1

1−p .
The sequence of functions h1, . . . , hl is random and the selection of every function

is uniform. The chain length limit function is chosen according to Theorem 6.9 –
it fits for the set Se. Hence if we do not consider the sets S1, . . . , Sk, we have that
E (l) = 1

1−p .
If a function ha, 1 ≤ a < l creates a long chain for a set Sb, ib−1 ≤ a < ib, then it

certainly creates a long chain for the set Se. Thus if we fail with the function ha for
the set Sb, then we fail with the same function for the set Se, too. In this situation we
continue by choosing functions ha+1, ha+2, . . . . The sequence of functions h1, . . . , hl
for the sequence of sets, remains the same for the single set Se, provided that the
random choice is the same. So the functions selected for the sequence of sets may
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be selected when rehashing the set Se, too. Hence we do not need to consider the
sequence of sets when choosing a right function for the set Se.

Thus E (l) = 1
1−p as observed before.

Theorem 6.18. Consider hashing with forbidden Delete operation. Then the opera-
tions Find and Insert have the expected amortised time complexity O(1). Moreover,
if the size of a hash table is m, then the find operation runs in O(logm log logm)
time in the worst case.

Proof. For the expected amortised complexity analysis we use the potential method.
Let the expression αm−m denote the potential of the scheme. This is the negative
value of the number of the remaining successful insert operations which would make
the table’s load factor reach one. Whenever a successful insertion is performed we
check if

• the prolonged chain does not violate the chain limit rule or

• the load factor is not greater than 1.

If either of the two conditions is violated the whole table is rehashed. We have four
cases to analyse.

• Find operation or an unsuccessful Insertion operation is performed. From The-
orem 6.1 and Corollary 6.7 we know that it takes O(1) expected time only. The
potential does not change. Since the chains are bounded by l(m), its worst case
running time is O(logm log logm).

• Insert operation is performed and the Rehash operation is not necessary. Then
from Theorem 6.1 the operation takes O(1) time in the expected case. The
potential is increased by one.

• Rehash operation after an Insert operation is required because the load factor
exceeds one. The rehash itself takes the O(m) time and the size of the table
is doubled. Thus the resulting potential is −m. The potential before the
operation equals 0. So the operation took O(1) expected amortised time.

• Suppose that a Rehash operation after an Insert is needed because of the
violation of the chain limit rule. We seek for a new function satisfying the
rule without resizing the table. For convenience we define a sub-sequence of
operations called a cycle.

Definition 6.19. Cycles create a partitioning of the original sequence of oper-
ations. Each cycle is a sub-sequence consisting of the operations between two
immediate inserts which cause the violation of the load factor rule. The first
insert causing the violation is included in the cycle and the second one belongs
to the next cycle.
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We refer to the current cycle as to the cycle which contains the analysed op-
eration. Now we find the number of rehash operations that are caused by the
chain limit rule violation and occur in a single cycle. Let Se be the set repre-
sented at the end of the current cycle. Then by Lemma 6.17 we need just 1

1−p
trials in the current cycle.

Now we compute the expected amortised complexity of the insert operations
causing the violation of the chain limit rule in a single cycle. For every table
that consists of m slots at the beginning of the cycle, there are exactly 0.5m
insert operations raising the load factor from 0.5 to 1. The expected time spent
by fixing the chain limit rule in a cycle is, by Lemma 6.17, 1

(1−p)O(m). We can
divide this amount of time along the cycle of 0.5m inserts. This distribution
raises the expected amortised time for every insert operation only by a constant.
The potential is incremented by one. The expected time of Insert operation
without Rehash operation is O(1).

We have one issue to care about. In the last case we distributed the time evenly
along a complete cycle. If the number of inserts is not a power of two, we may
possibly distribute a long time along a non-complete cycle. With this distribution
we can not obtain a constant amortised time for the insert operation. However, we
can distribute the time spent by fixing the chain limit rule from the last incomplete
cycle along all the insert operations performed so far.

Thus the expected amortised time complexity of every analysed operation is
O(1).

One can find a better potential function proving the previous result more formally.
We use such an explicitly expressed potential function in the next theorem. We
assume that Delete operation is allowed.

Theorem 6.20. If the initial hash table is empty and Delete operation is allowed,
then the expected amortised time complexity of every operation is constant. Moreover,
if the size of a hash table is m, then the find operation runs in O(logm log logm)
time in the worst case.

Proof. In this proof we have two types of the operation cycles. We need to distinguish
between the work required to enforce the load factor rule and the time spent by
keeping the chain limit rule. In the analysis with forbidden Delete operation the
situation is simpler and these cycles are the same. And recall the difference, the
chain length limit function is computed for α′ = 1.5. The load factor α is now in the
interval [0.25, 1].

We deal with the amortised time of Find and unsuccessful Insert or Delete oper-
ations in advance. Their expected running time is proportional to the expected
chain length. From Theorem 6.1 it follows that this value is constant. Since
chains are bounded by l(m) we have that the worst case time of Find operation
is O(logm log logm). These operations do not change the potential1. Our analysis
is thus simplified by omitting finds and unsuccessful delete and insert operations.

1The potential is defined later in the proof.
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Let the sequence o = {oi}ni=1 denote the performed operations, the ith operation
oi ∈ {Insert,Delete}. The following two definitions make the analysis more exact
and clear.

Definition 6.21 (α-cycle). The α-cycle consists of the operations between the two
immediate operations that cause the violation of the load factor rule. Every α-cycle
contains the second operation causing the violation and the first one is included in
the previous α-cycle. The operation o1 is contained in the first α-cycle.

First, notice that for this definition it is not important if the upper or lower bound
of the load factor is the cause of the violation. When a rehash operation is executed,
the table size is chosen so that the load factor α was as near 0.5 as possible.

The next definition of the α-cycle is intended for the analysis of the time spent
by fixing the violations of the load factor rule.

Definition 6.22 (l-cycle). The l-cycles are the partitioning of the sequence o such
that every l-cycle ends

• after an operation causing the violation of the load factor rule or

• when we performed 0.5m insertions from the beginning of the l-cycle and the
load factor did not exceed the value of 1.

The l-cycle allows us to analyse the work caused by the chain limit rule. Both
l-cycles and α-cycles divide the sequence o. Notice that if an α-cycle ends at the
position i, the corresponding l-cycle also ends at the same position.

The analysis now takes the ith operation for every i = 1, . . . , n. We show that
the expected amortised time complexity of the opertion oi is O(1) independently
on its type. The potential now consists of the two parts, p1 and p2. Let e = 1

(1−p)
denote the expected number of rehash operations, the expected number of trials,
when finding a suitable function.

Above all we want every simple insertion and deletion to take O(1) time only.
Thus the potential consists of the part p1 = 4eiα + 8edα where iα is the number
inserts and dα is the number of delete operations performed so far in the current
α-cycle.

Next, we need to distribute the work caused by the chain limit rule. The second
part of the potential p2 = 2eil + (ce − r)m. The value il denotes the number of
insertions performed so far in the current l-cycle. The variable r denotes the number
of performed Rehash operations, which are caused by the chain limit rule violation,
from the initial state. The variable c denotes the number of started l-cycles from the
beginning so far. The overall potential p = p1 + p2.

The analysis of Delete operation is simpler and comes first. When a deletion is
performed we have to discuss the two cases:

• Simple successful deletion is expected to take O(1) time. We search in chains
that have constant expected length. The potential is increased by 8e since the
number of deletions in p1 gets increased by one.
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• The load factor α violates the lower bound of the load factor rule. Realise
that there are at least 0.25m deletions performed in the current α-cycle, let us
explain why. At the beginning of the cycle the table has the size of m slots and
the load factor equals 0.5. At the end of the cycle the load factor decreased
to 0.25. Such a descent may be caused by at least 0.25m successful delete
operations. Let us discuss the potential change. First, the potential difference
of the part p1 is less or equals −2em since iα and dα get zeroed. The second
part p2 gets increased by at most em since a new l-cycle is started and the
value il is zeroed. Rehashing of the table takes O(em) expected time. Hence
the expected amortised cost of the operation is O(1).

The analysis of the first two cases of Insert operation remains similar to the case
with forbidden Delete:

• Suppose no Rehash operation after an Insert is performed. The searched chain
has the constant expected length and the potential is increased by 4e+ 2e.

• If the load factor exceeds the upper bound, then there are at least 0.5m inser-
tions in the current α-cycle. It follows that the potential p2 is certainly greater
or equals 2em. After performing the operation a new l-cycle is started. The
potential p2 is raised by em because the variable c gets incremented by one.
But it is also lowered by at least 2em because il is set to zero. The rehash op-
eration is expected to take O(em) time. Regarding the fact that the potential
p1 only decreases we expect O(1) amortised time for Insert operation violating
the load factor rule.

• Insert operation is the last one in the l-cycle and the chain limit rule is not
violated. Then there are 0.5m insertions in the current l-cycle, equivalently
il = 0.5m and p2 = em+ (ce− r)m. Since a new l-cycle is started, the il term
is set to zero and the value c is incremented by one. Therefore there is no
potential change in the part p2. The part p1 only decreases.

• Analysis of Insert operation, which violates the chain limit rule, remains. Time
spent by Rehash operation equals O(m) times the number of fails when finding
a suitable function. The potential p2 is decreased by the same value, since the
variable r gets incremented by the number of fails. The potential increase in
the part p1 and p2 equals 6e. Without Rehash operation the expected time
of Insert is O(1). The expected amortised time complexity of the analysed
operation is thus constant provided that E ((ce− r)m) = 0.

First, we show why the expected number of fails in one l-cycle equals e. Let
S be the set stored after performing the analysed operation. Let Se be the set
created from the set S by the remaining inserts of the current l-cycle. Because
the table’s load factor is maintained lower than 1 and there are at most 0.5m
inserts in every l-cycle, we have that |Se| ≤ 1.5m and S ⊆ Se. From Lemma
6.17 we have that e = 1

1−p is the expected number trials needed to find a
suitable function for every l-cycle.

91



Second, we show that E ((ce− r)m) = 0. Define the random variable Ci equal
to the number of rehash operations required to fix the chain limit rule in
the ith l-cycle for i = 1, . . . , c. From the previous observation it follows that
E (Ci) = e. Clearly r =

∑c
i=1 Ci. From Lemma B.18 it follows that

E ((ce− r)m) ≤ m

(
ce− E

(
c∑
i=1

Ci

))
= m(ce− cE (C1)) = mc(e− e) = 0.

Since E ((ce− r)m) = 0 and p0 = 0, the expected potential is always non-
negative. Hence To = Ao + p0 − pn ≤ Ao and our analysis is thus correct.

We showed that the expected amortised complexity is constant for every opera-
tion.

Let us note that the fact
∣∣∣ (ce−r)mn

∣∣∣ n→∞−−−→ 0 indicates that it might be possible to

show that the amortised complexity is constant, without any expectation. Since uni-
versal hashing is a randomised algorithm, such result would be certainly remarkable.
However, if it was really true, there would be still many troubles showing the result.

So, one may ask if using the Law of Large Numbers, Theorem B.23, can not help.
Indeed, from Lemma 6.8 we have that Var (Ci) is finite and it may be applied:∣∣∣∣(ce− r)mn

∣∣∣∣ ≤ m

∣∣∣∣ce−∑c
i=1 Ci
c

∣∣∣∣
≤ m

∣∣∣∣cE (C1)

c
−
∑c

i=1 Ci
c

∣∣∣∣
= m

∣∣∣∣E (C1)−
∑c

i=1 Ci
c

∣∣∣∣ .
Clearly, the convergence in probability stated by Theorem B.23 holds:∣∣∣∣E (X1)−

∑c
i=1Xi

c

∣∣∣∣ c→∞−−−→ 0.

But in the case of m
∣∣∣E (C1)−

Pc
i=1 Ci
c

∣∣∣ we have to be careful. There is an infinite

class of sequences {oi}ni=1 for which m ∈ Ω(c). Thus for these sequences, if c → ∞,
then m→∞ as well.

In order to obtain convergence in probability we have that

Pr

(
m

∣∣∣∣E (C1)−
∑c

i=1 Ci
c

∣∣∣∣ ≥ ε

)
= Pr

(∣∣∣∣E (C1)−
∑c

i=1 Ci
c

∣∣∣∣ ≥ ε

m

)
≤ Var (Ci)m

2

mε2
=
mVar (Ci)

ε2
.

This is a problem, since when m → ∞, we can not expect that the probability
converges to zero for a fixed ε.
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For the class of sequences satisfyingm ∈ Ω(c) the inequalities we used for estimate

of
∣∣∣ (ce−r)mn

∣∣∣ mean only a multiplicative factor. Thus the estimate is tight and we

see that the bound obtained from the Chebyshev’s inequality is not sufficient. Its
asymptotic rate is not high enough and the factor m appears. However, because
we know the probability distribution of Ci, maybe we could exploit it and be more
accurate. This problem remains open.
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Chapter 7

Conclusion

In this work we present a model of universal hashing which preserves the constant
expected length of a chain. The running time of the find operation is then O(1), too.
The model uses the system of linear transformations and exploits its remarkable
properties shown in [3]. In addition, these results are substantially improved so
that they allow the construction of the model. We are also able to show that the
expected amortised running time of the insert and delete operations is constant. Not
only that, our model bounds the worst case running time of the find operation in
O(logm log logm).

Because the model is based on the system of linear transformations, the time to
compute the hash value of an element is worsened, despite its asymptotic behaviour.
The solution that we propose is to store once computed hash values within the object.
This optimisation takes the advantage of the warranties provided by the model, if
the find operation is dominant.

7.1 Future Work

There are many ways how to improve the model. For example, we can go the way of
the tighter estimates. Although, it may be very interesting to describe the behaviour
of double hashing when it is used with a universal class of functions. Combined with
the system of linear transformations it may be possible to obtain a similar worst case
bound without violating the expected running times.

Our next option is to use ideas of perfect hashing. Every chain may be represented
by a hash table allowed to have a small load factor. Whenever the elements in the
bucket can not be accessed in a constant time, then it might be possible to rehash
only the small table instead of the large one. This approach may bring another
speedup.

Another brilliant idea comes from the area of load balancing. We can hash by
two functions simultaneously and a newly stored element is placed into a smaller
bucket. The find operation has to search in both buckets associated with an ele-
ment. However, as stated in [28], the expected worst case time for classic hashing is
then substantially better and the expected complexity is preserved. The question is
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whether using two universal functions may help.
Unfortunately, the thesis does not show the experimental results. A high quality

benchmark of the model is required. The benchmark needs to be performed with and
without the mentioned optimisation – caching of the hash values. This should show
the influence of the universal system on the running times. The benchmark also has
to show when the warranty is needed in dependence on the operations composition
and the input distribution. If we try inputs created by a random number generator,
then they are uniformly distributed. So the obtained chains are short even for classic
hashing. On the other hand such good inputs are seldom present. The real world
inputs, which are inconvenient for classic hashing, should be another output of the
benchmark. On the other hand we should point out when the classic hashing or
the other implementations outperform our model. When the chains are longer and
the find operation is the most frequent one, then it is convenient to have a worst
case warranty especially for large number of stored elements. The question is, how
frequent the find operation has to be when compared to the modifying ones.

Of course, usage of simpler classes brings faster times of computing the hash
codes. Linear classes are quite similar to each other. Maybe we could find a cor-
respondence allowing the results found for the class of linear transformations to be
brought into a faster class.

Models providing a reasonable worst case warranty with a good expected time
complexity may be a suitable solution for various set representation problems. Cur-
rent models of hashing may provide such qualities when enriched by simple rules.
Also the approach of relaxation, shown in [19] for red black trees, may be help-
ful when achieving similar results. Data structures providing strong warranties are
usually slower in the average case. Their relaxation worsens the warranties but im-
proves the average case. Relaxation may be considered a reverse approach compared
to ours.
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Prague, Czech Republic, 2010.

[24] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching,
volume 1 of Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 1984.

[25] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic
Toolbox. Springer, 2008.

97



[26] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2001.

[27] Peter B. Miltersen. Universal hashing, 1998.

[28] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, New York,
NY, USA, 2005.

[29] Lennart R̊ade and Bertil Westergren. Mathematics handbook for science and
engineering. Birkhauser Boston, Inc., Secaucus, NJ, USA, 1995.

[30] Bruce Reed. The height of a random binary search tree. J. ACM, 50(3):306–332,
2003.

[31] Sheldon M. Ross. Probability Models for Computer Science. Academic Press,
Inc., Orlando, FL, USA, 2001.

[32] Shai Rubin, David Bernstein, and Michael Rodeh. Virtual cache line: A new
technique to improve cache exploitation for recursive data structures. In In Pro-
ceedings of the 8th International Conference on Compiler Construction, pages
259–273. Springer, 1999.

[33] A. Siegel. On universal classes of fast high performance hash functions, their
time-space tradeoff, and their applications. In SFCS ’89: Proceedings of the
30th Annual Symposium on Foundations of Computer Science, pages 20–25,
Washington, DC, USA, 1989. IEEE Computer Society.

[34] Mark N. Wegman and J. Lawrence Carter. New classes and applications of
hash functions. In SFCS ’79: Proceedings of the 20th Annual Symposium on
Foundations of Computer Science, pages 175–182, Washington, DC, USA, 1979.
IEEE Computer Society.

98



Appendix A

Facts from Linear Algebra

Some definitions and facts, which are used in the work, are mentioned and proved
in the appendix. Basic definitions of vector space, linear transformation and facts
about solving linear equations can be found for example in [26].

Definition A.1. Let V be a vector space and A be a subset of V . For a vector ~v ∈ V
define the set ~v + A as

~v + A = {~v + ~a | ~a ∈ A}.
Definition A.2. Let V be a vector space and A,B be subsets of V . Define the set
A+B as

A+B = {~a+~b | ~a ∈ A,~b ∈ B}.
Definition A.3 (Affine subspace). Let V be a vector space, V ≤ U be its subspace
and ~a ∈ U . The set A = ~a+ V is an affine subspace of the vector space U .

Lemma A.4. Let A = ~a + ~V be an affine subspace of a vector space U determined
by a subspace V ≤ U and a vector ~a ∈ U . Then A = ~b+ V for every ~b ∈ A.

Proof. Every vector ~x ∈ A may be written in the form ~x = ~a+ ~vx for a vector ~vx ∈ V .
We need to rewrite it in the form ~x = ~b + ~wx for a vector ~wx ∈ V . Since ~b ∈ A
we also have that ~b = ~a + ~vb. Substituting ~a = ~b − ~vb into ~x = ~a + ~vx gives that
~x = ~a+ ~vx = ~b− ~vb + ~vx. Since V is a vector space we have that ~wx = ~vx − ~vb ∈ V .
We just proved that A ⊂ ~b+V . The reverse inclusion comes from the fact that ~b+V
is an affine subspace and a ∈ ~b+ V and. The proof is symmetric.

Definition A.5 (Null-space of a matrix). Let T be a field, A ∈ Tm×n be a matrix
with n,m ∈ N. The set {~x ∈ T n | A~x = ~0} is called the null-space of the matrix A.

There is a one-to-one relationship between a matrix over a field T and a linear
transformation between arithmetic vector spaces over the same field. For every
vector ~x ∈ T n let [~x]β denote the coordinates of the vector ~x relative to the basis
β of T n. Consider two vector spaces Tm and T n and their two fixed ordered bases
β = {~b1, . . . ,~bn} of T n and γ of Tm. Let {~c1, . . . ,~cn} be a subset of Tm. Then
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every linear transformation L : T n → Tm with L(~bi) = ~ci for every i ∈ {1, . . . , n}
corresponds to a matrix A ∈ Tm×n such that

A =

[~c1]γ . . . [~cn]γ

 .

For the matrix A we have that A[~x]β = [L(x)]γ for every ~x ∈ T n. Every matrix A
for two fixed bases thus gives a linear transformation, too.

Remark A.6. Null-space of every matrix A ∈ Tm×n is a subspace of the vector space
T n.

Proof. Proof is a straightforward verification of the three properties of vector sub-
spaces. In the following assume that ~x, ~y ∈ N (A).

The zero vector is in N (A) because A~0 = ~0.

The sum ~x+ ~y ∈ N (A),

A(~x+ ~y) = A~x+ A~y = ~0 +~0 = ~0.

For every t ∈ T we have that t~x ∈ N (A) because

At~x = tA~x = t~0 = ~0.

Definition A.7 (Orthogonal complement). Let V be a vector subspace of a vector
space U and the operation 〈~u | ~v〉 denote the scalar product of vectors ~u,~v ∈ V .
Orthogonal complement of subspace V , denoted by V ⊥, is defined as:

V ⊥ = {~u ∈ U | 〈~u | ~v〉 = 0 for all ~v ∈ V }.
Definition A.8 (Affine linear transformation). Let V, U be vector spaces, V0 ≤ V ,
U0 ≤ U be their subspaces and VA = ~v + V0 and UA = ~u + U0 be affine subspaces
of V and U with vectors ~v ∈ V and ~u ∈ U . Function TA : VA → UA is an affine
linear transformation if there is a linear transformation T0 : V0 → U0 such that
TA(~x) = ~u+ T0(~x− ~v), ~x ∈ VA.

Definition A.9 (Set of all affine linear maps). Let V, U be vector spaces and V0 ≤ V ,
U0 ≤ U be their subspaces. Let VA = ~v + V0 and UA = ~u+ U0 be affine subspaces of
V and U respectively with vectors ~v ∈ V and ~u ∈ U . Set of all affine linear mappings
between affine spaces VA and UA, LTA(VA, UA), is defined as:

LTA(VA, UA) = {T : VA → UA | T is an affine linear transformation}.
Lemma A.10. Let T : Zf

2 → Zb
2 for f ≥ b be an onto linear map and ~y ∈ Zb

2. Then
T−1(~y) is an affine subspace of Zf

2 and |T−1(~y)| = 2f−b.
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Proof. By Remark A.6, T−1(0) is a vector subspace of Zf
2 . The set T−1(~y) is an

affine subspace of the vector space Zf
2 since for every vector ~u ∈ T−1(~y) we have that

T−1(~y) = ~u+ T−1(~0). First we show, ~u+ T−1(~0) ⊆ T−1(~y):

~v ∈ T−1(~0)⇒ T (~u+ ~v) = T (~u) + T (~v) = ~y +~0 = ~y

⇒ ~u+ T−1(~0) ⊆ T−1(~y).

The reverse inclusion, T−1(~y) ⊆ ~u+ T−1(~0), holds as well since

~v ∈ T−1(~y)⇒ T (~v − ~u) = T (~v)− T (~u) = ~y − ~y = ~0

⇒ ~v − ~u ∈ T−1(~0)

⇒ T−1(~y) ⊆ ~u+ T−1(~0).

Now we use this fact to prove the second statement of the lemma, |T−1(~y)| = 2f−b.
Fix arbitrary vector ~u ∈ T−1(~y). From Lemma A.4 then follows T−1(~y) = ~u+T−1(~0).
In addition, the equality describes a one-to-one map between T−1(~0) and T−1(~y). The
consequence of is that all sets T−1(~y) for every y ∈ Zb

2 have the same size, exactly
|T−1(~y)| = 2f−b.

Lemma A.11. Let A ∈ Zm×n
2 be a matrix such that rank (A) = m and m ≤ n. Then

the system of linear equations A~x = ~y has 2n−m solutions for every vector ~y ∈ Zm
2 .

Proof. This is a consequence of Lemma A.10. We apply it for the linear transforma-
tion given by the matrix A and vector ~y ∈ Zm

2 .
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Appendix B

Facts Regarding Probability

In the appendix we summarise some facts regarding the probability theory. We show
the basic definitions and prove the statements used in the work.

First we discuss the discrete probability and discrete random variables. Then
we move to continuous random variables. Finally we show the Markov’s and the
Chebyshev’s inequality.

Whenever we perform a random experiment we get a random outcome – a random
event occurred. The probability theory models the uncertainty included in random
experiments and deals with the probabilities of the random events. For example
if the coin toss is the random experiment, then the set {roll, die} contains all the
possible outcomes. If the coin is fair, they share the same probability of occurrence.

Definition B.1 (Probability space, elementary event). We refer to the set Ω con-
sisting of all the possible outcomes of a random experiment, Ω = {ω1, . . . , ωn}, as
to the probability space. Its elements ωi, i ∈ {1, . . . , n}, are the elementary events.
The probability of every elementary event ωi, i ∈ {1, . . . , n}, equals pi, 0 ≤ pi ≤ 1,
and is written as:

Pr (ωi) = pi.

The sum of the probabilities of the elementary events must be equal to one:

n∑
i=1

pi = 1.

In general the probabilities of the elementary events need not to be the same.
However, this assumption is frequently satisfied and then pi = 1

n
for i = 1, . . . , n.

Definition B.2 (Event, probability). The set A = {a1, . . . , am} ⊆ Ω, containing
only elementary events, is called a compound event. The probability of the com-
pound event A is

Pr (A) =
∑
ω∈A

Pr (ω) .

If the probabilities of the elementary events are the same, then

Pr (A) =
|A|
|Ω| =

m

n
.
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Definition B.3 (Complementary event, the certain event, the impossible event).
Let A ⊆ Ω be an event. The event Ω − A is the complementary event of the event
A. The certain event is the probability space Ω and its complementary event ∅ is the
impossible event.

Corollary B.4 (Probability of the complementary event). If A ⊆ Ω is an event
then the probability of the complementary event is

Pr (Ω− A) = 1−Pr (A) .

Proof. Follows from the definition of probability:

1 = Pr (Ω) = Pr ((Ω− A) ∪ A)

=
∑

ω∈Ω−A

Pr (ω) +
∑
ω∈A

Pr (ω)

= Pr (Ω− A) + Pr (A) .

We can compute the size of the set, consisting of elementary events, if we know
the event’s probability and the size of the probability space.

Lemma B.5. Let A ⊆ Ω be an event such that Pr (A) = p. If the probabilities of
the elementary events are the same, then |A| = p|Ω|.
Proof. This statement is a direct use of the definition of the probability of the event
A.

p = Pr (A) =
|A|
|Ω|

Definition B.6 (Intersection). Let A,B ⊆ Ω be events. The event that both A and
B occur is denoted by A,B and equals the event A∩B. The probability of the event
A,B is

Pr (A,B) = Pr (A ∩B) .

Definition B.7 (Disjoint events). Let A,B ⊆ Ω be events. Events A and B are
disjoint if A ∩B = ∅. The corresponding compound probability then equals

Pr (A,B) = Pr (∅) = 0.

Definition B.8 (Independent events). Let A,B ⊆ Ω be events. Events A and B are
independent if

Pr (A,B) = Pr (A) Pr (B) .

The motivation of the following definition is a way how to compute the probability
of event A inside the restricted probability space B.
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Definition B.9 (Conditional probability). Let A,B ⊆ Ω be events and assume that
Pr (B) 6= 0. Then the conditional probability of event A | B is defined as

Pr (A | B) =
Pr (A,B)

Pr (B)
.

Lemma B.10. If A,B ⊆ Ω are non-disjoint events such that Pr (B) 6= 0, then

Pr (B) ≤ Pr(A)
Pr(A|B)

.

Proof. From our assumptions we have that the conditional probability of the event
A | B is defined and positive. To prove the lemma the definition of the con-
ditional probability and the straightforward bound on the compound probability,
Pr (A,B) ≤ Pr (A), is used

Pr (B) =
Pr (A,B)

Pr (A | B)
≤ Pr (A)

Pr (A | B)
.

Remark B.11. Let A,B ⊆ Ω be events with B 6= ∅. The events are independent if
and only if Pr (A | B) = Pr (A).

Proof. If we assume the independence of the two events we have

Pr (A | B) =
Pr (A,B)

Pr (B)
=

Pr (A) Pr (B)

Pr (B)
= Pr (A) .

The reverse implication holds since

Pr (A,B) = Pr (A | B) Pr (B) = Pr (A) Pr (B) .

Lemma B.12. Properties of Probability

(1) Pr (∅) = 0

(2) Pr (Ω) = 1

(3) 0 ≤ Pr (A) ≤ 1

(4) Pr (A ∪B) = Pr (A) + Pr (B)−Pr (A ∩B)

Theorem B.13 (The Law of Total Probability). Let A ⊆ Ω be an event and
Ω1, . . . ,Ωk be a decomposition of the probability space Ω such that it does not contain
the impossible event. Then

Pr (A) =
k∑
i=1

Pr (A | Ωi) Pr (Ωi) .
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Proof. We perform a simple computation to decompose the event A. The decom-
posed event is then rewritten using the definition of the conditional probability.

Pr (A) = Pr (A ∩ Ω)

=
k∑
i=1

Pr (A,Ωi)

=
k∑
i=1

Pr (A | Ωi) Pr (Ωi)

Definition B.14 (Discrete random variable). Let Ω be a probability space. Then
discrete random variable X is a function X : Ω→ N. Probability of the event X = x
equals

Pr (X = x) =
∑
ω∈Ω

X(ω)=x

Pr (ω) .

In the continuous probability we usually assume that the vector space Ω is an
uncountable set.

Definition B.15 (Continuous random variable, probability density function, cumu-
lative probability density function). Continuous random variable X is a function
X : Ω→ R.

Function F : R → [0, 1] is the cumulative probability density function of the
random variable X if the following conditions are satisfied

(1) lim
t→−∞

F (t) = 0,

(2) lim
t→∞

F (t) = 1.

(3) The function F is non-decreasing.

(4) F (t) = Pr (X ≤ t) for every t ∈ R.

Function f : R → R∗ such that f(t) = F ′(t) for every t ∈ R is the probabil-
ity density function of the random variable X. The probability density function f
satisfies that

(1)
∞∫
−∞

f(t) dt = 1,

(2)
t∫
−∞

f(x) dx = F (t).
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More formal definitions of random variables use the Lebesgue measure and Borel
sets to measure the probability Pr (X = x). However previous definitions are suffi-
cient for our needs.

If X is a continuous random variable with the cumulative density function F
then the probability of X ∈ [a, b] equals

Pr (a ≤ X ≤ b) = F (b)− F (a) =

b∫
a

f(x) dx.

The motivation for the definition of the probability density function is the fact
that it corresponds to the probability of X being equal to a singleton. We see
that for every ε > 0 value εf(b) approximates Pr (b− ε ≤ X ≤ b), if it is small
enough. However for continuous variables the event X = b is impossible unless F is
in-continuous in b and thus f(b) =∞.

After observing the previous fact we can rewrite F (t) to the form:

F (t) = Pr (X ≤ t) =

t∫
−∞

Pr (X = t) dt.

Definition B.16 (Expected value). Let X be a discrete random variable. Its ex-
pected value, E (X), is defined as

E (X) =
∑
x∈N

xPr (X = x) .

In the continuous case, assume that X is a continuous random variable, then its
expected value, E (X), is defined as

E (X) =

∞∫
−∞

xPr (X = x) dx.

Definition B.17 (Variance). Let X be a random variable. Its variance, Var (X),
is defined as

Var (X) = E
(
(X − E (X))2

)
.

We only show the basic properties of the expected value and variance without
the proof.

Lemma B.18. Assume that X and Y are random variables and a, b, c ∈ R. Then

(1) E (aX + bY + c) = aE (X) + bE (Y ) + c

(2) Var (aX + bY + c) = a2Var (X) + b2Var (Y )
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Definition B.19 (Expected value of a function of a random variable). Let X be a
continuous random variable and g : R→ R be a function. The expected value of the
random variable Y = g(X) is defined as

E (Y ) =

∞∫
−∞

yPr (Y = y) dy =

∞∫
−∞

g(x)Pr (X = x) dx.

Lemma B.20. Let X, Y be random variables and t ∈ R. For every z ∈ [0, 1] set
ωt(z) = {y ∈ R | z = Pr (X = t | Y = y)}. Let Zt be a random variable bounded in
the interval [0, 1] such that

Pr (Zt = z) =

∫
ωt(z)

Pr (Y = y) dy.

Then Pr (X = t) = E (Zt).

Proof. By the Law of Total Probability we state the following fact:

Pr (X = t) =

∞∫
−∞

Pr (X = t, Y = y) dy

=

∞∫
−∞

Pr (X = t | Y = y) Pr (Y = y) dy

=

1∫
0

zPr (Zt = z) dz

= E (Zt) .

So the expected value of the variable Z equals the probability Pr (X = t).

In Lemma 5.10 we refer to the modification of Lemma B.20 for X ≥ t. In this
modified version we assume that variable Z = Pr (X ≥ t | Y = y). A straightforward
inspection proves the consequence.

The following two theorems, the Markov’s [31] and Chebyshev’s [15] inequalities,
are well known and we often refer to them in the work. Let us note that various
improvements for the higher moments hold as well.

Theorem B.21 (Markov’s inequality). Let X be a random variable and t ∈ R+.
Then the probability of the event X ≥ t is bounded as

Pr (|X| ≥ t) ≤ E (|X|)
t

.
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Proof. For the indicator I(|X| ≥ t) we have that tI(|X| ≥ t) ≤ |X|. If |X| ≥ t,
than I(|X| ≥ t) = 1 and it follows that tI(|X| ≥ t) = t ≤ |X|. If |X| < t, then
0 = I(|X| ≥ t) ≤ |X|.

E (|X|) =

∞∫
0

|X|Pr (|X| = x) dx

≥
∞∫

0

tI(|X| ≥ t)Pr (|X| = x) dx

= t

∞∫
0

I(|X| ≥ t)Pr (|X| = x) dx

= tPr (|X| ≥ t) .

Theorem B.22 (Chebyshev’s inequality). If X is a random variable, then

Pr (|X − E (X) | ≥ ε) ≤ Var (X)

ε2
.

Proof. First observe that the event |X − E (X) | ≥ ε is equivalent to the event
(X − E (X))2 ≥ ε2. The theorem follows from the Markov’s inequality used for the
latter event and from the definition of variance.

Pr (|X − E (X) | ≥ ε) = Pr
(
(X − E (X))2 ≥ ε2

)
≤ E ((X − E (X))2)

ε2

=
Var (X)

ε2
.

From the Chebyshev’s inequality it follows that the average converges to the ex-
pected value. This fact is commonly referred to as the Weak Law of Large Numbers.

Theorem B.23 (Weak Law of Large Numbers). Let n ∈ N, ε > 0 and X1, . . . , Xn

be independent identically distributed random variables. Then

Pr

(∣∣∣∣∑n
i=1Xi

n
− E (X1)

∣∣∣∣ ≥ ε

)
≤ Var (X1)

nε2
.

Proof. Define the average of X1, . . . , Xn as the random variable X̄ =
Pn
i=1Xi
n

. From
the properties of the expected value and variance stated in Lemma B.18 it follows
that

E
(
X̄
)

= E (X1)

Var
(
X̄
)

=
Var (X1)

n
.
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The Chebyshev’s inequality used for the random variable X̄ yields the required
result.

Following lemma enables us to compute the expected value of a continuous ran-
dom variable if we know its cumulative probability density function.

Lemma B.24. Let X be a continuous random variable taking only non-negative
values. Let F : R+

0 → [0, 1] be its cumulative probability density function. Then

E (X) =

∞∫
0

1− F (x) dx

Proof. From the definition of the expected value and the cumulative probability
density function we have that

E (X) =

∞∫
0

tPr (X = t) dt

=

∞∫
0

t∫
0

Pr (X = t) dx dt

=

∞∫
0

∞∫
x

Pr (X = t) dt dx

=

∞∫
0

Pr (X ≥ x) dx

=

∞∫
0

1− F (x) dx.

109


	Introduction
	Hashing
	Formalisms and Notation
	Assumptions of Classic Hashing
	Separate Chaining
	Coalesced Hashing
	Open Addressing
	Linear Probing
	Double Hashing

	Universal Hashing
	Perfect Hashing
	Modern Approaches
	Advantages and Disadvantages

	Universal Classes of Functions
	Universal classes of functions
	Examples of universal classes of functions
	Properties of systems of universal functions

	Expected Length of the Longest Chain
	Length of a Chain
	Estimate for Separate Chaining
	Estimate for Universal Hashing

	The System of Linear Transformations
	Models of the Random Uniform Choice
	Probabilistic Properties
	Parametrisation of The Original Proofs
	Improving the Results
	Probability Distribution of the Variable lpsl
	The Expected Value of the Variable lpsl
	The Achieved Bound
	Minimising the Integrals

	The Model of Universal Hashing
	Time Complexity of Universal Hashing
	Consequences of Trimming Long Chains
	Chain Length Limit
	The Proposed Model
	Time Complexity of Computing a Hash Value
	Algorithms
	Potential Method
	Expected Amortised Complexity

	Conclusion
	Future Work

	Facts from Linear Algebra
	Facts Regarding Probability

