
  

Modelling and Solving Modelling and Solving 
Problems Using SAT Problems Using SAT 

TechniquesTechniques

Tomáš BalyoTomáš Balyo



  

Modelling and Solving Modelling and Solving 
Problems Using SAT Problems Using SAT 

TechniquesTechniques

Tomáš BalyoTomáš Balyo

PlanningPlanning



  

  Atlanta Boston    Cleveland       Atlanta      Boston Cleveland 

State Variables and their domains:
● Truck location T, dom(T)={A, B, C}
● Package locations P and Q                   
dom(P) = dom(Q) = {A, B, C, Tr}

Initial State: T=A, P=A, Q=B
Goal State: P=C, Q=C

Plan:   loadP(A), move(A,B), loadQ(B), move(B,C),
  dropP(C), dropQ(C)

Actions:
● move(x,y):  {T=x} ~> {T=y}
● loadP(x):  {T=x, P=x} ~> {P=Tr}
● loadQ(x):  {T=x, Q=x} ~> {Q=Tr}
● dropP(x):  {T=x, P=Tr} ~> {P=x}
● dropQ(x):  {T=x, Q=Tr} ~> {Q=x}

Where x, y are A, B, and C

What is Planning



  

Planning as SATisfiability 

● Construct a formula F
k
 such that it is satisfiable (if and) only if there 

is a plan of at most k steps

● Solve F
1
, F

2
, … using a SAT solver until you reach a satisfiable 

formula F
n

● Extract a plan from the satisfying assignment of F
n

● n is called the makespan of the plan

● What actions can go inside a step together?

● If more action could be in a step then we would need fewer 
steps to find a plan



  

What actions can go inside a step together?

1. foreach step semantics
● The preconditions of all actions in a step must already hold in the 

beginning of the step
● The effects of all actions must hold at the end of this step
● The actions in a step do not interfere – they cannot destroy each 

others preconditions by their effects => can be ordered arbitrarily
● The actions in a step can be turned into a valid subplan sequence

● Plan: {loadP(A)} ♦ {move(A, B)} ♦ {loadQ(B)} ♦ 
{move(B, C)} ♦ {dropP(C), dropQ(C)}                  
– 5 steps



  

What actions can go inside a step together?

2. exist step semantics
● The preconditions of all actions in a step must already hold in the 

beginning of the step
● The effects of all actions must hold at the end of this step
● The actions in a step do not interfere – they cannot destroy each 

others preconditions by their effects => can be ordered arbitrarily
● The actions in a step can be turned into a valid subplan sequence

● Plan: {loadP(A), move(A, B)} ♦ {loadQ(B), 
move(B, C)} ♦ {dropP(C), dropQ(C)}
– 3 steps



  

What actions can go inside a step together?

3. relaxed exist step semantics
● The preconditions of all actions in a step must already hold in the 

beginning of the step
● The effects of all actions must hold at the end of this step
● The actions in a step do not interfere – they cannot destroy each 

others preconditions by their effects => can be ordered arbitrarily
● The actions in a step can be turned into a valid subplan sequence

● Plan:  {loadP(A), move(A, B), loadQ(B)} ♦ 
{move(B, C), dropP(C), dropQ(C)}
– 2 steps



  

What actions can go inside a step together?

4. relaxed relaxed exist step semantics
● The preconditions of all actions in a step must already hold in the 

beginning of the step
● The effects of all actions must hold at the end of this step
● The actions in a step do not interfere – they cannot destroy each 

others preconditions by their effects => can be ordered arbitrarily
● The actions in a step can be turned into a valid subplan sequence

● Plan:  {loadP(A), move(A, B), loadQ(B), 
move(B, C), dropP(C), dropQ(C)}
– 1 step

New!



  

Implemented SAT Encodings

● We implemented 3 foreach step semantics encodings:
● Direct (classic)
● SASE (transition based)
● Reinforced (Direct + SASE) *

● A Relaxed Relaxed Exist Step semantics encoding **
● A Selective encoding which automatically selects * or ** for a given 

planning problem instance

● The selective encoding can outperform the state-of-the-art exist 
step encoding (of Rintanen 2006).

New!

New!

New!



  



  

Basic ideas of the relaxed relaxed exist step SAT 
encoding

● The SAT encoding only approximates the semantics, i.e., the 
satisfiability of the constructed formula F

k
 implies the existence of a 

k-step plan (not vice versa)
● The actions are ranked – the encoding allows only lower ranking 

actions before higher ranking ones in a step (the reason why the 
encoding only approximates the semantics)

● The ranking can be an arbitrary injective function, some rankings 
are better than others for some problems
● A perfect ranking could be created if we knew the plan in 

advance 



  

Part II – Removing Redundant ActionsPart II – Removing Redundant Actions

(From plans obtained by any planner)



  

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta             Boston         Cleveland

Atlanta             Boston         Cleveland

Goal State
● Both packages in Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B), 
Move(B,C), Unload(P1,C), Unload(P2,C) 

Shortest possible plan
with 6 actions



  

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta             Boston         Cleveland

Atlanta             Boston         Cleveland

Goal State
● Both packages in Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B), 
Move(B,C), Unload(P1,C), Unload(P2,C), 
Move(C,A) 



  

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta             Boston         Cleveland

Atlanta             Boston         Cleveland

Goal State
● Both packages in Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B), 
Move(B,C), Unload(P1,C), Unload(P2,C), 
Move(C,A)Move(C,A) 

Redundant

Why is this
“move“ in the plan?



  

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta             Boston         Cleveland

Atlanta             Boston         Cleveland

Goal State
● Both packages in Cleveland

Redundant plan:Move(A,C), Move(C,A), Load(P1,A), 
Move(A,B), Load(P2,B), Move(B,C), 
Unload(P1,C), Unload(P2,C) 



  

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta             Boston         Cleveland

Atlanta             Boston         Cleveland

Goal State
● Both packages in Cleveland

Redundant plan:Move(A,C), Move(C,B), Load(P2,B), 
Move(B,A), Move(A,C), Unload(P2,C), 
Move(C,B), Move(B,A), Load(P1,A), 
Move(A,B), Move(B,C), Unload(P1,C) 

12 actions, none 
can be removed



  

Problem Description

● Our goal is to remove all redundant actions 
from plans in order to improve them

● After removing all redundant actions, plans can 
be often further improved by replacing or 
reordeing (and further removing) actions
● But we will not deal with such optimization

– There are other algorithms for that, future work

● Plans obtained by satisficing planners often 
contain many redundant actions



  

Definitions – SAT, MaxSAT

● A CNF formula is satisfiable if there is a truth 
assignment that satisfies it

● The Satisfiability (SAT) problem is to determine 
whether a given formula is satisfiable (and find a truth 
assignment if yes)

● A Partial MaxSAT (PMaxSAT) formula consists of 
hard and soft clauses. The PmaxSAT problem is to 
find a truth assignment that satisfies all its hard 
clauses and as many of its soft clauses as possible

● A Weighted Partial MaxSAT (WPMaxSAT) is like 
PMaxSAT, but the soft clauses have weights and the 
goal is to maximize the weight of the satisfied soft 
clauses



  

Redundant Plans

● Let P be a plan for a planning task T and let P' 
be a proper subsequence of P. If P' is a plan for 
T, then P' is called a plan reduction of P.

● A plan is redundant if it has a plan reduction
● The actions not present in a plan reduction are 

redundant actions
● Determining whether a plan is redundant is an 

NP complete problem (Fink, Yang 1992)



  

Removing Redundancy

● Prior to this work there were only incomplete 
heuristic algorithms
● Removing pairs/groups of inverse actions (Chrpa, 

McCluskey, Osborne 2012)
● Greedy justification (Fink, Yang 1992)
● Action elimination (Nakhost, Müller 2010)

● We introduce our own heuristic algorithm
● We will then show how remove the set of 

redundant actions with a maximum possible 
total cost (NP-hard)



  

Removing Redundancy

A

E

B

C
D

fly(A,E), fly(E,A), fly(A,B), fly(B,C), fly(C,D), fly(D,E)

Remove These to get 
a non-optimal but also 
non-redundant plan

Remove These to get 
an optimal and 
non-redundant plan

● The order of removing redundant actions matters



  

[Greedy] Action Elimination

● Polynomial heuristic algorithm for removing redundant 
actions

New!

FOR i := 1 to |P| DO
  P' := remove(P, P[i])
  remove­actions­with­unsat­preconditions(P')
  IF (P' is a valid plan) THEN P:=P'
DONE
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Repeat
  S:={}
  FOR i := 1 to |P| DO
    P' := remove(P, P[i])
    remove­actions­with­unsat­preconditions(P')
    IF (P' is a valid plan) THEN insert(S,P')
  DONE
  P:= best­of(S)
UNTIL S:={}



  

Encoding Plan Reduction

● For a given planning task and its plan P we 
construct a CNF formula F such that
● Each satisfying assignment of F represents a plan 

reduction of P or P itself
● F contains a Boolean variable     for each action in 

P which indicates the presence of the j-th action in 
the plan reduction

● By adding the clause  to F 
we obtain a formula that is satisfiable if and 
only if P is a redundant plan

(¬a1∨¬a2∨...∨¬an)

a j

New!



  

Encoding – basic ideas

● We need to ensure that a given condition holds 
at a given time
● Goal conditions in the end
● Action preconditions when the action is applied

● Two ways to ensure a condition C at time T
● Either C is an initial condition and there are no 

opposing actions in the plan reduction before T
● Or there is a supporting action in the reduction at 

time T'<T for C and there are no opposing actions 
between T' and T



  

Removing The Maximum Number of 
Redundant Actions

● We will use Partial MaxSAT solving
● The hard clauses are the plan reduction encoding
● The soft clauses are unit clauses

● The PmaxSAT solver will satisfy all the hard 
clauses and as many soft clauses as possible, 
i.e., remove as many actions as possible

(¬a1), (¬a2), ...(¬an)

New!



  

Removing The Set of Redundant 
Actions with Maximum Weight

● We will use Weighted Partial MaxSAT solving
● The hard clauses are the plan reducion encoding
● The soft clauses are unit clauses, weight = act. cost

● The WPmaxSAT solver will satisfy all the hard 
clauses and maximize the weight of the 
satisfied soft clauses, i.e., remove the most 
costly set of redundant actions.

(¬a1) ,(¬a2) ,...(¬an)

New!



  

Experiments

● We used 2 satisficing planners
● Fast Downward
● Madagascar

● 10 minute time limit to find plans for each 
problem of the 2011 IPC

● Plan reduction methods
● Inverse Action Elimination
● Action Elimination and Greedy Action Elimination
● PMaxSAT and WPMaxSAT reduction



  

Experimental Results



  

Conclusion
● In the thesis we have introduced new methods for finding 

plans and improving plans using SAT and MaxSAT solvers

● A combination of our encodings outperforms the encodings 
used in state-of-the-art SAT-based planners

● Our plan improvement methods can improve the cost and 
length of plans more than the previous approaches (restricted 
to redundancy elimination)

● Despite the NP – completeness of the problem of removing a 
maximum set of redundant actions, our methods are very fast 
on IPC problems (thanks to the excellent performance of 
state-of-the-art MaxSAT solvers)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

