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  Atlanta Boston    Cleveland       Atlanta      Boston Cleveland 

State Variables and their domains:
● Truck location T, dom(T)={A, B, C}
● Package locations P and Q                   
dom(P) = dom(Q) = {A, B, C, Tr}

Initial State: T=A, P=A, Q=B
Goal State: P=C, Q=C

Plan:   loadP(A), move(A,B), loadQ(B), move(B,C),
  dropP(C), dropQ(C)

Actions:
● move(x,y):  {T=x} ~> {T=y}
● loadP(x):  {T=x, P=x} ~> {P=Tr}
● loadQ(x):  {T=x, Q=x} ~> {Q=Tr}
● dropP(x):  {T=x, P=Tr} ~> {P=x}
● dropQ(x):  {T=x, Q=Tr} ~> {Q=x}

Where x, y are A, B, and C

What is Planning



  

Planning as SATisfiability 

● Construct a formula F
k
 such that it is satisfiable (if and) only if there 

is a plan of at most k steps

● Solve F
1
, F

2
, … using a SAT solver until you reach a satisfiable 

formula F
n

● Extract a plan from the satisfying assignment of F
n

● n is called the makespan of the plan

● What actions can go inside a step together?

● If more action could be in a step then we would need fewer 
steps to find a plan



  

What actions can go inside a step together?

1. foreach step semantics
● The preconditions of all actions in a step must already hold in the 

beginning of the step
● The effects of all actions must hold at the end of this step
● The actions in a step do not interfere – they cannot destroy each 

others preconditions by their effects => can be ordered arbitrarily
● The actions in a step can be turned into a valid subplan sequence

● Plan: {loadP(A)} ♦ {move(A, B)} ♦ {loadQ(B)} ♦ 
{move(B, C)} ♦ {dropP(C), dropQ(C)}                  
– 5 steps



  

What actions can go inside a step together?

2. exist step semantics
● The preconditions of all actions in a step must already hold in the 

beginning of the step
● The effects of all actions must hold at the end of this step
● The actions in a step do not interfere – they cannot destroy each 

others preconditions by their effects => can be ordered arbitrarily
● The actions in a step can be turned into a valid subplan sequence

● Plan: {loadP(A), move(A, B)} ♦ {loadQ(B), 
move(B, C)} ♦ {dropP(C), dropQ(C)}
– 3 steps



  

What actions can go inside a step together?

3. relaxed exist step semantics
● The preconditions of all actions in a step must already hold in the 

beginning of the step
● The effects of all actions must hold at the end of this step
● The actions in a step do not interfere – they cannot destroy each 

others preconditions by their effects => can be ordered arbitrarily
● The actions in a step can be turned into a valid subplan sequence

● Plan:  {loadP(A), move(A, B), loadQ(B)} ♦ 
{move(B, C), dropP(C), dropQ(C)}
– 2 steps



  

What actions can go inside a step together?

4. relaxed relaxed exist step semantics
● The preconditions of all actions in a step must already hold in the 

beginning of the step
● The effects of all actions must hold at the end of this step
● The actions in a step do not interfere – they cannot destroy each 

others preconditions by their effects => can be ordered arbitrarily
● The actions in a step can be turned into a valid subplan sequence

● Plan:  {loadP(A), move(A, B), loadQ(B), 
move(B, C), dropP(C), dropQ(C)}
– 1 step

New!



  

Implemented SAT Encodings

● We implemented 3 foreach step semantics encodings:
● Direct (classic)
● SASE (transition based)
● Reinforced (Direct + SASE) *

● A Relaxed Relaxed Exist Step semantics encoding **
● A Selective encoding which automatically selects * or ** for a given 

planning problem instance

● The selective encoding can outperform the state-of-the-art exist 
step encoding (of Rintanen 2006).

New!

New!

New!



  



  

Basic ideas of the relaxed relaxed exist step SAT 
encoding

● The SAT encoding only approximates the semantics, i.e., the 
satisfiability of the constructed formula F

k
 implies the existence of a 

k-step plan (not vice versa)
● The actions are ranked – the encoding allows only lower ranking 

actions before higher ranking ones in a step (the reason why the 
encoding only approximates the semantics)

● The ranking can be an arbitrary injective function, some rankings 
are better than others for some problems
● A perfect ranking could be created if we knew the plan in 

advance 



  

Part II – Removing Redundant ActionsPart II – Removing Redundant Actions

(From plans obtained by any planner)



  

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta             Boston         Cleveland

Atlanta             Boston         Cleveland

Goal State
● Both packages in Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B), 
Move(B,C), Unload(P1,C), Unload(P2,C) 

Shortest possible plan
with 6 actions



  

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta             Boston         Cleveland

Atlanta             Boston         Cleveland

Goal State
● Both packages in Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B), 
Move(B,C), Unload(P1,C), Unload(P2,C), 
Move(C,A) 



  

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta             Boston         Cleveland

Atlanta             Boston         Cleveland

Goal State
● Both packages in Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B), 
Move(B,C), Unload(P1,C), Unload(P2,C), 
Move(C,A)Move(C,A) 

Redundant

Why is this
“move“ in the plan?



  

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta             Boston         Cleveland

Atlanta             Boston         Cleveland

Goal State
● Both packages in Cleveland

Redundant plan:Move(A,C), Move(C,A), Load(P1,A), 
Move(A,B), Load(P2,B), Move(B,C), 
Unload(P1,C), Unload(P2,C) 



  

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta             Boston         Cleveland

Atlanta             Boston         Cleveland

Goal State
● Both packages in Cleveland

Redundant plan:Move(A,C), Move(C,B), Load(P2,B), 
Move(B,A), Move(A,C), Unload(P2,C), 
Move(C,B), Move(B,A), Load(P1,A), 
Move(A,B), Move(B,C), Unload(P1,C) 

12 actions, none 
can be removed



  

Problem Description

● Our goal is to remove all redundant actions 
from plans in order to improve them

● After removing all redundant actions, plans can 
be often further improved by replacing or 
reordeing (and further removing) actions
● But we will not deal with such optimization

– There are other algorithms for that, future work

● Plans obtained by satisficing planners often 
contain many redundant actions



  

Definitions – SAT, MaxSAT

● A CNF formula is satisfiable if there is a truth 
assignment that satisfies it

● The Satisfiability (SAT) problem is to determine 
whether a given formula is satisfiable (and find a truth 
assignment if yes)

● A Partial MaxSAT (PMaxSAT) formula consists of 
hard and soft clauses. The PmaxSAT problem is to 
find a truth assignment that satisfies all its hard 
clauses and as many of its soft clauses as possible

● A Weighted Partial MaxSAT (WPMaxSAT) is like 
PMaxSAT, but the soft clauses have weights and the 
goal is to maximize the weight of the satisfied soft 
clauses



  

Redundant Plans

● Let P be a plan for a planning task T and let P' 
be a proper subsequence of P. If P' is a plan for 
T, then P' is called a plan reduction of P.

● A plan is redundant if it has a plan reduction
● The actions not present in a plan reduction are 

redundant actions
● Determining whether a plan is redundant is an 

NP complete problem (Fink, Yang 1992)



  

Removing Redundancy

● Prior to this work there were only incomplete 
heuristic algorithms
● Removing pairs/groups of inverse actions (Chrpa, 

McCluskey, Osborne 2012)
● Greedy justification (Fink, Yang 1992)
● Action elimination (Nakhost, Müller 2010)

● We introduce our own heuristic algorithm
● We will then show how remove the set of 

redundant actions with a maximum possible 
total cost (NP-hard)



  

Removing Redundancy

A

E

B

C
D

fly(A,E), fly(E,A), fly(A,B), fly(B,C), fly(C,D), fly(D,E)

Remove These to get 
a non-optimal but also 
non-redundant plan

Remove These to get 
an optimal and 
non-redundant plan

● The order of removing redundant actions matters



  

[Greedy] Action Elimination

● Polynomial heuristic algorithm for removing redundant 
actions

New!

FOR i := 1 to |P| DO
  P' := remove(P, P[i])
  remove­actions­with­unsat­preconditions(P')
  IF (P' is a valid plan) THEN P:=P'
DONE
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Repeat
  S:={}
  FOR i := 1 to |P| DO
    P' := remove(P, P[i])
    remove­actions­with­unsat­preconditions(P')
    IF (P' is a valid plan) THEN insert(S,P')
  DONE
  P:= best­of(S)
UNTIL S:={}



  

Encoding Plan Reduction

● For a given planning task and its plan P we 
construct a CNF formula F such that
● Each satisfying assignment of F represents a plan 

reduction of P or P itself
● F contains a Boolean variable     for each action in 

P which indicates the presence of the j-th action in 
the plan reduction

● By adding the clause  to F 
we obtain a formula that is satisfiable if and 
only if P is a redundant plan

(¬a1∨¬a2∨...∨¬an)

a j

New!



  

Encoding – basic ideas

● We need to ensure that a given condition holds 
at a given time
● Goal conditions in the end
● Action preconditions when the action is applied

● Two ways to ensure a condition C at time T
● Either C is an initial condition and there are no 

opposing actions in the plan reduction before T
● Or there is a supporting action in the reduction at 

time T'<T for C and there are no opposing actions 
between T' and T



  

Removing The Maximum Number of 
Redundant Actions

● We will use Partial MaxSAT solving
● The hard clauses are the plan reduction encoding
● The soft clauses are unit clauses

● The PmaxSAT solver will satisfy all the hard 
clauses and as many soft clauses as possible, 
i.e., remove as many actions as possible

(¬a1), (¬a2), ...(¬an)

New!



  

Removing The Set of Redundant 
Actions with Maximum Weight

● We will use Weighted Partial MaxSAT solving
● The hard clauses are the plan reducion encoding
● The soft clauses are unit clauses, weight = act. cost

● The WPmaxSAT solver will satisfy all the hard 
clauses and maximize the weight of the 
satisfied soft clauses, i.e., remove the most 
costly set of redundant actions.

(¬a1) ,(¬a2) ,...(¬an)

New!



  

Experiments

● We used 2 satisficing planners
● Fast Downward
● Madagascar

● 10 minute time limit to find plans for each 
problem of the 2011 IPC

● Plan reduction methods
● Inverse Action Elimination
● Action Elimination and Greedy Action Elimination
● PMaxSAT and WPMaxSAT reduction



  

Experimental Results



  

Conclusion
● In the thesis we have introduced new methods for finding 

plans and improving plans using SAT and MaxSAT solvers

● A combination of our encodings outperforms the encodings 
used in state-of-the-art SAT-based planners

● Our plan improvement methods can improve the cost and 
length of plans more than the previous approaches (restricted 
to redundancy elimination)

● Despite the NP – completeness of the problem of removing a 
maximum set of redundant actions, our methods are very fast 
on IPC problems (thanks to the excellent performance of 
state-of-the-art MaxSAT solvers)
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