Modelling and Solving
Problems Using SAT
Techniques

Tomas Balyo

Modelling and Solving
Problems Using SAT

Techniques
I\P/Iaangjl __q

Tomas Balyo

What is Planning

Atlanta Boston Cleveland Atlanta Boston Cleveland
State Variables and their domains: Actions:
e Truck location T, dom(T)={A, B, C} emove (x,y): {T=x} ~>{T=y}
» Package locations P and Q e loadP (x): {T=x, P=x} ~> {P=Tr}

dom(P) = dom(Q) = {A, B, C, Tr « 10ad0 (x): {T=x. Q=x} ~> {Q=T}

e dropP (x): {T=X, P=Tr} ~>{P=x}

Initial State: T=A, P=A, Q=B e dropQ(x): {T=x, Q=Tr} ~> {Q=x}

Goal State: P=C, Q=C
Where x, y are A, B, and C

Plan. loadP(A), move(A,B), loadQ(B), move(B,C),
dropP(C), dropQ(C)

Planning as SATisfiability

Construct a formula F_such that it Is satisfiable (if and) only if there
Is a plan of at most k steps

Solve F, F,, ... using a SAT solver until you reach a satisfiable

formula F_
Extract a plan from the satisfying assignment of F_

n is called the makespan of the plan

What actions can go inside a step together?

* |f more action could be in a step then we would need fewer
steps to find a plan

What actions can go inside a step together?
1. foreach step semantics

The preconditions of all actions in a step must already hold in the
beginning of the step

The effects of all actions must hold at the end of this step

The actions in a step do not interfere — they cannot destroy each
others preconditions by their effects => can be ordered arbitrarily

The actions in a step can be turned into a valid subplan sequence

Plan: {loadP (A7)} ¢ {move (A, B)}¢{loadQ(B)} ¢
{move (B, C)}¢ {dropP(C), dropQ(C)}
— 5 steps

What actions can go inside a step together?
2. exist step semantics

The preconditions of all actions in a step must already hold in the
beginning of the step

The effects of all actions must hold at the end of this step

a)) a
\J \J \J V - \J

The actions in a step can be turned into a valid subplan sequence

Plan: {loadP(A), move(A, B)}¢{loadQ(B),
move (B, C)}¢{dropP(C), dropQ(C)}
— 3 steps

What actions can go inside a step together?
3. relaxed exist step semantics

* The actions in a step can be turned into a valid subplan sequence

e Plan: {loadP(A), move(A, B), loadQ(B)}+¢
{move (B, C), dropP(C), dropQ(C)}
— 2 steps

What actions can go inside a step together?

4. relaxed relaxed exist step semantics

* The actions in a step can be turned into a valid subplan sequence

e Plan: {loadP(A), move(A, B), loadQ(B),
move (B, C), dropP(C), dropQ(C)}
—1 step

Implemented SAT Encodings

We implemented 3 foreach step semantics encodings:

 Direct (classic)
» SASE (transition based)
 Reinforced (Direct + SASE) *

A Relaxed Relaxed Exist Step semantics encoding **

A Selective encoding which automatically selects * or ** for a given
planning problem instance

The selective encoding can outperform the state-of-the-art exist
step encoding (of Rintanen 2006).

Table 3.3: The number of problems in each domain that the encodings solved
within the time limit (30 minutes for SAT solving).

Domain Dir | SASE | Reinf | R*3 Sel RV R3
barman 4 4 4 8 9 8 4
elevators 20 20 20 20 20 20 20
floortile 16 11 18 18 18 16 20
nomystery 20 10 20 6 20 20 20
openstacks 0 0 0 15 20 0 0
parcprinter 20 20 20 20 20 20 20
parking 0 0 0 0 0 0 0
pegsol 10 6 10 19 19 11 12
scanalyzer 14 12 15 9 15 17 18
sokoban 2 2 2 2 2 6 6
tidybot 2 2 2 2 2 13 15
transport 16 17 18 13 19 18 18
visitall 12 9 10 20 20 11 11
woodworking 20 20 20 20 20 20 20
Total 156 133 159 172 | 204 180 184

Basic ideas of the relaxed relaxed exist step SAT
encoding

* The SAT encoding only approximates the semantics, I.e., the
satisfiability of the constructed formula F, implies the existence of a

k-step plan (not vice versa)
 The actions are ranked — the encoding allows only lower ranking

actions before higher ranking ones in a step (the reason why the
encoding only approximates the semantics)

* The ranking can be an arbitrary injective function, some rankings
are better than others for some problems

 Aperfect ranking could be created if we knew the plan in
advance

Part Il - Removing Redundant Actions

(From plans obtained by any planner)

Problem Description

Initial State
« A package in Atlanta and Boston

e A truck in Atlanta

Atlanta Boston Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B),
Move(B,C), Unload(P1,C), Unload(P2,C)

Shortest possible plan
with 6 actions

Goal State

e Both packages in Cleveland
Atlanta Boston Cleveland

Problem Description

Initial State
« A package in Atlanta and Boston

e A truck in Atlanta

Atlanta Boston Cleveland

Optimal plan:.Load(P1,A), Move(A,B), Load(P2,B),
Move(B,C), Unload(P1,C), Unload(P2,C),
Move(C,A)

Goal State

e Both packages in Cleveland
Atlanta Boston Cleveland

Problem Description

Initial State
« A package in Atlanta and Boston

e A truck in Atlanta

Atlanta Boston Cleveland

Redundant
Optimal plan:.Load(P1,A), Move(A,B), Load(P2,B),
Move(B,C), Unload(P1,C), Unload(P2,C),

Move(C,A)

Wy IS this
“move” in the plan?
Goal State

e Both packages in Cleveland

Atlanta Boston Cleveland

Problem Description

Initial State
« A package in Atlanta and Boston
A truck in Atlanta

Atlanta Boston Cleveland

Redundant plan:Move(A,C), Move(C,A), Load(P1,A),
Move(A,B), Load(P2,B), Move(B,C),
Unload(P1,C), Unload(P2,C)

Goal State
e Both packages in Cleveland

Atlanta Boston Cleveland

Problem Description

Initial State
« A package in Atlanta and Boston
A truck in Atlanta

Atlanta Boston Cleveland

Redundant plan:Move(A,C), Move(C,B), Load(P2,B),
Move(B,A), Move(A,C), Unload(P2,C),
Move(C,B), Move(B,A), Load(P1,A),
Move(A,B), Move(B,C), Unload(P1,C)

12 actions, none

Goal State can be removed
« Both packages in Cleveland

Atlanta Boston Cleveland

Problem Description

* Our goal is to remove all redundant actions
from plans in order to improve them

» After removing all redundant actions, plans can
be often further improved by replacing or
reordeing (and further removing) actions

« But we will not deal with such optimization
- There are other algorithms for that, future work

* Plans obtained by satisficing planners often
contain many redundant actions

Definitions — SAT, MaxSAT

A CNF formula is satisfiable if there is a truth
assignment that satisfies it

The Satisfiability (SAT) problem is to determine
whether a given formula is satisfiable (and find a truth
assignment if yes)

A Partial MaxSAT (PMaxSAT) formula consists of
hard and soft clauses. The PmaxSAT problem is to
find a truth assignment that satisfies all its hard
clauses and as many of its soft clauses as possible

A Weighted Partial MaxSAT (WPMaxSAT) is like
PMaxSAT, but the soft clauses have weights and the
goal Is to maximize the weight of the satisfied soft
clauses

Redundant Plans

* Let P be a plan for a planning task T and let P’
be a proper subsequence of P. If P' Is a plan for
T, then P' Is called a plan reduction of P.

* Aplanis redundant if it has a plan reduction

* The actions not present in a plan reduction are
redundant actions

* Determining whether a plan is redundant is an
NP complete problem (Fink, Yang 1992)

Removing Redundancy

* Prior to this work there were only incomplete
heuristic algorithms

 Removing pairs/groups of inverse actions (Chrpa,
McCluskey, Osborne 2012)

* Greedy justification (Fink, Yang 1992)
» Action elimination (Nakhost, Muller 2010)

* We introduce our own heuristic algorithm

 We will then show how remove the set of
redundant actions with a maximum possible
total cost (NP-hard)

Removing Redundancy

s
~
0 °
““‘““““'"“uuulul| ‘
\\\\\‘ T \ @ H
\\‘ Y
&

fly(A,E), fly(E,A), fly(A,B), fly(B,C), fly(C,D), fly(D,E)
/

\
. v] —
Remove These to get

Remove These to get i ol A
a non-optimal but also an optimal an
non-redundant plan

non-redundant plan
* The order of removing redundant actions matters

8““\HHIIHH”““

o

|Greedy] Action Elimination

« Polynomial heuristic algorithm for removing redundant
actions

FOR i := 1 to |P| DO
P' := remove(P, P[1])
remove-actions-with-unsat-preconditions(P')
IF (P' is a valid plan) THEN P:=P'

DONE

FOR i := 1 to |P| DO
P' := remove(P, P[1])
remove-actions-with-unsat-preconditions(P')
IF (P' 1s a valid plan) THEN insert(S,P')
DONE
P:= best-o0f(S)
UNTIL S:={}

Encoding Plan Reduction

* For a given planning task and its plan P we

construct a CNF formula F such that

e Each satisfying assignment of F represents a plan
reduction of P or P itself

* F contains a Boolean variable a for each action Iin
P which indicates the presence of the j-th action In
the plan reduction

* By adding the clause (—a,V—-a,V..V-a,)to F
we obtain a formula that is satisfiable if and
only if P Is a redundant plan

Encoding — basic ideas

* \WWe need to ensure that a given condition holds
at a given time
* Goal conditions Iin the end
« Action preconditions when the action is applied

 Two ways to ensure a condition C attime T

« Either C is an initial condition and there are no
opposing actions in the plan reduction before T

* Or there Is a supporting action in the reduction at
time T'<T for C and there are no opposing actions
between T'and T

Removing The Maximum Number of
Redundant Actions

* We will use Partial MaxSAT solving

 The hard clauses are the plan reduction encoding
* The soft clauses are unit clauses

(—a,),(~a,),...(—a,)
 The PmaxSAT solver will satisfy all the hard

clauses and as many soft clauses as possible,
l.e., remove as many actions as possible

MaximumRedundancyEliminaion (11, P)
MR1 F' .= encodeMaximumRedundancy(II, P)

MR2 ¢ := partialMaxSatSolver(F)
MR3 return 7,

Removing The Set of Redundant
Actions with Maximum Weight

* We will use Weighted Partial MaxSAT solving

 The hard clauses are the plan reducion encoding
* The soft clauses are unit clauses, weight = act. cost

(~a,),(may),...(~a,)
« The WPmMaxSAT solver will satisfy all the hard
clauses and maximize the weight of the
satisfied soft clauses, I.e., remove the most

costly set of redundant actions.

Experiments

* We used 2 satisficing planners

* Fast Downward
 Madagascar

* 10 minute time limit to find plans for each
problem of the 2011 IPC

 Plan reduction methods

e |nverse Action Elimination
» Action Elimination and Greedy Action Elimination
e PMaxSAT and WPMaxSAT reduction

Experimental Results

Domain Found Plan IAE AE Greedy AE MLR MR
Nr. Cost A T[s] A T[s] A T[s] A T[s] A TJs]
barman 20 7763 | 436 0,98 753 0,51 780 1,08 926 043 926 10,85
elevators 20 28127 | 1068 1,51 1218 0,79 | 1218 1,20 | 1218 0,19 | 1218 1,99
= floortile 5 572 66 0,00 66 0,04 66 0,08 66 0,00 66 0,01
g nomystery 13 451 0 425 0 0,04 0 004 0 001 0 0,04
Z parking 20 1494 4 0,06 4 0,09 4 0,10 4 0,04 4 0,21
g pegsol 20 307 0 0,00 0 0,06 0 0,06 0 0,02 0 0,30
& scanalyzer || 20 1785 0 0,01 78 0,06 78 0,08 78 0,04 78 0.49
sokoban 17 1239 0 648 58 0,53 58 0,75 102 1,92 102 250,27
transport 17 74960 | 4194 1,11 | 5259 0,56 | 5260 1,02 | 5260 0,19 | 5260 1,92
barman 8 3360 | 296 0,97 591 0,25 598 0,52 606 0,28 606 6.33
elevators 20 117641 | 7014 6,77 | 24096 1,21 | 24728 10,44 | 28865 1,90 | 28933 37.34
_ Moortile 20 4438 9 0,09 96 0,31 96 0,37 9 0,04 96 0,24
§ nomystery 15 480 0 2,63 0 0,04 0 004 0,01 0 0,02
& parking 18 1663 | 152 0,17 152 0,12 152 040 152 0,04 152 0,36
g pegsol 19 280 0 0,00 0 0,05 0 006 0,01 0 0,26
scanalyzer || 18 1875 0 0,05 232 0,19 236 047 236 0,04 236 0,31
sokoban 1 33 0 0,01 0 0,02 0 004 0 0,01 0 0.19
transport 4 20496 | 4222 023 | 6928 0,20 | 7507 056 | 7736 0,16 | 7736 9,56

Conclusion

In the thesis we have introduced new methods for finding
plans and improving plans using SAT and MaxSAT solvers

A combination of our encodings outperforms the encodings
used in state-of-the-art SAT-based planners

Our plan improvement methods can improve the cost and
length of plans more than the previous approaches (restricted
to redundancy elimination)

Despite the NP — completeness of the problem of removing a
maximum set of redundant actions, our methods are very fast
on IPC problems (thanks to the excellent performance of
state-of-the-art MaxSAT solvers)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

