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Vedoućı doktorské disertačńı práce: prof. RNDr. Roman Barták, Ph.D.
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1. Introduction

One of the most studied problems in computer science, both theoretical and
applied, is the Boolean satisfiability problem (SAT). SAT solvers have seen a lot
of progress in the last two decades which allowed SAT solving to become a core
component in many different applications. One of the first and most successful
applications of SAT was automated planning [21].

Planning [17] is the problem of finding a sequence of actions – a plan, that
transforms the world from some initial state to a goal state. In the thesis we
consider only the simplest (most limited) definition of planning – often referred
to as classical or STRIPS planning. The world is fully-observable, deterministic
and static (only the agent, that we make the plan for, can change the world). The
number of possible states of the world as well as the number of possible actions
is finite, though possibly very large. We will also assume, that the actions are
instantaneous (take a constant time) and therefore we only need to deal with
their sequencing.

Other kinds of planning such as temporal and probabilistic planning [17], which
remove these limitations, are also studied in the literature. Their advantage is
that they model the real world more faithfully and thus are more applicable. On
the other hand, solving these kinds of problems can be much harder and there
are not many efficient planners capable of solving them.

The complexity of planning depends on the planning problem instance and
the quality of the required plan. There are instances where a plan can be found
in polynomial time while finding an optimal (best quality) plan is NP-hard [9].
However, in many cases (and in general) already finding a plan of arbitrary quality
(but with polynomial length) is NP-complete [10]. Determining whether there is
a solution (a plan) for a given planning task is in general PSPACE-complete [10].

Despite the complexity results many ‘real world’ planning tasks can be suc-
cessfully solved by modern state-of-the-art planning systems. Satisficing planners
such as FF [19], Fast Downward [18] or LPG [16] are very efficient on a wide range
of problems. They are based on heuristic guided search of the state space of a
given planning problem. Another approach, formerly very successfully used for
optimal planning [22] and currently also for satisficing planning [27], is translat-
ing the planning task into a series of propositional satisfiability (SAT) formulas
and then using a SAT solver.

In the thesis we deal with the problem of encoding a planning task to SAT
in order to efficiently find its solution (a plan). We will also show how SAT and
MaxSAT solvers can be used to improve the quality of an already obtained plan
by removing useless (redundant) actions.

1.1 Contributions

The main contribution of the thesis is the definition of new encoding schemes
for planning as SAT and their theoretical and experimental evaluation. These
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encodings are used for two purposes. One is finding plans and the other is im-
proving plans found by other planning systems by removing redundant actions
from them.

For the first purpose we introduce two new encoding schemes. One is called
the Reinforced encoding and it slightly improves upon the existing so called ∀-
step semantics based encodings. The other is a new innovative encoding called
the Relaxed Relaxed ∃-step encoding which works well on planning problems that
were previously very difficult to solve using SAT based techniques. We also define
a simple rule, that given a planning problem instance can predict which encoding
scheme is more suitable for solving the instance. Parts of these results are already
published in a conference paper [2].

For the second purpose we introduce a propositional encoding for the problem
of plan redundancy. We use this encoding to generate SAT and MaxSAT formulas
which allows us to efficiently solve NP-hard plan optimization problems, which
were previously only addressed by using heuristic algorithms. We also introduce
our own heuristic algorithm which improves upon the existing ones. The results
are already published [5] or accepted for publication [6].
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2. Preliminaries

In this Chapter we give the basic definitions and properties related to satisfiability,
maximum satisfiability and planning.

2.1 SAT and MaxSAT

A Boolean variable is a variable with two possible values True and False. A literal
of a Boolean variable x is either x or ¬x, i.e., positive or negative literal. A clause
is a disjunction (OR) of literals. A conjunctive normal form (CNF) formula is
a conjunction (AND) of clauses. A truth assignment φ of a formula F assigns a
truth value to its variables. The assignment φ satisfies

• a positive literal if it assigns the value True to its variable,

• a negative literal if it assigns the value False to its variable,

• a clause if it satisfies at least one of its literals,

• a CNF formula if it satisfies each one of its clauses.

If φ satisfies a CNF formula F , then φ is called a satisfying assignment of F . A
formula F is said to be satisfiable if there is a truth assignment φ that satisfies F ,
i.e. φ is a satisfying assignment of F . Otherwise, the formula F is unsatisfiable.
The problem of satisfiability (SAT) is to determine whether a given formula F is
satisfiable or unsatisfiable.

A SAT solver is a procedure that solves the SAT problem. For satisfiable
formulas we also expect a SAT solver to return a satisfying assignment. An
example of a satisfiable CNF formula with its satisfying assignment follows.

Example 1. F = (x1 ∨ x2 ∨ ¬x4) ∧ (x3 ∨ ¬x1) ∧ (¬x1 ∨ ¬x2) is CNF for-
mula with 3 clauses {(x1 ∨ x2 ∨ ¬x4), (x3 ∨ ¬x1), (¬x1 ∨ ¬x2)} and 6 liter-
als {x1,¬x1, x2,¬x2, x3,¬x4} on 4 variables {x1, x2, x3, x4}. F is satisfiable with
φ = {x1 → False, x2 → True, x3 → True, x4 → True} being a satisfying truth
assignment of F .

The problem of Maximum Satisfiability (MaxSAT) is the problem of finding
a truth assignment of a given CNF formula that satisfies the maximum number
of its clauses.

A partial maximum satisfiability (PMaxSAT) formula is a CNF formula con-
sisting of two kinds of clauses called hard and soft clauses. The partial maxi-
mum satisfiability problem (PMaxSAT) is to find a truth assignment for a given
PMaxSAT formula that satisfies all the hard clauses and as many soft clauses as
possible.

There are two special cases, one is that all the clauses are hard, the other is
that all the clauses are soft. In the first case PMaxSAT is equivalent to SAT, in
the second to MaxSAT.
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In the situation, that not all the soft clauses are equally important, we can
assign weights to them and we obtain the weighted partial MaxSAT formula. The
Weighted Partial MaxSAT (WPMaxSAT) problem is to find a truth assignment
for a given weighted partial MaxSAT formula that satisfies all its hard clauses
and maximizes the sum of the weights of satisfied soft clauses.

2.2 Planning

In the introduction we briefly described what planning is, in this section we give
the formal definitions. We will use the SAS+ formalism [1] based on multivalued
state variables instead of the classical STRIPS formalism [14] based on proposi-
tional logic.

Definition 1 (Planning Task). A planning task Π in the SAS+ formalism is
defined as a tuple Π = 〈X,O, sI , sG〉 where

• X = {x1, . . . , xn} is a set of multivalued state variables with finite domains
dom(xi) ⊂ N.

• O is a set of actions (or operators). An action a ∈ O is a tuple (pre(a), eff(a))
where pre(a) is the set of preconditions of a and eff(a) is the set of effects of
a. Both preconditions and effects are of the form xi = v where v ∈ dom(xi).
The actions may have a non-negative integer cost assigned to them. We will
denote by C(a) the cost of an action a.

• A state is a set of assignments to the state variables. Each state variable
has exactly one value assigned from its respective domain. We denote by S
the set of all states. sI ∈ S is the initial state. sG is a partial assignment of
the state variables (not all variables have assigned values) and a state s ∈ S
is a goal state if sG ⊆ s.

An action can be applied to a state if its preconditions are satisfied. For
example if xi = v is in the preconditions of an action, then the action can
be applied only to states where the state variable xi is equal to v. Similarly,
the effects of an applied action change the world state. If xi = v is an effect
of an action, then after the application of this action the value of xi will be-
come v. A state obtained by applying an action a to a state s is denoted by
apply(a, s). If A = [a1, . . . , ak] is a sequence of actions, then apply(A, s) =
apply(ak, apply(ak−1 . . . apply(a2, apply(a1, s)) . . . )).

A sequential plan P of length k for a planning task Π = 〈X,O, sI , sG〉 is a
sequence of actions P = [a1, . . . , ak]; ai ∈ O such that sG ⊆ apply(P, sI).

We will denote by |P | = k the length of a plan P and by P [i] we will mean
the i-th action of P , i.e., P [i] = ai. If P contains actions with costs, then we
define the cost of a plan, C(P ), to be the sum of the costs of the actions in it.

A plan P for a planning task Π is called an optimal plan if there is no other
plan P ′ for Π such that |P ′| < |P |. Similarly, a plan P is called cost optimal if
there is no other plan P ′ such that C(P ′) < C(P ).
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Example 2. In this example we will model a simple package delivery scenario.
We have a truck that needs to deliver two packages to the location C from the
locations A and B. In the beginning the truck is located in A. The locations A, B,
and C are connected by roads.

We will model the planning task using the following variables:

• Truck location T, dom(T ) = {A,B,C}

• Package locations P1 and P2, dom(P1) = dom(P2) = {A,B,C, L} (Pi = L
represents that the package i is inside the truck).

Now, having defined the variables X = {T, P1, P2} and their respective domains,
we can define the initial state sI and the goal conditions sG.

sI = {T = A,P1 = A,P2 = B} sG = {P1 = C,P2 = C}

Finally, we need to define the set of actions with their preconditions and ef-
fects. The action templates are described in the following table.

Action Preconditions Effects Description
move(l1, l2) T = l1 T = l2 move the truck from location l1 to l2
loadP1(l) T = l, P1 = l P1 = L load P1 on the truck at location l
loadP2(l) T = l, P2 = l P2 = L load P2 on the truck at location l
unloadP1(l) T = l, P1 = L P1 = l unload P1 from the truck at location l
unloadP2(l) T = l, P2 = L P2 = l unload P2 from the truck at location l

To get the actual actions we need to substitute l, l1, l2 with A,B and C.
One of the possible solutions is the following plan P = [loadP1(A), move(A,C),

unloadP1(C), move(C,B), loadP2(B), move(B,C), unloadP2(C), move(C,A)].
The plan P is valid, but it is not an optimal plan. It contains 8 actions while
the following (optimal) plan has only 6 actions: P ∗ = [loadP1(A), move(A,B),
loadP2(B), move(B,C), unloadP1(C), unloadP2(C)].

Suboptimal plans often contain actions that can be removed without affect-
ing their validity. Such actions are called redundant. A plan reduction P ′ is a
subsequence of a plan P with some redundant actions removed (first defined in
[15, 24]). A plan which is not redundant is called a perfectly justified plan.

Example 3. Using the package delivery planning problem of Example 2 we can
observe, that the last action of P (move(C,A)) is redundant. By removing this
action from the plan we get a perfectly justified plan P ′ which is a plan reduction of
P . Nevertheless, P ′ is not optimal, since it contains 7 actions, while the optimal
plan P ∗ from Example 2 contains only 6 actions. Note, that P ∗ is not a plan
reduction of P , which means we could not get to P ∗ from P by just removing
actions.

The decision version of this problem (given a plan P and a number L, is there
a plan reduction of length/cost at most L?) is NP-complete [15, 24]. From this it
also follows, that just checking if a given plan is perfectly justified is NP-complete,
which is equivalent to the question whether at least one action can be removed.
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3. Finding Plans using SAT

The basic idea of solving planning as SAT is the following [22]. We construct
(by encoding the planning task) a series of SAT formulas F1, F2, . . . such that
Fi is satisfiable if there is a plan of length ≤ i. Then we solve them one by
one starting from F1 until we reach the first satisfiable formula Fk. From the
satisfying assignment of Fk we can extract a plan of length k.

The method was first introduced by Kautz and Selman [22] and is still very
popular and competitive. This is partly due to the power of SAT solvers, which
are getting more efficient year by year. Since then many new improvements
have been made to the method, such as new compact and efficient encodings
[20, 27, 28], better ways of scheduling the SAT solvers [27] or modifying the SAT
solver’s heuristics to be more suitable for solving planning problems [25]. Clever
ways of solver scheduling [27] can also significantly improve the performance of
the planning algorithm at the cost of possibly longer plans. Nevertheless, we will
use the basic one-by-one scheduling since we are interested only in comparing the
properties of encodings, i.e., the construction of the formulas Fi.

In the thesis we examine the following four encodings.

• Direct Encoding. The simplest and most straightforward way of encoding a
planning task into SAT is following the definition of the planning problem
and translating it into propositional logic. This encoding was the first
one used in SAT based planners [21, 9]. Originally it was described in
the context of the propositional planning formalism (STRIPS [14]). In the
thesis we adapt it for the multivalued SAS+ formalism [1].

• SASE Encoding. The SASE Encoding was historically the first SAT en-
coding of a planning task based on the SAS+ formalism [20]. It is based
on reasoning about the transitions of state variables rather than their val-
ues. The encoding we present in the thesis is slightly modified compared
to the original SASE paper [20]. In particular, we use a different encoding
of the initial state and goal conditions as well as the interference of transi-
tions is defined in a more strict manner (see our recent paper [4] for more
information about transition interference).

• Reinforced Encoding. This new encoding introduced in the thesis is a com-
bination of the Direct and SASE encodings. The encoding shares all the
variables and many of the clauses used in the Direct and SASE encodings.
The name of the encoding comes from the idea of reinforcing one encoding
with the strengths of the other. In other words, we are ‘reinforcing’ the
Direct Encoding by using transitions, or alternatively, we are ‘reinforcing’
the SASE Encoding by using assignments.

• R2∃-Step Encoding. This encoding is very different from the previous three
encodings since it uses a new parallel planning semantics, which means that
fewer SAT calls are required to solve planning tasks. It was introduced in
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our recent paper [2]. This encoding requires a special preprocessing step
– action ranking. Intuitively, the ranking should be such, that the actions
are ranked according to their order in a valid plan for the given planning
task. The problem is, of course, that we do not know the plan in advance.
Therefore, we try to guess the order in which the given actions could appear
in a plan using heuristics. In the thesis we show that the quality of the
ranking dramatically affects the performance of the planning procedure and
propose several ranking heuristics.

For each of these encodings we give exact definitions of the variables and claus-
es contained in the encoded formulas. We prove the correctness of the encodings
and compute upper bounds on the number of Boolean variables and clauses in
the constructed formulas.

While doing experiments with our new encodings we noticed, that on some
problems the R2∃-Step encoding works very well and significantly outperforms
the other encodings. But there are also problems, where the situation is reversed,
i.e., the R2∃-Step encoding performs very poorly.

Our goal is, of course, to have an encoding that works well for all the problems,
or at least for as many as possible. This can be achieved by combining two or
more different encodings into one to form a selective encoding.

A selective encoding consists of a set of encodings E and a selection rule. The
task of the selection rule is to select an encoding from E that should be used to
solve a given planning task based on the planning task itself and other available
information. A good selection rule should be simple, so it be can evaluated quickly
and clever, so it can select the proper encoding for a planning task.

For our experiments we constructed a simple selective encoding which consists
of the Reinforced and the R2∃-Step encoding.

3.1 Experiments

To compare the encodings to each other and to other state-of-the-art encodings
we did experiments using all the benchmark problems from the optimization track
of the 2011 International Planning Competition (IPC) [12].

The experiments were run on a computer with Intel i7 920 CPU @ 2.67 GHz
processor and 6 GB of memory. Our five encoding procedures (four encodings and
the selective encoding) were implemented in Java. To obtain the state-of-the-art
∀-Step formulas and ∃-Step formulas we used Rintanen’s planner Madagascar[26]
(version 0.99999 21/11/2013 11:54:15 amd64 1-core). For each encoding we used
the same SAT solver – Lingeling[8] (version ats).

In Figure 3.1 we provide a so called cactus plot, that visually compares the
five strongest encodings. The plot represents how many problems can be solved
withing a given time limit. It is interesting, that the lines for the R2∃-Step and
the ‘Rintanen ∀’ encoding cross each other several times, which means, that for
certain time limits R2∃-Step would solve more instances than the ‘Rintanen ∀’
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Figure 3.1: This plot represents the number of problems that a SAT based planner
using the given encoding can solve under a given time limit. It is obtained by
sorting the SAT solving times for the solved problems for each encoding.

encoding. The cactus plot shows, that the Selective method significantly out-
performs all the other methods, furthermore, this holds for any reasonable time
limit.

More detailed experimental results can be found in the thesis. Overall, the
experiments revealed, that our new R2∃-Step encoding is very efficient for some
domains, that other encodings cannot handle. On the other hand, its performance
highly depends on the ranking of actions and it does not perform well on domains
with a high number of transitions per variable. Fortunately, we could design a
simple selective approach which can decide when the R2∃-Step encoding should
be used and by trying several action rankings the problem of proper ranking
selection was partially solved. This selective encoding approach could significant-
ly outperform all the other methods including the state-of-the-art encodings of
Rintanen.
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4. Improving Plans

With intelligent systems becoming ubiquitous there is a need for planning systems
to operate in almost real-time. Sometimes it is necessary to provide a solution in
a very little time to avoid imminent danger (e.g damaging a robot) and prevent
significant financial losses. Satisficing planning engines such as FF [19], Fast
Downward [18] or LPG [16] are often able to solve a given problem quickly,
however, quality of solutions might be low. Optimal planning engines, which
guarantee the best quality solutions, often struggle even on simple problems.
Therefore, a reasonable way how to improve the quality of the solutions produced
by satisficing planning engines is to use post-planning optimization techniques.

In the thesis we review various techniques that have been proposed for post-
planning plan optimization [31, 24, 13, 3, 30] and introduce some new ones. We
restrict ourselves to a specific sub-category of post-planning plan optimization –
determining and removing redundant actions from plans. An influential work [15]
defines different categories of redundant actions and provides some complexity
results, in particular, that removing all redundant actions is an NP-hard opti-
mization problem.

There are several heuristic approaches [11, 15, 24], which can identify most
of the redundant actions in plans in polynomial time. One of the most efficient
of these approaches was introduced in [15] under the name Linear Greedy Jus-
tification. It was reinvented in [24] and called Action Elimination. In the thesis
we use the latter name and extend the algorithm to take into account the action
costs. Our new algorithm is called Greedy Action Elimination and it works by
finding all the polynomially detectable subsequences of redundant actions and
then removing the most costly subsequence. The worst-case time complexity of
Greedy Action Elimination is O(n3p), where n = |P | (the length of the original
plan) and p is the maximum number of preconditions or effects any action in P
has.

4.1 SAT and MaxSAT Reduction

Our goal is to encode a given planning task Π and a valid plan P for Π into a
CNF formula FΠ,P , such that each satisfying assignment of FΠ,P represents a plan
reduction P ′ of P , i.e., a sub-sequence of P which is also a valid plan for Π.

The main idea of the translation is to encode the fact, that if a certain condi-
tion ci is required to be true at some time i in the plan, then one of the following
must hold:

• The condition ci is true since the initial state and there is no opposing
action of ci (an action that destroys ci) with a rank smaller than i.

• There is a supporting action P [j] of ci (an action that sets up ci) with the
rank j < i and there is no opposing action of ci with its rank between j
and i.
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Using the encoding of the condition requirement it is easy to encode the de-
pendencies of the actions (their preconditions) from the input plan and the goal
conditions of the problem.

In the thesis we describe in detail the Boolean variables and clauses of FΠ,P ,
we compute and upper bound on its size and give a proof of the correctness of
the encoding.

The formula FΠ,P is then used to construct the following three translation
based methods for removing redundant actions from plans.

• SAT-based Reduction. By adding a clause to FΠ,P that represents the condi-
tion, that at least one action must be removed from P , we obtain a formula
that is satisfiable if and only if P is a redundant plan. By iteratively using
this encoding and a SAT solver we can eliminate redundant actions from P
until we achieve a perfectly justified (irredundant) plan. No more actions
can be removed from the resulting plan, nevertheless, it might be the case,
that if we had removed a different set of redundant actions from the initial
plan P , we could have arrived at a shorter perfectly justified plan. In other
words, the elimination of redundancy is not confluent, i.e., the result de-
pends on the order in which the redundant actions are removed. This issue
is addressed by the following two methods.

• Partial MaxSAT-based Reduction. A partial MaxSAT formula consists of
hard and soft clauses. Let FΠ,P be the hard clauses of a formula FMAX and
unit clauses representing the removal of each action be the soft clauses of
FMAX . Then a partial MaxSAT solver will find an assignment φ for FMAX

that satisfies all the hard clauses (which enforces the validity of the plan
reduction) and satisfies as many soft clauses as possible (which removes as
many actions as possible). In this way we can remove the maximum number
of redundant actions from a given plan in a single call of a partial MaxSAT
solver. The obtained plan is referred to as the Minimal Length Reduction
(MLR), therefore we will call this method MLR.

• Weighted Partial MaxSAT-based Reduction. In the case, that the actions
in a plan have different costs, it might be desirable to remove redundant
actions of the highest total cost rather than removing the highest number
of them. This can be achieved by adding weights to the unit soft clauses
of FMAX that are equal to the cost of the corresponding actions and using
a weighted partial MaxSAT solver. The obtained plan is called Minimal
Reduction (MR), therefore we will refer to this method as MR.

4.2 Experiments

We implemented all the above mentioned plan reduction algorithms and com-
pared them on plans obtained by three state-of-the-art satisficing planners (Mada-
gascar, Fast Downward, and Metric FF) for the problems of the 2011 International
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Table 4.1: The cost of removed actions. The table contains the number of found
plans (#P) out of 20 in each domain, their total cost and the total cost of elim-
inated actions by the six redundancy elimination methods. IAE is a heuristic
method for removing pairs of inverse actions, MLR is the partial MaxSAT-based
method, and MR is the weighted partial MaxSAT-based method.

Domain #P Cost IAE AE GAE SAT MLR MR

M
et

ri
c

F
F

elevators 20 25618 2842 2842 2842 2842 2842 2842

floortile 2 195 29 30 30 30 30 30

nomystery 5 107 0 0 0 0 0 0

parking 18 1546 118 124 124 124 124 124

pegsol 20 300 0 0 0 0 0 0

scanalyzer 18 1137 0 62 62 62 62 62

sokoban 13 608 0 2 2 2 2 2

transport 6 29674 2650 3013 3035 3013 3035 3035

F
as

t
D

ow
n
w

ar
d

barman 20 7763 436 753 780 893 926 926

elevators 20 28127 1068 1218 1218 1218 1218 1218

floortile 5 572 66 66 66 66 66 66

nomystery 13 451 0 0 0 0 0 0

parking 20 1494 4 4 4 4 4 4

pegsol 20 307 0 0 0 0 0 0

scanalyzer 20 1785 0 78 78 78 78 78

sokoban 17 1239 0 58 58 102 102 102

transport 17 74960 4194 5259 5260 5259 5260 5260

M
ad

ag
as

ca
r

barman 8 3360 296 591 598 591 606 606

elevators 20 117641 7014 24096 24728 26702 28865 28933

floortile 20 4438 96 96 96 96 96 96

nomystery 15 480 0 0 0 0 0 0

parking 18 1663 152 152 152 152 152 152

pegsol 19 280 0 0 0 0 0 0

scanalyzer 18 1875 0 232 236 232 236 236

sokoban 1 33 0 0 0 0 0 0

transport 4 20496 4222 6928 7507 7444 7736 7736

Planning Competition [12]. All the experiments were run on a computer with In-
tel Core i7 960 CPU @ 3.20 GHz processor and 24 GB of memory. The planners
had a time limit of 10 minutes to find the initial plans. The runtime for the
optimization was unlimited, however it never took more than 5 minutes for any
problem. We used Sat4j [7] for SAT solving, QMaxSAT [23] for partial MaxSAT
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solving and Toysat [29] for weighted partial MaxSAT solving.
The total cost of the removed actions is displayed in Table 4.1. We can

observe, that the IAE method is the weakest followed by AE and GAE. The
AE algorithm, although it ignores the action costs, performs rather well. Except
for 8 planner/domain combinations it achieves minimal reduction, i.e., the best
possible result. The GAE algorithm improves upon AE in 7 cases and achieves
minimal reduction in all but 5 planner/domain pairs.

The partial MaxSAT-based method (MLR) is guaranteed to remove the max-
imum number of redundant actions (not considering their cost) and this is also
enough to achieve minimal plan reduction in each case except for the Madagascar
plans for the elevators domain. As expected, the weighted partial MaxSAT-based
method (MR) provides the best results, however these results are often not strictly
better than the results of the polynomial methods.

In the thesis we provide further experimental results regarding the total num-
ber of removed redundant actions, the runtime of the methods as well as the
number of instances, where the heuristic methods achieved perfect justification
(irredundant plans).

Clearly, the MR method is guaranteed to provide minimal reduction of plans
and therefore cannot be outperformed (in terms of quality) by the other methods.
Similarly, the MLR method cannot be outperformed in terms of plan lengths.
Despite the exponential worst-case time complexity of these methods, runtimes
are usually very low and in many cases even lower than the other polynomial
methods we compared with. On the other hand, when the problem becomes
harder the runtimes can significantly increase. We have observed that the problem
of determining redundant actions (including minimal reduction) is in most of the
cases very easy. Therefore, the measured runtimes often depend more on the
efficiency of implementation of particular methods rather than the worst-case
complexity properties.

Our results also showed that in the most cases using the polynomial method
(AE or GAE) provides minimal reduction, so the MR method usually does not
lead to strictly better results. Guaranteeing in which cases (Greedy) AE provides
minimal reduction is an interesting open question.
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5. Conclusion

In the thesis we have shown how can satisfiability (SAT) and maximum satisfia-
bility (MaxSAT) solvers be efficiently used to both find plans and improve them.
Finding plans via SAT solving is not a new idea. It has been around for several
decades and it is one of the most successful approaches to automated planning.

Our main contribution to the topic of planning as SAT is the introduction of
two new encoding schemes, the Reinforced and the R2∃-Step encoding. These two
encodings work well for different sets of planning problems (domains) but we were
able to find a simple rule which allows automatic selection of the best encoding
for a given planning task. Using this rule we designed a combined encoding that
can significantly outperform the existing state-of-the-art encodings.

As for the second problem – the improvement of plans, we have focused on the
special case of removing redundant (unnecessary) actions from plans, which is an
NP-hard optimization problem. Prior to our work, there existed only heuristic
algorithms that are not guaranteed to remove all the redundant actions. The
most successful of these algorithms is called Action Elimination (AE). Based on
the ideas of AE we have introduced our own heuristic algorithm – Greedy Ac-
tion Elimination (GAE), which, contrary to AE, takes actions cost into account.
GAE outperformed AE and the other existing heuristic approaches on benchmark
problems.

Furthermore, we have introduced a SAT encoding for the problem of plan
redundancy. Using this encoding we have proposed three new methods which can
completely solve three optimization problems related to redundancy elimination.
The first method uses a SAT solver to produce perfectly justified plans, i.e., plans
without redundant actions. The second method uses a partial MaxSAT solver to
remove the highest possible number of redundant actions from plans. Finally, the
third method guarantees to remove the set of redundant actions with the highest
total cost and uses a weighted partial MaxSAT solver. Thanks to the existence
of powerful SAT and MaxSAT solvers, these methods work very well in practice
with the current state-of-the-art planners and benchmark problems.
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• Tomáš Balyo: Relaxing the Relaxed Exist-Step Parallel Planning Seman-
tics, The 24th International Conference on Tools with Artificial Intelligence
(ICTAI) 2013
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SAT Exploiting Connected Components of the Problem), Znalosti 2009

19


	Introduction
	Contributions

	Preliminaries
	SAT and MaxSAT
	Planning

	Finding Plans using SAT
	Experiments

	Improving Plans
	SAT and MaxSAT Reduction
	Experiments

	Conclusion
	Bibliography
	List of Publications

