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Abstract

Knowledge compilation is a process of adding more information to a knowl-
edge base in order to make it easier to deduce facts from the compiled base
than from the original one. One type of knowledge compilation occurs when
the knowledge in question is represented by a Boolean formula in conjunc-
tive normal form (CNF). The goal of knowledge compilation in this case
is to add clauses to the input CNF until a logically equivalent propagation
complete CNF is obtained. A CNF is called propagation complete if after
any partial substitution of truth values all logically entailed literals can be
inferred from the resulting CNF formula by unit propagation. The key to
this type of knowledge compilation is the ability to generate so called em-
powering clauses. A clause is empowering for a CNF if it is an implicate and
for some partial substitution of truth values it enlarges the set of entailed
literals inferrable by unit propagation.

In this paper we study several complexity issues related to empowering
implicates, propagation completeness, and its relation to resolution proofs.
We show several results: (a) given a CNF and a clause it is co-NP complete
to decide whether the clause is an empowering implicate of the CNF, (b)
given a CNF it is NP-complete to decide whether there exists an empowering
implicate for it and thus it is co-NP complete to decide whether a CNF is
propagation complete, and (c) there exist CNFs to which an exponential
number of clauses must be added to make them propagation complete.
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1. Introduction

One of the most studied problems in computer science, both theoreti-
cal and applied, is the satisfiability problem for CNF formulas (SAT). The
difficulty of SAT depends on the class of CNF formulas to which the input
formula belongs. There are various techniques and algorithms for SAT for
different classes of CNF formulas ranging from linear algorithms for Horn,
quadratic (2-CNF) and SLUR formulas [1, 2] to the very complex variants of
the exponential DPLL [3, 4] and CDCL [5, 6, 7, 8] procedures implemented
in general purpose SAT solvers. Even the most complicated SAT solvers usu-
ally perform a task called unit propagation [3]. The goal of unit propagation
is to infer as many logically entailed literals as possible from a partial truth
assignment and the input formula. Although in general unit propagation is
not a complete method (it does not infer all logically entailed literals), it is
complete for the class of propagation complete (PC) CNF formulas [9].

PC formulas play an important role also in constraint programming,
or more specifically, in CNF encodings of global constraints. There is a
strong connection between propagation completeness of the CNF encoding
and domain consistency of the encoded constraint [10, 11]. It has been stud-
ied for several concrete global constraints such as the AllDifferent con-
straint [12], the Sequence constraint [13], Regular, Among, and Gen-
eralized Sequence [10], or the Grammar constraints [14].

Some SAT solvers try to avoid searching in the state subspaces with
no solution by learning from conflicts, i.e. by performing conflict driven
clause learning (CDCL) [5, 6, 7, 8], the name CDCL is also used for the
complete algorithm solving SAT problem. It is useful to learn clauses (called
empowering implicates [9, 15]) that allow unit propagation to infer more
logically entailed literals after such a clause is added to the CNF formula
than it was possible to infer before the addition. Therefore, to speed up
the CDCL SAT solver search for a satisfying assignment, it is often very
useful to learn (generate) empowering implicates and add them to the input
CNF formula. Let us mention that today’s most successful SAT solvers for
real-world applications are the ones using CDCL procedure.

This process of adding empowering implicates to a CNF formula can be
viewed as a special type of knowledge compilation where both the input and
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the output representation of the knowledge is a CNF formula. In general,
knowledge compilation is a process of adding more information to a given
knowledge representation in order to make it computationally easier to infer
facts from the compiled representation [16, 17], or a process of transforming a
given knowledge representation into another knowledge representation which
is more tractable with respect to fact deduction, such as transforming a CNF
into a BDD [18]. Nevertheless, in this paper we are interested only in the
very limited case of knowledge compilation that rests in adding empowering
implicates to a CNF.

It has been shown in [9], along with other properties of PC formulas,
that a formula ϕ is PC if and only if there is no empowering implicate for
ϕ. However, several complexity issues directly connected to propagation
completeness and empowering implicates are left open in [9]. A short list of
such questions is the following:

1. Given a CNF formula ϕ and a clause C, what is the complexity of
deciding whether C is an empowering implicate for ϕ?

2. Given a CNF formula ϕ that is not PC, how difficult is it to generate an
empowering implicate for ϕ by resolution, where the “level of difficulty”
is measured by the length of the resolution proof?

3. Given a CNF formula ϕ, what is the complexity of deciding whether
there exists an empowering implicate for ϕ?

4. Given a CNF formula ϕ that is not PC, how many empowering impli-
cates is it necessary to add to ϕ in order to make it PC?

In this paper we tackle all of the above listed problems. After reviewing
basic definitions and notation in Section 2, we derive several simple proper-
ties of empowering implicates in Section 3. We address the following four
questions as follows:

1. In section 3 we show that the first problem is co-NP complete. This
is not a very difficult result, however, to the best of our knowledge, it
was not stated in the related literature yet.

2. In Section 4 we tackle the second problem. We prove that for a non-
PC CNF formula with s occurences of literals there always exists a
resolution proof of length O(s) of some empowering implicate. On the
other hand, we construct examples of CNF formulas where a resolution
proof of length Ω(s) is needed for any empowering implicate, which
means that Θ(s) is an asymptotically tight bound for this problem.
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It is important to note that the upper bound result does not require
the derived empowering implicate to be prime. We show (by a simple
modification of results concerning refutation proofs [19, 20]) that there
exist CNF formulas such that in order to derive any prime empowering
implicate of such CNF a resolution proof of an exponential length is
needed.

3. Section 5 contains the main results of this paper which are connected to
the third problem. It was proved in [9] that deciding about an existence
of an empowering implicate is in Σp

2. Using the results from Section 4
we strengthen this result by showing that the problem belongs to Σp

1 =
NP. Given the equivalence between propagation completeness and non-
existence of empowering implicates proved in [9], this immediately im-
plies that testing propagation completeness belongs to co-NP. Then we
proceed with the hardness proof for this problem. We present a reduc-
tion from a well known NP-complete 3-dimensional matching problem
which proves that deciding for a CNF formula whether there exists an
empowering implicate for it is NP-hard (and thus testing propagation
completeness is co-NP-hard).

4. The fourth question is answered in Section 5 as well by showing that
there exist CNF formulas where an exponential number (both with
respect to the number of variables and the number of clauses) of em-
powering implicates must be added in order to arrive at a PC formula.
This strengthens the superpolynomial bound which follows from a com-
bination of results in [9] and [21] using a superpolynomial lower bound
for certain monotone circuits from [22]. The connection is discussed in
detail in Section 2.5.

We close the paper by giving few concluding remarks in Section 6.

2. Definitions

2.1. Basic Definitions

A Boolean function of n variables is a mapping f : {0, 1}n → {0, 1}. We
say that a Boolean function f is satisfiable if there is a vector ~x ∈ {0, 1}n
such that f(~x) = 1. A literal is either a variable (x, called positive literal)
or its negation (¬x or x, called negative literal). A clause is a disjunction
of literals. We assume that no clause contains both positive and negative
literals of the same variable. A clause which contains just one literal is
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called a unit clause. Formula ϕ is in conjunctive normal form (CNF) if it is
a conjuction of clauses (we also say that ϕ is a CNF formula). We shall often
treat a clause as a set of its literals and a CNF formula as a set of its clauses.
It is a well known fact that every Boolean function can be represented by
a CNF formula (see e.g. [23]). A CNF formula ϕ is called a Horn formula if
every clause in ϕ has at most one positive literal. A quadratic CNF formula
(also called 2-CNF formula) is a CNF formula where each clause contains at
most two literals. If two CNF formulas ϕ1 and ϕ2 define the same function,
we say that they are equivalent and we denote this fact with ϕ1 ≡ ϕ2.

Clause C is called an implicate of f if every assignment ~x ∈ {0, 1}n
satisfying f (i.e. f(~x) = 1) also satisfies C (i.e. C(~x) = 1). We use notation
f |= C to denote that C is an implicate of f . We also say that C is logically
entailed by f . Since every CNF formula ϕ represents a function, we shall
often use ϕ |= C to denote the fact that C is an implicate of the function
represented by ϕ. We shall also say that C is an implicate of ϕ or that it
is logically entailed by ϕ. A clause is a special case of a CNF formula and
thus for two clauses C1 and C2 we can also use C1 |= C2. This is possible
only if literals contained in C1 are also contained in C2. In this case we say
that clause C1 subsumes clause C2. C is a prime implicate of a function f
if it is an implicate of f and there is no other implicate C ′ of f subsuming
C. We say that CNF formula ϕ is prime if it contains only prime implicates.
A special case of prime CNF formula is the canonical CNF formula of f
(also called a canonical representation of f), which consists of all the prime
implicates of f .

Given a CNF formula ϕ and a clause C we define IsImplicate(ϕ,C)
as the problem of deciding whether C is an implicate of ϕ. It is well
known that this problem is co-NP complete (co-SAT is a special case of
IsImplicate(ϕ,C) in which C is an empty clause).

2.2. Resolution

We say that two clauses have a conflict in variable x if there is a positive
occurrence of x in one clause and a negative occurrence in the other. Two
clauses C1 = (C̃1 ∨ x) and C2 = (C̃2 ∨ x) are resolvable over x if C̃1 and

C̃2 do not have a conflict in any variable. We write R(C1, C2) = C̃1 ∨ C̃2

and this disjunction is called a resolvent of the parent clauses C1 and C2. A
resolution in which one of the parent clauses is a unit clause is called a unit
resolution. A resolution in which the parent clauses have no common literal
is called a non-merge resolution, otherwise it is a merge resolution.
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Let ϕ be a CNF formula representing a Boolean function f , we say that
C can be derived from ϕ by a series of resolutions if there is a sequence of
clauses C1, . . . , Ck = C such that every Ci, 1 ≤ i ≤ k, either belongs to ϕ, or
Ci = R(Cj1 , Cj2), where j1, j2 < i. Such a series of resolutions is also called
a resolution proof of C from ϕ. Resolution proof of a contradiction (i.e. an
empty clause ⊥) from formula ϕ is also called a resolution refutation. A
resolution proof in which every resolution is unit is called a unit resolution
proof , a unit resolution proof of a contradiction ⊥ from ϕ is called a unit
refutation and if such a proof exists for ϕ, then this formula is called unit
refutable. This fact is denoted by ϕ `1 ⊥. If a unit clause (literal) x can be
derived by unit resolutions then we write ϕ `1 x. The length of a resolution
proof is the number of clauses in the sequence.

It is a well known fact that for any Boolean function the resolvent of
two implicates is again an implicate (see e.g. [24]). Another well known
fact is that every prime implicate of f can be derived from ϕ by a series
of resolutions (see e.g. [24]).

2.3. Unit propagation and refutation

Unit propagation is an iterative procedure which in each step selects a unit
clause (a literal), removes each clause containing this literal, and removes the
complementary literal from the remaining clauses (i.e. satisfies the selected
literal). This process iterates until an empty clause (a contradiction) is de-
rived or there is no unit clause in the formula. Unit propagation can be
performed in linear time [25]. It is a well known fact that if ϕ `1 x (where
x is an arbitrary literal), then unit propagation on ϕ satisfies x or derives
contradiction. On the other hand, if x is satisfied during unit propagation,
then ϕ `1 x.

We say that a literal x is logically entailed from ϕ by a partial assignment
l1, . . . , lk (by setting literals l1, . . . , lk to true) if any assignment that extends
l1, . . . , lk and satisfies ϕ sets x to true. Note that this is equivalent to ϕ ∧
l1 ∧ · · · ∧ lk |= x. Clearly, literals that form unit clauses in ϕ are logically
entailed from ϕ. Also note that given clause C = l1 ∨ l2 ∨ · · · ∨ lk, formula
ϕ∧
∧k
j=1 ¬lj is by De Morgan’s laws equivalent to ϕ∧¬C. In the subsequent

text we shall use these notations interchangeably.
A clause C is called 1-provable with respect to a CNF formula ϕ, if

ϕ ∧ ¬C `1 ⊥. A clause C is thus 1-provable if it is an implicate of C and
the fact that C is an implicate can be proved using unit propagation. The
notion of 1-provability was introduced in [15]. A formula ϕ is called unit
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refutation complete if every implicate C of ϕ is 1-provable with respect to ϕ.
The notion of unit refutation completeness was introduced in [26] and later
inspired the definition of propagation completeness in [9], which we give in
the following subsection.

2.4. Propagation Completeness and Empowerement

Definition 2.1 (Propagation Completeness (PC) [9]). We call a CNF for-
mula ϕ propagation complete (PC) if for any partial assignment l1, . . . , lk
and any literal d the following holds. If d is logically entailed from ϕ by
l1, . . . , lk, then d can be derived from ϕ by unit propagation after fixing values
of l1, . . . , lk, i.e., if ϕ∧ l1 ∧ · · · ∧ lk |= d, then ϕ∧ l1 ∧ · · · ∧ lk `1 d. The class
PC is the class of all PC formulas.

Definition 2.2 (Empowering implicate [15, 9], Absorbtion [27, 9]). A clause
C = l1∨l2∨l3∨ . . .∨lk is called an empowering implicate for a formula ϕ if it
contains a literal li called an empowered literal such that ϕ∧

∧
j∈1...k,j 6=i ¬lj 01

⊥ and ϕ ∧
∧
j∈1...k,j 6=i ¬lj |= li but ϕ ∧

∧
j∈1...k,j 6=i ¬lj 01 li. An implicate C is

called absorbed by ϕ if it has no empowered literal.

It is known that a formula is propagation complete if and only if it has
no empowering implicates [9]. Thus, any formula can be extended to a prop-
agation complete one by repeatedly adding empowering implicates.

The notion of empowering clauses is closely related to CDCL SAT solvers,
see [15] and [26]. It is important to note that each asserting clause is empow-
ering as observed in [15]. Since most CDCL SAT solvers learn only asserting
clauses the notion of propagation completeness is important also in the con-
text of CDCL SAT solvers.

Example 2.3. Consider the following formula

ϕ = (a ∨ b ∨ x) ∧ (a ∨ c ∨ ¬x)

Formula ϕ is not propagation complete, because ϕ∧¬b∧¬c |= a but ϕ∧¬b∧
¬c 6`1 a. Indeed, by falsifying b and c we get (a∨x)∧ (a∨¬x) and thus literal
a can be obtained by resolution, but not by unit propagation.

It follows that (a ∨ b ∨ c) is an empowering implicate for ϕ with a being
its empowered literal. By adding this implicate to ϕ we get a propagation
complete formula

ϕ′ = (a ∨ b ∨ x) ∧ (a ∨ c ∨ ¬x) ∧ (a ∨ b ∨ c)
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The fact that ϕ′ is propagation complete follows from the fact that it consists
of all prime implicates of ϕ. Consider for example a non-prime implicate
C = (a ∨ b ∨ c ∨ x), this implicate is absorbed by ϕ′ because by falsifying any
three literals from C we either get an unsatisfiable formula (such as if a, b,
and x are falsified) or we obtain the remaining literal by unit propagation
(such as if a, c, and x are falsified, b is obtained from the first clause of ϕ′).
We can observe that in fact, C is already absorbed by ϕ.

2.5. Relation of Propagation Completeness to Constraint Propagation

Propagation complete formulas play an important role in constraint prop-
agation (for general reading on constraint propagation see Chapter 3 of [28]),
where the notion appeared implicitly in earlier literature [10, 11, 12, 13, 14,
29] concentrated on CNF encodings of constraints both in general [10, 11],
and for particular constraints (the sequence constraint [13], the grammar con-
straint [14], the Regular, the Among, and the Generalized sequence
constraints [11], or the AllDifferent constraint [12]). A general idea
which appeared in all these papers is to take a constraint C, encode it us-
ing a CNF and then use unit propagation to maintain some kind of domain
consistency (e.g. generalized arc consistency (GAC) in [10], or (relational)
(i, j)-consistency in [29]). In general, these encodings are polynomial in ta-
ble representation of a constraint, however in the case of a particular global
constraint we can sometimes use its special properties to get a CNF repre-
sentation of polynomial size with respect to the arity of a constraint with
suitable properties, such as in [11] in case of the Regular constraint, the
Among constraint, or the Generalized sequence constraint. On the
other hand in some cases this is not possible as it is shown in [12] for the
AllDifferent constraint.

The idea of using unit propagation to maintain domain consistencies was
formalized in [12], let us recall some of the results and the notation from [12]
here. A constraint C is defined over a set of variables X = {X1, . . . , Xn},
each of which has a finite domain D(Xi). An assignment to a variable Xi is
a mapping of Xi to a value j ∈ D(Xi), called a literal and written Xi = j.
D(X) denotes the set of literals, i.e. D(X) = {Xi = j | Xi ∈ X∧j ∈ D(Xi)}.
P(D(X)) then denotes the set of all possible sets of literals. A constraint C
is defined over a set of variables denoted as scope(C) ⊆ X (scope of C) and
it allows a subset of the possible assignments to the variables in scope(C).

Following [12, 30, 28] a propagator for a constraint C is an algorithm
which takes as input the domains of variables in scope(C) and returns re-
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strictions of these domains. Formally a propagator for a constraint C can be
defined as follows (definition is taken from [12], where they followed [30], see
also Chapter 3 of [28]).

Definition 2.4 (Definition 1 in [12]). A propagator f for a constraint C is
a polynomial time computable function f : P(D(X)) 7→ P(D(X)), such that
f is monotone, i.e. D′(X) ⊆ D(X) ⇒ f(D′(X)) ⊆ f(D(X)), contracting,
i.e. f(D(X)) ⊆ D(X), and idempotent, i.e. f(D(X)) = f(f(D(X))). If f
detects that C has no solutions under D(X) then f(D(X)) = ∅.

We say that a propagator detects dis-entailment if f(D(X)) = ∅ whenever
C has no solution. A propagator enforces domain consistency (DC) when
Xi = j ∈ f(D(X)) implies that there exists a solution of C that contains
Xi = j. Other consistencies (such as GAC [10] which is equivalent to DC,
or (i, j)-consistency [29]) can be considered as well, we mention domain con-
sistency here because later on we shall recall the results of [12] on domain
consistency propagators.

Let us recall a definition of a CNF decomposition of a propagator as it
appeared in [12]. Before that let us recall a general way how a constraint
satisfaction program (CSP) variables with multiple valued domains are usu-
ally encoded within a CNF. Given a variable Xi ∈ X with domain D(Xi)
we encode it with a set of boolean variables xi,j, Xi ∈ X, j ∈ D(Xi) such
that Xi 6= j ⇔ xi,j. The property that a CSP variable Xi has at most one
value is enforced by the set of AMO (i.e. at most one) clauses (xi,j ∨ xi,k)
for all j, k ∈ D(Xi), k 6= j and the property that it has at least one value is
enforced by the ALO (i.e. at least one) clause

∨
j∈D(Xi)

xi,j. Following [12]

we call the above described propositional representation of D((X)) (i.e. set
of all AMO and ALO clauses over all CSP variables) a direct encoding and
denote it as Dsat(X).

Definition 2.5 (Definition 4 in [12]). A CNF decomposition of a propagation
algorithm (propagator) fP is a formula in CNF ϕP over variables x∪y such
that

• The input variables x are the propositional representation Dsat(X) of
D(X) and y is a set of auxiliary variables whose size is polynomial in
|x|.

• xi,j is set to 0 by a unit propagation if and only if Xi = j 6∈ fP (D(X)).
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• Unit propagation on ϕP produces the empty clause when fP (D(X)) = ∅.

Before further discussion, let us look at an example from [12].

Example 2.6 (Example 1 in [12]). Consider a Table constraint over the
variables X1, X2 with D(X1) = D(X2) = {a, b} and the satisfying assign-
ments: {〈a, a〉, 〈b, b〉, 〈a, b〉}. Using encoding introduced in [10] we can de-
compose a Table constraint into the following CNF ϕT :

ϕT = (x1a ∨ y1 ∨ y3) ∧ (x2a ∨ y1) ∧ (y1 ∨ x1a) ∧ (y1 ∨ x2a)

∧(x1b ∨ y2) ∧ (x2b ∨ y2 ∨ y3) ∧ (y2 ∨ x1b) ∧ (y2 ∨ x2b)

∧(y3 ∨ x1a) ∧ (y3 ∨ x2b) ∧ (y1 ∨ y2 ∨ y3)

Here y = {y1, y2, y3} consists of auxiliary variables corresponding to the three
possible solutions to the Table constraint (y1 corresponds to 〈a, a〉, y2 to
〈b, b〉, and y3 to 〈a, b〉). Suppose the value a is removed from the domain of
X1. The assignment x1a = 0 forces the variable y1 to 0, which in turn causes
the variable x2a to 0, removing the value a from the domain of X2 as well.

Now let us generalize the ideas presented in the above example. Let us
consider a constraint C, its consistency propagator fP , and a CNF decom-
position of fP via a CNF ϕP .

• By definition, if fP detects dis-entailment, then fP (D(X)) = ∅ when-
ever C restricted to D(X) admits no solution. Passing D(X) to fP
corresponds to setting all values xi,j = 0 for Xi = j 6∈ D(X). The
third condition of Definition 2.5 thus requires that after this partial
assignment ϕP is not only unsatisfiable but this fact can be detected
by unit propagation. In particular we require that for any D(X):

ϕP ∧
∧

i,j:Xi=j 6∈D(X)

¬xi,j |= ⊥ ⇔ ϕP ∧
∧

i,j:Xi=j 6∈D(X)

¬xi,j `1 ⊥

What we in fact require here is that ϕP is unit refutation complete with
respect to the partial assignments to the input variables x. Although we
admit here only assignments to 0, the direct encoding clauses Dsat(X)
allow us to use 1 as well (assigning xi,j = 1 forces xi,k = 0 for any
k 6= j, k ∈ D(Xi) by unit propagation on Dsat(X)).
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• If fP is a domain consistency propagator then there is no solution to C
containing Xi = j if and only if Xi = j 6∈ f(D(X)). Using the second
condition from Definition 2.5 it corresponds to the fact that xi,j is a
unit implicate of ϕP under partial assignment given by D(X) if and
only if xi,j is forced to 0 by unit propagation on ϕP under this partial
assignment. In particular we require that for any D(X) and any xi,j:

ϕP ∧
∧

i′,j′:Xi′=j
′ 6∈D(X)

¬xi′,j′ |= ¬xi,j ⇔ ϕP ∧
∧

i′,j′:Xi′=j
′ 6∈D(X)

¬xi′,j′ `1 ¬xi,j

What we in fact require here is the fact that ϕP is propagation complete
with respect to partial assignments and literals on the input variables in
x. In the above equation it is enough to consider only negative literals
xi,j due to presence of clauses of direct encoding Dsat(X).

The author of [10] suggests that a canonical CNF decomposition (i.e.
CNF consisting of all prime implicates) is sufficient to encode both dis-
entailment detecting propagator and domain consistency propagator. The
above discussion shows that a shorter CNF is sufficient, in particular unit
refutation completeness is sufficient for detecting dis-entailment and propa-
gation completeness is sufficient for domain consistency propagator. This can
be naturally generalized to other consistencies such as (i, j)-consistency [29].

It was shown in [21] that a polynomial sized decomposition of a consis-
tency propagator fP exists if and only if it can by computed by a monotone
circuit of polynomial size. This result was used to derive the following corol-
lary:

Corollary 2.7 (Corollary 4 in [21]). There is no polynomial sized CNF de-
composition of any AllDifferent domain consistency propagator.

On the other hand we can get a polynomial sized CNF encoding of the
AllDifferent constraint. Using such an encoding and Corollary 2.7 it
follows that no propagation complete encoding of the AllDifferent con-
straint can have polynomial size. There are thus formulas such that any
equivalent propagation complete formula has superpolynomial size. Let us
have a more detailed look at the proof of Corollary 2.7 in [21]. It was shown
in in [31] that AllDifferent constraint has a solution if and only if the
corresponding bipartite value graph has a perfect matching. From the afor-
mentioned connection to monotone circuits proved in [21] it follows that
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based on an AllDifferent domain consistency propagator we can con-
struct a monotone circuit that computes whether a bipartite graph has a
perfect matching and such a circuit has a polynomial size with respect to the
domain consistency propagator we start with. The proof is finished using an
older result of Razborov [22] according to which the size of monotone circuit
computing whether there is a perfect matching in a bipartite graph G on n
vertices has size at least nΩ(logn), which is a superpolynomial (in some liter-
ature called quasi-polynomial) but not an exponential bound. In Section 5
we strengthen the result of Corollary 2.7 for propagation complete formulas
by showing that there are in fact formulas to which an exponential number
of implicates have to be added in order to make them propagation complete.

3. Properties of Empowering Implicates

Let us start this section with a discussion on connection between unit
refutation completeness introduced in [26] and propagation completeness in-
troduced in [9]. First let us recall that a formula ϕ is unit refutation complete
if for every implicate C of ϕ we have that ϕ ∧ ¬C `1 ⊥. This means that
the fact that C is an implicate of ϕ can be proved using just unit resolution.
It is not hard to see that if a formula ϕ is propagation complete, then it is
unit refutation complete as well. Indeed, if C = (l1 ∨ · · · ∨ lk) is an implicate
of ϕ, then either ϕ ∧

∧k−1
i=1 ¬li `1 ⊥, or ϕ ∧

∧k−1
i=1 ¬li `1 lk which implies

ϕ ∧
∧k
i=1 ¬li `1 ⊥. On the other hand, it is not true that every unit refuta-

tion complete formula is also propagation complete. Consider the following
formula ϕ:

ϕ = (x ∨ a ∨ b ∨ c) ∧ (x ∨ a ∨ b ∨ d).

This is a prime CNF which has only one more prime implicate C = (a∨b∨c∨
d) produced by resolving the two clauses in ϕ. We can observe that ϕ is unit
refutation complete. If we add negation of C to ϕ, then unit resolution of x
and x gives us the empty clause. However ϕ is not propagation complete and
C is an empowering implicate of ϕ with empowered literal a (or b). Indeed,
if we set b, c, and d to false in ϕ, we get CNF (x∨ a)∧ (x∨ a) from which it
is not possible to derive a just using unit resolution.

It follows from the above discussion that the set of propagation complete
CNFs is a proper subset of unit refutation complete CNFs. The aim of this
section is to recall several results about the class of unit refutation complete
CNFs from [26] and observe that some of these results are in fact true already
for the set of propagation complete formulas.
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We shall start with showing that adding a literal to a non-empowering
implicate cannot make it empowering with respect to any of the original
literals.

Lemma 3.1. Let ϕ be a CNF formula and let C = l1∨· · ·∨lk be an implicate
of ϕ which is not empowering. Let A be a clause and let li ∈ C be an arbitrary
literal. Then C ∨A is not empowering implicate of ϕ with empowered literal
li.

Proof : Let us assume without loss of generality that i = k (if not, then we
can achieve this by renaming the variables). By definition, the fact that C is
not empowering with empowered literal lk implies that either ϕ∧

∧k−1
j=1 ¬lj `1

⊥, or ϕ∧
∧k−1
j=1 ¬lj `1 lk because C is an implicate of ϕ and thus ϕ∧

∧k−1
j=1 ¬lj |=

lk. Since ϕ ∧
∧k−1
j=1 ¬lj is a subformula of ϕ ∧

∧k−1
j=1 ¬lj ∧

∧
a∈A ¬a, what we

can derive by unit propagation from the former formula, can be derived from
latter one as well. Thus we have that ϕ ∧

∧k−1
j=1 ¬lj ∧

∧
a∈A ¬a `1 ⊥ or

ϕ ∧
∧k−1
j=1 ¬lj ∧

∧
a∈A ¬a `1 lk. This means that by definition, C ∨ A is not

empowering implicate with empowered literal lk.

Note that in the previous proposition we cannot argue that A ∨ C is
not empowering because it could be empowering with an empowered literal
from A, e.g. if A would itself be an empowering clause. That is why we
consider only literals in C. Using Lemma 3.1, we can easily show that among
empowering implicates the prime implicates are the only ones we need to
consider.

Lemma 3.2. Let ϕ be a nonempty satisfiable CNF formula (i.e. it has at
least one nonempty clause) and let C be an empowering implicate for ϕ. Then
any implicate C ′ of ϕ subsuming C is empowering for ϕ (this in particular
includes the case when C ′ is prime).

Proof : Let C ′ be an arbitrary implicate subsuming C and let us assume
that C ′ 6= C. If C ′ is not empowering, then ϕ∧¬C ′ `1 ⊥ and thus C cannot
be empowering with respect to a literal a, which is not in C ′. On the other
hand, C cannot be empowering with respect to a literal in C ′ as well due to
Lemma 3.1.

As an easy corollary we now get that a canonical CNF formula is always
propagation complete, although this can be easily deduced from properties
of canonical CNFs as well.
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Now let us consider the problem of generating an empowering implicate
for a given CNF formula. A natural method to consider is to generate an
empowering implicate by the resolution procedure. In [26] it is shown that
non-merge resolution cannot produce an empowering implicate with respect
to unit refutation completeness. In case of propagation completeness the
same is true. It follows from discussion at the beginning of Section 5 in [9].
We shall formulate this proposition as a lemma to be able to reference to it
later.

Lemma 3.3. Let ϕ be a CNF formula and let C be produced from ϕ by a
series of non-merge resolutions. Then C is not an empowering implicate of
ϕ.

Keeping in mind that a canonical formula is propagation complete, it
follows that a CNF formula ϕ satisfying that every prime implicate of ϕ
is either present in it or it can be derived from ϕ by a series of non-merge
resolutions is always propagation complete. This property was already shown
in form of Theorem 1 in [26] for unit refutation completeness and it is an
easy corollary of arguments about non-merge resolution in [9] (here stated
as Lemma 3.3) that it is true also for PC formulas.

Since PC formulas allow easy inference, it is interesting to investigate
classes which are contained in the class of PC CNF formulas. One such
example is given by the following theorem which shows the desired property
for the class of prime quadratic CNF formulas.

Theorem 3.4. If ϕ is a prime quadratic CNF formula, then it is propagation
complete.

Proof : If ϕ is not satisfiable, then the proposition of the theorem is trivial.
Let us assume that ϕ is a satisfiable prime quadratic CNF formula.

By Lemma 3.2 it is enough to consider prime implicates as candidates for
empowering implicates. Because ϕ is a prime CNF formula, it must contain
all the unit prime implicates. Hence, if any other prime implicate should be
added to ϕ to make it propagation complete, it must be a quadratic clause
which is produced by resolving two other quadratic clauses. It is a simple
observation that these resolutions have to be non-merge. Thus by Lemma 3.3
we have that ϕ must already be propagation complete.

The following Lemma shows that the primeness assumption in the state-
ment of Theorem 3.4 is necessary.
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Lemma 3.5. There is a (nonprime) quadratic CNF formula which is not
PC.

Proof : Let us consider the following CNF formula:

ϕ = (a ∨ b) ∧ (a ∨ b)

ϕ is clearly a quadratic CNF formula. On the other hand, ϕ is not PC
because ϕ |= a, but ϕ 6`1 a.

Now let us turn our attention to the complexity of testing if a given
clause C is an empowering implicate of a CNF formula ϕ. We shall denote
this problem as IsEmpowering(ϕ,C). Note that co-NP completeness of
IsEmpowering(ϕ,C) comes as no surprise since it is in essence very similar
to another co-NP complete problem IsImplicate(ϕ,C). The hard part of
checking whether given clause C is an empowering implicate of ϕ is in fact
checking whether C is an implicate of ϕ at all. Thus the co-NP completeness
of IsEmpowering(ϕ,C) is a direct consequence of co-NP completeness of
IsImplicate(ϕ,C). The proof of the following theorem only formalizes this
idea.

Theorem 3.6. The problem IsEmpowering(ϕ,C) is co-NP complete.

Proof : To show that a problem is in co-NP it suffices to have for every
negative instance of the problem a polynomially verifiable certificate which
allows to verify that the answer is no. We can distinguish two cases when a
pair (ϕ,C) forms a negative instance of IsEmpowering. In the first case C
is not even an implicate of ϕ and the desired certificate is then an assignment
of truth values to the variables which satisfies ϕ and falsifies C. The second
case is when C is an implicate of ϕ but not an empowering one. In this
case an empty certificate is good enough because one needs no additional
information to be able to check in polynomial time that no literal in C is
empowered. This can be done by running unit propagation and checking for
every literal ` in C that ϕ ∧

∧
`′∈C,`′ 6=` ¬`′ `1 ⊥ or ϕ ∧

∧
`′∈C,`′ 6=` ¬`′ `1 `.

For the co-NP hardness we reduce the co-NP complete problem IsIm-
plicate to IsEmpowering. Let (ϕ,C) be an arbitrary instance of IsIm-
plicate. We start by a simple preprocessing step in which we run unit
propagation to test whether ϕ ∧

∧
`∈C ¬` `1 ⊥. If yes, then C is an impli-

cate of ϕ (in fact a 1-provable implicate), i.e. (ϕ,C) is a positive instance of
IsImplicate, and the reduction algorithm can terminate by answering yes.
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Note that this case includes the situation when C is a clause in ϕ. If no,
i.e. if ϕ ∧

∧
`∈C ¬` 6`1 ⊥, we define an instance (ϕ′, C ′) of IsEmpowering

by ϕ′ = ϕ ∧ (x ∨ y) ∧ (x ∨ y) and C ′ = C ∨ x, where x and y are two new
variables not appearing in (ϕ,C). We shall show that C is an implicate of ϕ
if and only if C ′ is an empowering implicate of ϕ′ with x as the empowered
literal.

Let C be an implicate of ϕ. C is clearly an implicate of ϕ′, and hence
also C ′ is an implicate of ϕ′. To see that C ′ is empowering with x as the
empowered literal recall that ϕ ∧

∧
`∈C ¬` 6`1 ⊥ and thus ϕ′ ∧

∧
`∈C ¬` 6`1 x

because unit propagation does nothing on (x∨ y)∧ (x∨ y) and neither x nor
y appear in ϕ and C.

Let C ′ be an empowering implicate of ϕ′ with x as the empowered literal.
The fact that C ′ is an implicate of ϕ′ means that any assignment that falsifies
C ′ must also falsify ϕ′. However, any assignment which falsifies C ′ sets x to
1, falsifies C and satisfies (x∨ y)∧ (x∨ y) regardless of the value of y. Thus,
to falsify ϕ′ it must falsify ϕ. Therefore any assignment which falsifies C
must also falsify ϕ, which means that C is an implicate of ϕ.

Let us recall the notion of a tied chain in a CNF formula used in [26] in
case of unit refutation completeness.

Definition 3.7 ([26], introduced in [32]). A tied chain in a CNF formula ϕ
is a sequence of triples (x1, C1, y1), (x2, C2, y2), . . . , (xn, Cn, yn) such that:

• For 1 ≤ i ≤ n, Ci is a clause in ϕ and xi, yi are two different literals
in Ci (i.e. xi 6= yi).

• For 1 ≤ i ≤ n− 1, we have that yi and xi+1 are complementary literal
(called link literals of the chain).

• x1 = yn is called the tied literal of the chain.

For example CNF formula ϕ = (p ∨ q ∨ r) ∧ (r ∨ s) ∧ (s ∨ p) contains
a tied chain with p as tied literal. In [32] it is shown that the absence of
tied chains is a sufficient condition for unit refutation completeness. The
following lemma was shown in [26] as Lemma 6.

Lemma 3.8 (Lemma 6 of [26]). Let C be an implicate of a CNF formula ϕ
which is produced from ϕ by a resolution proof D in which the last resolution
made is a merge resolution. Let us assume that the parent clauses of C in D
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are C1 and C2, where M denotes the set of common literals in C1 and C2.
M 6= ∅ since the last step in D is a merge resolution and every literal of M
is contained in C. Then ϕ contains, for each literal ` ∈ M , a tied chain T`
with ` as its tied literal. Furthermore, each link literal in T` has a clause in
D which is produced from its parent clauses by resolution upon `.

It is argued in [26] that if there are no tied chains in a CNF formula
ϕ, there can be no merge resolutions and thus the formula ϕ has to be
unit refutation complete. The same argument can be used for propagation
completeness. We can argue in the same way using Lemma 3.3 that absence
of tied chains in a CNF formula ϕ implies that ϕ is propagation complete.
We shall use this property in proofs in the text and thus we shall formulate
it as a lemma to be able to reference to it.

Lemma 3.9. If a CNF formula ϕ does not contain tied chains, then it is
propagation complete.

4. Resolution derivations of empowering implicates

We have seen in Theorem 3.6 that it is hard to check whether a given
clause C is an empowering implicate of a given formula ϕ. The hard part of
this test is to check whether C is in the set S of all implicates of ϕ. The core
of the proof of Theorem 3.6 shows that considering a smaller set S ′ ⊆ S of
all empowering implicates of ϕ does not make this test easier.

We shall show now that the hard part of the test can be in some sense
avoided by considering a suitable enlargement of the tested clause. In partic-
ular, we shall show that if a clause C is an empowering implicate of a CNF
formula ϕ, we can always extend C by adding suitable literals to obtain
clause C ′ which is still empowering and moreover we can check that C ′ is an
implicate of ϕ simply by unit resolution. Let us recall that such a clause is
called 1-provable (which is a notion introduced in [15]).

Proof of Theorem 4.2 is significantly based on Proposition 4.1. The propo-
sition is given in [15] and may be restated as follows.

Proposition 4.1 (Proposition 2 of [15]). Let ψ be an unsatisfiable CNF such
that ψ 6`1 ⊥ and Π be its resolution refutation. Then there exists a clause
Cψ ∈ Π which is both empowering and 1-provable.

Let C be an empowering implicate of a formula ϕ which is not 1-provable.
This means that if we falsify all the literals in C and add them to ϕ, thus
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producing ψ = ϕ ∧ ¬C, then we get a contradiction which is not provable
by unit resolution. By using the previous proposition we show that we may
add the clause C to the obtained clause Cψ to obtain a clause which is both
1-provable and empowering.

The following Theorem 4.2 is a consequence of Proposition 4.1. For read-
ers familiar with CDCL SAT solvers, the idea remains the same as in the
previous paragraph. By falsifying the literals in C any CDCL SAT solver
must derive a contradiction. We add the solver’s decisions to the input
clause C, i.e. we add ¬C and the conjunction of literals corresponding to
each assigned variable to the input formula. After such an addition, we ob-
tain the desired 1-provable and empowering clause. As we shall show later in
Proposition 4.3 we can even derive such a clause C using only linear number
of resolution steps with respect to the number of literal occurrences in ϕ.

Theorem 4.2. Assume that C is an empowering implicate of a formula ϕ
which is not 1-provable. Then there is an implicate C ′ of ϕ such that C ⊂ C ′

and C is both 1-provable and empowering.

Proof : Let ψ = ϕ∧¬C and Π be a resolution refutation of ψ. Because C
is not 1-provable for ϕ it holds that ψ 6`1 ⊥. Then according to Proposition
4.1 there is a clause Cψ ∈ Π which is both empowering and 1-provable with
respect to ψ. We consider a clause Cϕ = Cψ ∨ C.

First, Cϕ is 1-provable for ϕ because Cψ is 1-provable for ψ and all the
possibly required literals were added to Cϕ. It follows from the following
obvious chain of equivalence:

Cψ is 1-provable for ψ ⇔ ψ ∧ ¬Cψ `1 ⊥ ⇔ ϕ ∧ ¬C ∧ ¬Cψ `1 ⊥ ⇔
ϕ ∧ ¬Cϕ `1 ⊥ ⇔ Cϕ is 1-provable for ϕ.

(1)

Let ` be an empowering literal of Cψ for ψ. Then ` is trivially also an
empowered literal of Cϕ for ϕ. The required properties for unit resolution
and entailment come from the definitions of Cϕ and ψ using similar chain of
equivalences as in 1.

Thus Cϕ is the desired clause since it is both empowering and 1-provable
with respect to ϕ.

The following proposition shows that not only can we find a 1-provable
and empowering implicate as in Theorem 4.2 but we can also derive some
empowering implicate by a resolution derivation of linear length with respect
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to the number of literals occurring in given formula. The proof is based on
ideas presented in [15] and [33, 34, 35] in the context of CDCL SAT solvers.
More detailed discussion about this connection is presented just after the
proof of the proposition.

Proposition 4.3. Let ϕ be a formula on n variables which is not propagation
complete and s be the size of the CNF representation of ϕ (i.e. s is the total
number of occurences of literals in ϕ). Then there is an empowering implicate
C of ϕ which can be derived by a series of resolutions of length at most s
from ϕ

Proof : From Theorem 4.2 it follows that there is an empowering 1-provable
implicate Cϕ of ϕ with an empowered literal `. Let ϕ′ denote the formula
which originates from ϕ after adding unit clauses formed by negated literals
from Cϕ, i.e. ϕ′ ≡ ϕ ∧ ¬Cϕ. Since Cϕ is 1-provable it follows that ϕ′ `1 ⊥,
i.e. we can derive contradiction from ϕ′ by using only unit resolution.

Due to the nature of unit resolutions, we can assume that the unit refu-
tation proceeds in two phases.

1. In the first phase we take all unit clauses from ¬Cϕ and perform unit
resolutions only over the variables from Cϕ.

2. In the second phase we continue with refutation proof without using
unit clauses from ¬Cϕ and we do not resolve over variables from Cϕ at
all.

In case of unit resolutions if we already have some unit clauses it does not
matter in which order we make unit resolutions over them. Thus we may as-
sume without loss of generality that unit clauses from ¬Cϕ are used first. The
first phase thus corresponds to performing partial assignment to variables of
ϕ which falsifies literals in Cϕ.

Let us now assume that D′1, . . . , D
′
m = ⊥ is a unit refutation proof which

proceeds in the above two phases. Since it is a unit refutation proof, it can
be observed that m ≤ s. Let us assume that the first phase is formed by
clauses D′1, . . . , D

′
k′−1 and the second phase is formed by clauses D′k′ , . . . , D

′
m.

Each clause among D′1, . . . , D
′
k′−1 is therefore either a clause in ϕ′ or it orig-

inates from two preceding clauses by unit resolution over variable from Cϕ.
Similarly each clause among D′k′ , . . . , D

′
m is either an original clause from ϕ

or it originates from two preceding clauses by unit resolution over a variable
which is not in Cϕ. Observe that if the resolution proof is irredundant, i.e.
no clause can be dropped from it, no clause among D′k′ , . . . , D

′
m contains a
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variable from Cϕ. This is because in the end we arrive at an empty clause
and there is no way to remove a variable from Cϕ in the second phase.

Let us now consider the situation in which we do not proceed with the
first phase, in particular if we replace the first phase only with a list of
corresponding clauses from ϕ. In this case the second phase can proceed as
before (except that unit resolution steps are replaced by general resolution
steps) only now the input clauses of phase 2 may contain some literals from
Cϕ as these were not removed in missing phase 1. These literals propagate
down to the end of the proof and ⊥ now becomes a subclause of Cϕ. In
this way we shall obtain a resolution proof of a clause C ′ ⊆ Cϕ. Note that
` will be present in C ′ because otherwise the original unit refutation would
actually prove that ϕ ∧ ¬(Cϕ \ {`}) `1 ⊥ which would be in contradiction
with the fact that Cϕ is an empowering implicate with empowered literal `.
Thus C ′ will be empowering by Lemma 3.1.

Let us now formalize the above idea. If D′j is a clause among the clauses
D′1, . . . , D

′
k′−1, then it is either a unit literal from ¬Cϕ or there is a clause

Dj ∈ ϕ, such that D′j originates from Dj by falsifying some literals from Cϕ.
If D′j is later used in the second phase of the unit refutation proof, the latter
is the case and then D′j originates from some clause Dj ∈ ϕ by falsifying all
literals of Cϕ which appear in Dj.

If D′j is among D′k′ , . . . , D
′
m then we shall define clause Dj as follows. If

D′j is an original clause from ϕ, then Dj = D′j, if D′j = R(D′a, D
′
b) where

1 ≤ a, b < j, then we define Dj = R(Da, Db). Note that if D′a and D′b
were two resolvable clauses, then the same is true about Da and Db. This is
because if Da contains more literals than D′a these literals are from Cϕ and
the same is true for Db and D′b.

In the end we get a resolution derivation of length at most m ≤ s of clause
C = Dm which is a subclause of Cϕ. As we have already mentioned ` must
be present in C. Otherwise we would get that it was not necessary to use `
to derive ⊥ from ϕ′ which would be in contradiction with the fact that Cϕ
is an empowering implicate. According to Lemma 3.1 C is an empowering
implicate. In particular, if C would not be empowering, then by Lemma 3.1
Cϕ would not be empowering with empowered literal `.

It is also possible to prove Proposition 4.3 by analysing a run of a CDCL
SAT solver. Let us describe the sketch of such proof, the precise definitions
of the below mentioned properties can be found in [33, 34, 35]. Consider the
situation during the run of a CDCL SAT solver solving ϕ when the partial
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assignment satisfies ¬Cϕ. Clearly then unit propagation is able to derive a
conflict. By Proposition 3 of [34] each conflict clause can be derived by a
trivial resolution derivation of length at most s. From Proposition 2 of [33] it
follows that each asserting clause is also empowering. Since for each conflict
there is at least one asserting clause, e.g. 1-UIP [35], then we have found an
empowering clause with a short resolution proof from ϕ.

As the example in the following proposition shows, the linear upper bound
on the length of resolution derivation of an empowering implicate is tight up
to a multiplicative constant.

Theorem 4.4. For each n there is a formula on 2n + 1 variables with size
O(n) such that it is not propagation complete, but resolution derivation of
length n is needed to find an empowering implicate.

Proof : This is actually a very simple corollary to Lemma 3.9. It is enough
to construct a tied chain of length n. The following formula (for given n)
contains such a chain:

ϕn = (z ∨ A1 ∨ a1) ∧ (a1 ∨ A2 ∨ a2) ∧ . . . ∧ (an−3 ∨ An−2 ∨ an−2)

∧(an−2 ∨ An−1 ∨ an−1) ∧ (an−1 ∨ An ∨ z).

Clearly both the number of variables and the number of clauses are linear
in n. First, let us observe that (A1 ∨ A2 ∨ · · · ∨ An ∨ z) is an empowering
implicate with empowered literal z. This is because by falsifying all literals
A1, . . . , An we get a quadratic formula which has z as a unit implicate, but
unit resolution cannot derive this fact. Since the only tied chain in ϕn is
composed by all the n clauses in ϕn, by Lemma 3.9 we need all these clauses
in order to derive an empowering implicate.

Note also that formula ϕn is anti-Horn (i.e. every clause contains at most
one negative literal) and thus the Theorem 4.4 holds also when restricted to
anti-Horn or Horn formulas as we observe in the following corollary.

Corollary 4.5. For each n there is a Horn formula on 2n+1 variables with n
clauses that it is not propagation complete but resolution derivation of length
n is needed to find an empowering implicate.

Proof : The formula ϕn in the previous theorem had at most one negative
literal in each clause. Therefore, switching all literals to their complement in
ϕn creates a Horn CNF formula with the desired property.
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The first idea which comes to mind when trying to find an empowering
implicate of a CNF formula ϕ is to run resolution until one such implicate
is generated. Of course, if ϕ already is propagation complete, it might be
necessary to find all prime implicates before we can claim ϕ is propagation
complete. On the other hand, Proposition 4.3 suggests that in some cases,
we can find an empowering implicate relatively quickly in this way. However,
the obtained empowering implicate is not guaranteed to be prime. So it is
natural to ask what is the necessary length of resolution derivations of prime
empowering implicates. As the following observation shows, when seeking to
find a prime empowering implicate all the hardness results about resolution
refutations apply in this case.

Lemma 4.6. Let ϕ be a CNF formula and let x be a new variable not ap-
pearing in ϕ. Then ϕ |= ⊥ if and only if ϕ `1 ⊥ or x is the only prime
empowering implicate of (ϕ ∨ x). Moreover, if ϕ 6`1 ⊥, then there is a one
to one correspondence between the resolution refutations of ϕ and resolution
derivations of x from (ϕ ∨ x).

Proof : Let us denote ϕ′ the CNF formula equivalent to ϕ ∨ x. Note that
ϕ′ can be obtained from ϕ by adding literal x to every clause.

Let us at first suppose that ϕ |= ⊥. In this case ϕ′ ≡ x and thus x is
the only prime implicate of ϕ′. Let us assume that x is not an empowering
implicate of ϕ′, thus ϕ′ `1 x. Let D′1, . . . , D

′
k be a unit resolution derivation

of x from ϕ′. Let us now denote Di the clause D′i with literal x removed.
It is clear that D1, . . . , Dk is now a unit resolution refutation of ϕ and thus
ϕ `1 ⊥.

Now let us assume that ϕ `1 ⊥ or x is the only prime empowering impli-
cate of ϕ′. In the former case trivially ϕ |= ⊥. In the latter case observe that
ϕ is equivalent to ϕ′ with x assigned to 0. Since x is an implicate of ϕ′ it
implies that ϕ |= ⊥. Moreover, the resolution proof of x from ϕ′ immediately
gives resolution proof of ⊥ from ϕ.

The one to one correspondence is immediately seen from the above argu-
ments.

Lemma 4.6 is an easy observation which shows that all results about
complexity of resolution refutations of CNF formulas can be repeated for
resolution derivations of prime empowering implicates as well. There are
many results that can be used in this context, let us mention at least some
of them. In [19] (and in many papers and books that followed) it was shown
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that pigeon hole principle formulas on n(n + 1) variables and O(n3) clauses
(PHPn) have minimal resolution refutation of size cn for some c > 0. If a
formula PHPn is used with Lemma 4.6, we get immediately that every reso-
lution derivation of the single prime empowering implicate x from (PHPn∨x)
must have superpolynomial length as well. This is in contrast with Propo-
sition 4.3 in which we showed that for a formula which is not propagation
complete there always exists some empowering implicate that can be gen-
erated using only number of resolutions that is linear in the length of the
formula i.e. O(n4) for (PHPn ∨ x). Of course, in case of (PHPn ∨ x) such
an implicate would not be prime.

Note that in [9] the formula (PHPn ∨ x) was used in Section 4.2 as an
example of a formula in which we can generate superpolynomially many
empowering implicates while the only meaningful empowering implicate is x.
In this sense Lemma 4.6 can be viewed as a simple generalization of their
example, where by meaningful implicates we now consider prime implicates.

The lower bound on the length of a resolution refutation of a PHPn
formula is only superpolynomial with respect to the length of the formula.
Examples of formulas on Θ(n) variables consisting of Θ(n) clauses were given
in [20] for which the lower bound on the length of a minimal resolution
refutation is truly exponential.

Although we used Lemma 4.6 for general resolution in our example, it
is more general than that, it shows that in fact any hardness result about
resolution refutations can be used for similar results about resolution deriva-
tions of a prime empowering implicate. Thus we can consider formulas which
require exponential tree resolution refutations though shortest general res-
olution refutations have only polynomial number of steps [36]. There are
other resolution refinements inbetween tree and general resolution we can
take into account as well [37]. Similarly, we can use results of [38] which
show formulas with resolution refutations requiring almost linear depth, it
can be observed that these formulas are even Horn. There are many other
results about resolution refutations which we have omitted but all of them
could be used for claims about resolution derivations of prime empowering
implicates as well.

5. Hardness of generating an empowering implicate

In this section we prove that testing whether a given CNF formula has
an empowering implicate is an NP-complete problem. We start by showing
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that it is in NP.

Lemma 5.1. The problem of testing whether a given CNF formula ϕ has an
empowering implicate is in NP.

Proof : It follows from Theorem 4.2 that ϕ has an empowering implicate
if and only if it has an empowering and 1-provable implicate. Thus the
certificate for ϕ having an empowering implicate is a clause C which is both
empowering and 1-provable. These properties can be checked in polynomial
time using unit propagation. It follows that the problem is in NP.

Now we shall show that the problem is NP-hard by a reduction from
3D Matching (3DM), which is a well-known NP-complete problem [39, 40].
In 3DM we are given three pairwise disjoint sets X, Y , Z of the same size
|X| = |Y | = |Z| = q and a set of triples W ⊆ X × Y × Z. The question we
seek to answer is whether W contains a matching of size q, i.e. whether there
is a subset M ⊆ W of size |M | = q such that each element of X, Y , and
Z is contained in exactly one triple in M (i.e. the triples in M are pairwise
disjoint).

Next, we present a reduction of a 3DM problem into the problem of
testing the existence of an empowering implicate. The reduction is a slight
modification of the proof of coNP-hardness of recognizing whether a given
CNF formula is a SLUR formula [41]. Unfortunately, the reduction from [41]
cannot be used directly and we have to modify it. This is because the SLUR
class coincides with the class of unit refutation complete formulas (see [42]),
and the class of propagation complete formulas forms a strict subclass of
unit refutation formulas as we have argued at the beginning of Section 3.
In [41] we have associated a formula ϕW to an instance of 3DM for which
it was true that it was SLUR (or unit refutation complete) if and only if W
contained a perfect matching. In case W does not contain a perfect matching
ϕW is not unit refutation complete and thus it is not propagation complete
as well. Unfortunately, the opposite implication was not true for formula ϕW
constructed in [41], i.e. if W contains a perfect matching, then ϕW is unit
refutation complete, but it still not propagation complete. Thus we have to
modify the original reduction in order to get the opposite implication as well.

Definition 5.2. With every instance X, Y, Z,W of 3DM we associate a CNF
formula ϕW as follows. We assume that X = {x1, . . . , xq}, Y = {y1, . . . , yq},
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Z = {z1, . . . , zq}, and W = {E1, . . . , Ew} where w = |W |. We also as-
sume that Ej = (xf(j), yg(j), zh(j)) where f , g, and h are functions deter-
mining which elements of X, Y , and Z belong to Ej (i.e. given j with
Ej = [xi1 , yi2 , zi3 ], function f returns the index of the x member of triple Ej,
thus f(j) = i1, similarly g(j) = i2, and h(j) = i3).

• For every i ∈ {1, . . . , q − 1} let us denote Ai = (ai ∨ ai+1) where
a1, . . . , aq are new variables, and let Aq = (aq ∨ a1).

• For every i ∈ {1, . . . , q} and j ∈ {1, . . . , w} let us denote Bj
i = (b1

i ∨
· · · ∨ bj−1

i ∨ bji ∨ b
j+1
i ∨ · · · ∨ bwi ), i.e. Bj

i denotes a clause on variables
b1
i , . . . , b

w
i in which every literal is negative except bji .

• For every i ∈ {1, . . . , q} and j ∈ {1, . . . , w} let us denote Cj
i = (c1

i ∨
· · · ∨ cj−1

i ∨ cji ∨ c
j+1
i ∨ · · · ∨ cwi ), i.e. Cj

i denotes a clause on variables
c1
i , . . . , c

w
i in which every literal is negative except cji .

• Given a triple Ej ∈ W , let Dj = (Af(j) ∨Bj
g(j) ∨ C

j
h(j)).

• Finally, let ϕW =
∧w
j=1 Dj.

Example 5.3. Let X = {x1, x2, x3}, Y = {y1, y2, y3}, Z = {z1, z2, z3}, and
W = {[x1, y1, z1], [x2, y3, z2], [x3, y2, z3], [x1, y2, z3], [x3, y1, z1]}. Then there are
two possible matchings M1 = {[x1, y1, z1], [x2, y3, z2], [x3, y2, z3]} and M2 =
{[x1, y2, z3], [x2, y3, z2], [x3, y1, z1]}.

The formula ϕW for this 3DM instance would be

ϕW = (a1 ∨ a2 ∨ b1
1 ∨ b2

1 ∨ b3
1 ∨ b4

1 ∨ b5
1 ∨ c1

1 ∨ c2
1 ∨ c3

1 ∨ c4
1 ∨ c5

1) ∧
(a2 ∨ a3 ∨ b1

3 ∨ b2
3 ∨ b3

3 ∨ b4
3 ∨ b5

3 ∨ c1
2 ∨ c2

2 ∨ c3
2 ∨ c4

2 ∨ c5
2) ∧

(a3 ∨ a1 ∨ b1
2 ∨ b2

2 ∨ b3
2 ∨ b4

2 ∨ b5
2 ∨ c1

3 ∨ c2
3 ∨ c3

3 ∨ c4
3 ∨ c5

3) ∧
(a1 ∨ a2 ∨ b1

2 ∨ b2
2 ∨ b3

2 ∨ b4
2 ∨ b5

2 ∨ c1
3 ∨ c2

3 ∨ c3
3 ∨ c4

3 ∨ c5
3) ∧

(a3 ∨ a1 ∨ b1
1 ∨ b2

1 ∨ b3
1 ∨ b4

1 ∨ b5
1 ∨ c1

1 ∨ c2
1 ∨ c3

1 ∨ c4
1 ∨ c5

1).

In the following, we shall show that the empowering implicates of ϕW cor-
respond to perfect matchings of W . In particular, given ϕW in this example
we shall have two possible empowering implicates corresponding to matchings
M1 and M2 respectively.
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H1 = (a1∨ b1
1 ∨ b2

1 ∨ b3
1 ∨ b4

1 ∨ b5
1 ∨ c1

1 ∨ c2
1 ∨ c3

1 ∨ c4
1 ∨ c5

1 ∨
b1

3 ∨ b2
3 ∨ b3

3 ∨ b4
3 ∨ b5

3 ∨ c1
2 ∨ c2

2 ∨ c3
2 ∨ c4

2 ∨ c5
2 ∨

b1
2 ∨ b2

2 ∨ b3
2 ∨ b4

2 ∨ b5
2 ∨ c1

3 ∨ c2
3 ∨ c3

3 ∨ c4
3 ∨ c5

3)

and

H2 = (a1∨ b1
2 ∨ b2

2 ∨ b3
2 ∨ b4

2 ∨ b5
2 ∨ c1

3 ∨ c2
3 ∨ c3

3 ∨ c4
3 ∨ c5

3 ∨
b1

3 ∨ b2
3 ∨ b3

3 ∨ b4
3 ∨ b5

3 ∨ c1
2 ∨ c2

2 ∨ c3
2 ∨ c4

2 ∨ c5
2 ∨

b1
1 ∨ b2

1 ∨ b3
1 ∨ b4

1 ∨ b5
1 ∨ c1

1 ∨ c2
1 ∨ c3

1 ∨ c4
1 ∨ c5

1).

We claim that ϕW admits an empowering implicate if and only if the
input 3DM instance has a perfect matching. The proof of this claim is split
into the following two lemmas.

Lemma 5.4. Using the notation from Definition 5.2 let M ⊆ {1, . . . , w} be
a perfect matching and let G =

∨
j∈M Bj

g(j) ∨ C
j
h(j) ∨ a1 be a clause. Then G

is an empowering implicate of ϕW with a1 being the empowered literal.

Proof : Let us renumber the triples in W so that M = {1, . . . , q} and that
f(i) = i, i.e. xi ∈ Ei, for i = 1, . . . , q. Now, let us consider the following
chain of resolutions:

G1 = D1, G2 = R(G1, D2), . . . , Gi = R(Gi−1, Di), . . . , Gq = R(Gq−1, Dq).

One can check that Gq = G and thus G is an implicate of ϕW . All clauses
in this chain are resolvable because the triples in the matching are disjoint.

It remains to prove that G is empowering. Let ϕ′ denote the formula
originating from ϕW by falsifying (substituting the value false for) all literals
in G except a1. We are going to show that ϕ′ ≡ A1 ∧ · · · ∧ Aq. To this end,
let Dj = (Af(j)∨Bj

g(j)∨C
j
h(j)) be an arbitrary clause in ϕW and let us have a

look on what happens with Dj after falsifying the aformentioned literals. If
j ∈ M , then we have falsified all literals in Dj except Af(j). If j 6∈ M , then
let j′ ∈ M be an index for which g(j′) = g(j). Such an index exists because

M as a matching covers element yg(j). It follows that Bj′

g(j′) has two conflict

variables with Bj
g(j) (note that j 6= j′) and thus by falsifying all literals
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in Bj′

g(j′) we necessarily satisfy the clause Dj. By these considerations only

clauses A1, . . . , Aq remain in ϕ′. Note that none of these clauses is missing
since M is a matching. The CNF formula ϕ′ = A1 ∧ · · · ∧ Aq has no unit
clauses and thus unit propagation will not derive anything from it. It follows
that G is an empowering implicate.

Example 5.5. Let us consider implicate H1 from example 5.3 and let us show
how it can be derived by resolutions from formula ϕW . Implicate H1 corre-
sponds to matching M1 = {[x1, y1, z1], [x2, y3, z2], [x3, y2, z3]}. The clauses of
ϕW corresponding to triples in M1 are:

D1 = (a1 ∨ a2 ∨ b1
1 ∨ b2

1 ∨ b3
1 ∨ b4

1 ∨ b5
1 ∨ c1

1 ∨ c2
1 ∨ c3

1 ∨ c4
1 ∨ c5

1)

D2 = (a2 ∨ a3 ∨ b1
3 ∨ b2

3 ∨ b3
3 ∨ b4

3 ∨ b5
3 ∨ c1

2 ∨ c2
2 ∨ c3

2 ∨ c4
2 ∨ c5

2)

D3 = (a3 ∨ a1 ∨ b1
2 ∨ b2

2 ∨ b3
2 ∨ b4

2 ∨ b5
2 ∨ c1

3 ∨ c2
3 ∨ c3

3 ∨ c4
3 ∨ c5

3).

By resolving D1 with D2 we get clause

G1 = (a1 ∨ a3 ∨ b1
1 ∨ b2

1 ∨ b3
1 ∨ b4

1 ∨ b5
1 ∨ c1

1 ∨ c2
1 ∨ c3

1 ∨ c4
1 ∨ c5

1 ∨
b1

3 ∨ b2
3 ∨ b3

3 ∨ b4
3 ∨ b5

3 ∨ c1
2 ∨ c2

2 ∨ c3
2 ∨ c4

2 ∨ c5
2).

By further resolving G1 with D3 we get desired implicate H1. Observe that
G1 was produced by non-merge resolution and thus by Lemma 3.3 it is not
an empowering implicate. On the other hand H1 = R(G1, D3) is produced
using a merge resolution and it is hence a good candidate for an empowering
implicate of ϕW . If we falsify all literals in H1 except a1, we get clauses
D′1 = (a1 ∨ a2), D′2 = (a2 ∨ a3), and D′3 = (a3 ∨ a1) from clauses D1, D2,
and D3 respectively. The remaining two clauses in ϕW are satisfied by this
assignment. Thus H1 is indeed an empowering implicate of ϕW .

Lemma 5.6. Let G = G′ ∨ u be a prime empowering implicate of ϕW with
u being the empowered literal. Then u must be a1 and G′ determines perfect
matching in the same way as G in Lemma 5.4.

Proof : The proof heavily relies on Lemma 3.8 and Lemma 3.9. Let us
consider a resolution derivation of G′∨u. By Lemma 3.8 and Lemma 3.9 this
derivation contains a tied chain in which every link literal is resolved upon.
Consider how such a tied chain in ϕW may look like. The only possible tied
literal is a1, and the link literals are among a2, . . . , aq. This is because, as
we can observe, the c and b variables cannot be resolved upon (if two clauses
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have a conflict in a c or b variable, they are not resolvable as they have at least
two conflicts). Thus a tied chain in ϕW has to look as follows: Di1 , . . . , Diq ,
where f(ij) = j, i.e. Di1 contains (a1 ∨ a2), Diq contains (aq ∨ a1) or vice
versa if we look at the tied chain in the opposite direction. We shall assume
without loss generality that the former is the case (i.e. Di1 contains (a1∨a2)
and Diq contains (aq ∨ a1)). For 1 < j < q clause Dij contains (aj ∨ aj+1).
The chain has to have the length q as this is necessary to get from a1 back
to a1 through link literals among a2, . . . , aq. Now, if we look at how clauses
Di1 , . . . , Diq can be resolved upon, we get that triples Ei1 , . . . , Eiq must be
disjoint to have each consecutive pair in the sequence Di1 , . . . , Diq resolvable.
This is because if Dij , Dij+1

are resolvable, then they cannot have a conflict
in any b or c variable, which implies that Eij and Eij+1

are disjoint. We can
also observe that the b and c variables cannot be cancelled out by resolution
and they are therefore all present in the resolvent. Thus, the only possibility
is that G′ itself contains all the B and C parts from Di1 , . . . , Diq and thus
G′ itself determines the matching.

Theorem 5.7. The problem of testing whether a given CNF formula has an
empowering implicate is an NP-complete problem.

Proof : The NP membership is proved in Lemma 5.1. The NP hardness
follows from the reduction defined by Definition 5.2 using Lemma 5.4 and
Lemma 5.6. Note that by Lemma 3.2 it is enough to consider prime em-
powering implicates and thus the assumption that G is a prime implicate in
Lemma 5.6 is not restrictive.

Using the reduction from Definition 5.2, we can also show that when
trying to make a CNF formula propagation complete, we can in general
observe an exponential blow up of the number of clauses. In particular we
can show that there is a uniform and size increasing family of CNF formulas
in which an exponential number of implicates has to be added to a member
of this family in order to make it propagation complete. Here by “uniform”
we mean that we have a uniform construction which constructs a formula on
n variables from this family based only on a parameter n.

Theorem 5.8. There is a uniform and size increasing family of CNF for-
mulas parameterized with the number of variables n and where the number
of clauses is O(n), such that the number of implicates that needs to be added
to a CNF formula ϕ on n variables from this family to make it propagation
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complete is exponential in n (and thus in the size of the formula, too).

Proof : Let us consider an instance of 3DM where |X| = |Y | = |Z| = q
and W = X × Y × Z. We claim that at least (q!)2 implicates have to be
added to ϕW to make it propagation complete. First, let us observe that
we can find (q!)2 pairwise different perfect matchings in W . This is because
each perfect matching in W can be viewed as a pair of perfect matchings in
a complete bipartite graph with partities X and Y and a perfect matching
in a complete bipartite graph with partities Y and Z. We have q! perfect
matchings in each of these bipartite graphs and thus we have (q!)2 possible
pairs of them. Note, on the other hand, that w = |W | = q3.

Let M = {mr1 ,mr2 , . . . ,mrq}, M ⊆ W be a perfect matching. Let us
denote the clause

HM = a1 ∨
q∨
i=1

(
Bri
g(ri)
∨ Cri

h(ri)

)
.

From Lemma 5.4 it follows that HM is an empowering implicate. We claim
that if we add HM to ϕW , then HM ′ remains empowering provided M ′ is a
different matching than M . Since M and M ′ are different and |M | = |M ′|,
we have that M \M ′ 6= ∅ and M ′ \M 6= ∅. Let r` be an index of a triple
such that mr` ∈ M \M ′. Thus Br`

g(r`)
forms a subclause of HM . Since mr`

does not belong to M ′, we have that g(r`) is covered by a different triple r′` in

M ′. Thus B
r′`
g(r′`)

, where g(r′`) = g(r`), forms a subclause of HM ′ . If we falsify

all literals in HM ′ except a1, we get that HM is satisfied, because Br`
g(r`)

and

B
r′`
g(r′`)

have a conflict variable. Hence HM plays no role in unit propagation

used to possibly derive a1. Whether a1 can or cannot be derived by unit
resolution from ϕW ∧HM after falsifying the literals in HM ′ except a1 is thus
equivalent to whether a1 can be derived by unit resolution from ϕW after
falsifying the literals in HM ′ except a1. Note that the above observation can
be generalized to the case when we add more than one of these matching
clauses to ϕW and thus it is necessary to add all the clauses corresponding
to perfect matchings to ϕW to make it propagation complete.

It follows that the number of implicates needed to be added to ϕW to
make it propagation complete is at least (q!)2 which is exponential in the
size of formula ϕW consisting of q3 clauses build on q + qw + qw = Θ(q4)
variables. Family of the formulas defined in this, with n = Θ(q4), satisfies
the proposition of the theorem.
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As we have already discussed in Section 2.5, the result contained in The-
orem 5.8 is in tight connection to the results in [21] where the authors show
in Corollary 4 that there is no polynomial sized CNF decomposition of any
AllDifferent domain consistency propagator. As we have mentioned in
Section 2.5, the superpolynomial shown in [12] is based on a superpolynomial
lower bound of Razborov [22] on the size of a monotone circuit computing
whether there is a perfect matching in a given graph. Quite interestingly,
to the best of our knowledge, there is no stronger lower bound on the size
of monotone circuit computing whether a bipartite graph contains perfect
matching than the superpolynomial shown in [22]. It is thus an interest-
ing question whether a stronger lower bound could not be shown using the
connection between domain consistency propagators and monotone circuits
shown in [21]. Note that in the proof of Theorem 5.8 we could use a bipartite
matching instead of 3DM for constructing the family of CNF formulas with
required properties (we used 3DM mainly to take advantage of Lemma 5.4).
Thus, it might be possible to construct a domain consistency propagator
for the AllDifferent constraint which contains such a modified family of
CNF formulas. On the other hand, it would still be only one example of
a domain consistency propagator which is not enough to argue about any
domain consistency propagator for the AllDifferent constraint.

6. Conclusions

We derived several properties of propagation complete formulas and em-
powering implicates. Let us now recollect the answers to the four questions
we posed in the introduction.

1. We showed that given a clause C, the problem of deciding whether C
is an empowering implicate of a CNF formula ϕ is co-NP complete.
This result comes as no big surprise as the hard part of this decision
is answering the question whether C is even an implicate of ϕ and the
new information brought here is that restricting the attention to the
subset of empowering implicates does not make this problem easier.

2. On the other hand, if there is an empowering implicate of ϕ, there is
always a 1-provable empowering implicate of ϕ as stated in Theorem 4.2
which follows from Proposition 2 of [15]. It means that in this case there
is always a clause for which it is easy to show that it is an implicate
of ϕ simply by unit propagation. Extending this reasoning further, we
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can even find an empowering implicate C, such that it can be derived
by a series of resolutions of linear length with respect to the number
of literals occurring in a given formula (Proposition 4.3 which relates
to Proposition 4 of [15] and other results in [33, 34, 35]). We also
showed that this bound is tight, in some cases linear length of resolution
proof is necessary. It is important that in this case we consider a
general implicate C since we also showed that if we want to derive
a prime empowering implicate C, an exponential length of resolution
proof might be necessary.

3. We showed that the problem in which we ask whether there is an em-
powering implicate for given CNF formula ϕ is NP complete, which
means that checking whether given CNF formula ϕ is propagation com-
plete is co-NP complete. Note that this strenghtens the results of [9]
where the authors showed that the decision problem whether ϕ has
an empowering implicate belongs to Σp

2. At a first sight we might see
a slight contrast between the fact that checking whether given clause
C is an empowering implicate of given CNF formula ϕ is co-NP com-
plete while checking whether there exists an empowering implicate for
a given CNF formula ϕ is NP complete. The difference is that in the
former problem we are given a particular clause C and it is already
co-NP complete to decide whether C is an implicate of ϕ checking the
empowering property is then easy. In the latter case we are given only
a CNF formula ϕ and thus we may look for special empowering im-
plicates, in particular the 1-provable ones. Checking whether a given
clause C is 1-provable empowering implicate of ϕ is then polynomial
and the hard part is to find one.

4. Finally, we showed that there is a uniform and size increasing family
of CNF formulas such that given CNF formula ϕ from this family we
have to add an exponential number of empowering implicates to make
it propagation complete. This result strenghtens a superpolynomial
bound which follows from the results of [21] and the connection between
CNF decompositions of domain consistency propagators in CSP.

It remains an interesting question whether a similar result can be
obtained for different representations of propositional formulas, such as
ZBDD (zero-suppressed binary decision diagrams [43, 44], see e.g. [45]
for use in propositional formula representation). In particular it may
be interesting to investigate, whether the family of formulas defined
in Theorem 5.8 requires an exponentially sized ZBDD to represent its
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propagation complete counterpart. We leave this question for further
research. We can consider other representations as well, see e.g. [17]
for a comprehensive list of various representations used in knowledge
compilation.
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[24] H. K. Büning, T. Lettmann, Propositional Logic: Deduction and Algo-
rithms, Cambridge University Press, New York, NY, USA, 1999.

[25] M. Dalal, D. W. Etherington, A hierarchy of tractable satisfiability prob-
lems, Inf. Process. Lett. 44 (4) (1992) 173–180.

34



[26] A. del Val, Tractable databases: How to make propositional unit resolu-
tion complete through compilation, in: J. Doyle, E. Sandewall, P. Torassi
(Eds.), KR’94, Proceedings of Fourth International Conference on Prin-
ciples of Knowledge Representation and Reasoning, Morgan Kaufmann,
1994, pp. 551–561.

[27] A. Atserias, J. K. Fichte, M. Thurley, Clause-learning algorithms with
many restarts and bounded-width resolution, in: Proceedings of the 12th
International Conference on Theory and Applications of Satisfiability
Testing, SAT ’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 114–
127.

[28] F. Rossi, P. v. Beek, T. Walsh, Handbook of Constraint Programming
(Foundations of Artificial Intelligence), Elsevier Science Inc., New York,
NY, USA, 2006.

[29] C. Bessière, E. Hebrard, T. Walsh, Local consistencies in sat, in:
E. Giunchiglia, A. Tacchella (Eds.), Theory and Applications of Satisfia-
bility Testing, Vol. 2919 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2004, pp. 299–314. doi:10.1007/978-3-540-24605-3 23.
URL http://dx.doi.org/10.1007/978-3-540-24605-3 23

[30] C. Schulte, P. Stuckey, Speeding up constraint propagation, in: M. Wal-
lace (Ed.), Principles and Practice of Constraint Programming – CP
2004, Vol. 3258 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2004, pp. 619–633. doi:10.1007/978-3-540-30201-8 45.
URL http://dx.doi.org/10.1007/978-3-540-30201-8 45
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