
HordeSat: A Massively Parallel Portfolio SAT
Solver

Tomáš Balyo, Peter Sanders, Carsten Sinz ?

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

Abstract. A simple yet successful approach to parallel satisfiability
(SAT) solving is to run several different (a portfolio of) SAT solvers on
the input problem at the same time until one solver finds a solution. The
SAT solvers in the portfolio can be instances of a single solver with differ-
ent configuration settings. Additionally the solvers can exchange informa-
tion usually in the form of clauses. In this paper we investigate whether
this approach is applicable in the case of massively parallel SAT solving.
Our solver is intended to run on clusters with thousands of processors,
hence the name HordeSat. HordeSat is a fully distributed portfolio-based
SAT solver with a modular design that allows it to use any SAT solver
that implements a given interface. HordeSat has a decentralized design
and features hierarchical parallelism with interleaved communication and
search. We experimentally evaluated it using all the benchmark problems
from the application tracks of the 2011 and 2014 International SAT Com-
petitions. The experiments demonstrate that HordeSat is scalable up to
hundreds or even thousands of processors achieving significant speedups
especially for hard instances.

1 Introduction

Boolean satisfiability (SAT) is one of the most important problems of theoretical
computer science with many practical applications in which SAT solvers are used
in the background as high performance reasoning engines. These applications
include automated planning and scheduling [21], formal verification [22], and
automated theorem proving [10]. In the last decades the performance of state-
of-the-art SAT solvers has increased dramatically thanks to the invention of
advanced heuristics [25], preprocessing and inprocessing techniques [19] and data
structures that allow efficient implementation of search space pruning [25].

The next natural step in the development of SAT solvers was parallelization.
A very common approach to designing a parallel SAT solver is to run several
instances of a sequential SAT solver with different settings (or several different
SAT solvers) on the same problem in parallel. If any of the solvers succeeds
in finding a solution all the solvers are terminated. The solvers also exchange
information mainly in the form of learned clauses. This approach is referred to

? This research was partially supported by DFG project SA 933/11-1



as portfolio-based parallel SAT solving and was first used in the SAT solver
ManySat [14]. However, so far it was not clear whether this approach can scale
to a large number of processors.

Another approach is to run several search procedures in parallel and ensure
that they work on disjoint regions of the search space. This explicit search space
partitioning has been used mainly in solvers designed to run on large parallel
systems such as clusters or grids of computers [9].

In this paper we describe HordeSat – a scalable portfolio-based SAT solver
and evaluate it experimentally. Using efficient yet thrifty clause exchange and
advanced diversification methods, we are able to keep the search spaces largely
disjoint without explicitly splitting search spaces. Another important feature of
HordeSat is its modular design, which allows it to be independent of any concrete
search engines. HordeSat uses Sat solvers as black boxes communicating with
them via a minimalistic interface.

Experiments made using benchmarks from the application tracks of the 2011
and 2014 Sat Competitions [3] show that HordeSat can outperform state-of-the-
art parallel SAT solvers on multiprocessor machines and is scalable on computer
clusters with thousands of processors. Indeed, we even observe superlinear aver-
age speedup for difficult instances.

2 Preliminaries

A Boolean variable is a variable with two possible values True and False. By
a literal of a Boolean variable x we mean either x or x (positive or negative
literal). A clause is a disjunction (OR) of literals. A conjunctive normal form
(CNF) formula is a conjunction (AND) of clauses. A clause can be also inter-
preted as a set of literals and a formula as a set of clauses. A truth assignment φ
of a formula F assigns a truth value to its variables. The assignment φ satisfies
a positive (negative) literal if it assigns the value True (False) to its variable
and φ satisfies a clause if it satisfies any of its literals. Finally, φ satisfies a CNF
formula if it satisfies all of its clauses. A formula F is said to be satisfiable if
there is a truth assignment φ that satisfies F . Such an assignment is called a
satisfying assignment. The satisfiability problem (SAT) is to find a satisfying
assignment of a given CNF formula or determine that it is unsatisfiable.

Conflict Driven Clause Learning. Most current complete state-of-the-art
SAT solvers are based on the conflict-driven clause learning (CDCL) algorithm [23].
In this paper we will use CDCL solvers only as black boxes and therefore we
provide only a very coarse-grained description. For a detailed discussion of
CDCL refer to [5]. In Figure 1 we give a pseudo-code of CDCL. The algo-
rithm performs a depth-first search of the space of partial truth assignments
(assignDecisionLiteral, backtrack – unassigns variables) interleaved with
search space pruning in the form of unit propagation (doUnitPropagation) and
learning new clauses when the search reaches a conflict state (analyzeConflict,
addLearnedClause). If a conflict cannot be resolved by backtracking then the

2



CDCL (CNF formula F )
CDCL0 while not all variables assigned do
CDCL1 assignDecisionLiteral
CDCL2 doUnitPropagation
CDCL3 if conflict detected then
CDCL4 analyzeConflict
CDCL5 addLearnedClause
CDCL6 backtrack or return UNSAT
CDCL7 return SAT

Fig. 1. Pseudo-code of the conflict-driven clause learning (CDCL) algorithm.

formula is unsatisfiable. If all the variables are assigned and no conflict is de-
tected then the formula is satisfiable.

3 Related Work

In this section we give a brief description of previous parallel SAT solving ap-
proaches. A much more detailed listing and description of existing parallel solvers
can be found in recently published overview papers such as [15,24].

Parallel CDCL – Pure Portfolios. The simplest approach is to run CDCL
several times on the same problem in parallel with different parameter settings
and exchanging learned clauses. If there is no explicit search space partitioning
then this approach is referred to as the pure portfolio algorithm. The first parallel
portfolio SAT solver was ManySat [14]. The winner of the latest (2014) Sat
Competition’s parallel track – Plingeling [4] is also of this kind.

The motivation behind the portfolio approach is that the performance of
CDCL is heavily influenced by a high number of different settings and parameters
of the search such as the heuristic used to select a decision literal. Numerous
heuristics can be used in this step [25] but none of them dominates all the other
heuristics on each problem instance. Decision heuristics are only one of the many
settings that strongly influence the performance of CDCL solvers. All of these
settings can be considered when the diversification of the portfolio is performed.
For an example see ManySat [14]. Automatic configuration of SAT solvers in
order to ensure that the solvers in a portfolio are diverse is also studied [30].

Exchanging learned clauses grants an additional boost of performance. It is
an important mechanism to reduce duplicate work, i.e., parallel searches working
on the same part of the search space. A clause learned from a conflict by one
CDCL instance distributed to all the other CDCL instances will prevent them
from doing the same work again in the future.

The problem related to clause sharing is to decide how many and which
clauses should be exchanged. Exchanging all the learned clauses is infeasible es-
pecially in the case of large-scale parallelism. A simple solution is to distribute
all the clauses that satisfy some conditions. The conditions are usually related

3



to the length of the clauses and/or their glue value [1]. An interesting technique
called “lazy clause exchange” was introduced in a recent paper [2]. We leave
the adaptation of this technique to future work however, since it would make
the design of our solver less modular. Most of the existing pure portfolio SAT
solvers are designed to run on single multi-processor computers. An exception is
CL-SDSAT [17] which is designed for solving very difficult instances on loosely
connected grid middleware. It is not clear and hard to quantify whether this ap-
proach can yield significant speedups since the involved sequential computation
times would be huge.

Parallel CDCL – Partitioning The Search Space Explicitly. The classi-
cal approach to parallelizing SAT solving is to split the search space between the
search engines such that no overlap is possible. This is usually done by starting
each solver with a different fixed partial assignment. If a solver discovers that
its partial assignment cannot be extended into a solution it receives a new as-
signment. Numerous techniques have presented how to manage the search space
splitting based on ideas such guiding paths [9], work stealing [20], and generat-
ing sufficiently many tasks [11]. Similarly to the portfolio approach the solvers
exchange clauses.

Most of the previous SAT solvers designed for computer clusters or grids use
explicit search space partitioning. Examples of such solvers are GridSAT [9], PM-
SAT [11], GradSat [8], C-sat [26], ZetaSat [6] and SatCiety [28]. Experimentally
Comparing HordeSat with those solvers is problematic, since these solvers are
not easily available online or they are implemented for special environments using
non-standard middleware. Nevertheless we can get some conclusions based on
looking at the experimental sections of the related publications.

Older grid solvers such as GradSat [8], PM-SAT [11] SatCiety [28], ZetaSat [6]
and C-sat [26] are evaluated on only small clusters (up to 64 processors) using
small sets of older benchmarks, which are easily solved by current state-of-the-art
sequential solvers and therefore it is impossible to tell how well do they scale for
a large number of processors and current benchmarks. The solver GridSAT [9] is
run on a large heterogeneous grid of computers containing hundreds of nodes for
several days and is reported to solve several (at that time) unsolved problems.
Nevertheless, most of those problems can now be solved by sequential solvers
in a few minutes. Speedup results are not reported. A recent grid-based solving
method called Part-Tree-Learn [16] is compared to Plingeling and is reported
to solve less instances than Plingeling. This is despite the fact that in their
comparison the number of processors available to Plingeling was slightly less [16].

To design a successful explicit partitioning parallel solver, complex load bal-
ancing issues must be solved. Additionally, explicit partitioning clearly brings
runtime and space overhead. If the main motivation of explicit partitioning is to
ensure that the search-spaces explored by the solvers have no overlap, then we
believe that the extra work does not pay off and frequent clause sharing is enough

4



to approximate the desired behavior 1. Moreover, in [18] the authors argue that
plain partitioning approaches can increase the expected runtime compared to
pure portfolio systems. They prove that under reasonable assumptions there is
always a distribution that results in an increased expected runtime unless the
process of constructing partitions is ideal.

4 Design Decisions

In this section we provide an overview of the high level design decisions made
when designing our portfolio-based SAT solver HordeSat.
Modular Design. Rather than committing to any particular SAT solver we

design an interface that is universal and can be efficiently implemented by current
state-of-the-art SAT solvers. This results in a more general implementation and
the possibility to easily add new SAT solvers to our portfolio.
Decentralization. All the nodes in our parallel system are equivalent. There

is no leader or central node that manages the search or the communication.
Decentralized design allows more scalability and also simplifies the algorithm.
Overlapping Search and Communication. The search and the clause ex-

change procedures run in different (hardware) threads in parallel. The system
is implemented in a way that the search procedure never waits for any shared
resources at the expense of losing some of the shared clauses.
Hierarchical Parallelization. HordeSat is designed to run on clusters of com-

puters (nodes) with multiple processor cores, i.e., we have two levels of paral-
lelization. The first level uses the shared memory model to communicate between
solvers running on the same node and the second level relies on message passing
between the nodes of a cluster.

The details and implementation of these points are discussed below.

5 Black Box for Portfolios

Our goal is to develop a general parallel portfolio solver based on existing state-
of-the-art sequential CDCL solvers without committing to any particular solver.
To achieve this we define a C++ interface that is used to access the solvers in
the portfolio. Therefore new SAT solvers can be easily added just by implement-
ing this interface. By core solver we will mean a SAT solver implementing the
interface.

In this section we describe the essential methods of the interface. All the
methods are required to be implemented in a thread safe way, i.e., safe execution
by multiple threads at the same time must be guaranteed. First we start with
the basic methods which allow us to solve formulas and interrupt the solver.

1 According to our experiments only 2-6% of the clauses are learned simultaneously
by different solvers in a pure portfolio, which is an indication that the overlap of
search-spaces is relatively small.

5



void addClause(vector<int> clause): This method is used to load the initial

formula that is to be solved. The clauses are represented as lists of literals which
are represented as integers in the usual way. All the clauses must be considered
by the solver at the next call of solve.

SatResult solve(): This method starts the search for the solution of the for-

mula specified by the addClause calls. The return value is one of the following
SatResult = {SAT, UNSAT, UNKNOWN}. The result UNKNOWN is returned when
the solver is interrupted by calling setSolverInterrupt().

void setSolverInterrupt(): Posts a request to the core solver instance to in-

terrupt the search as soon as possible. If the method solve has been called,
it will return UNKNOWN. Subsequent calls of solve on this instance must return
UNKNOWN until the method unsetSolverInterrupt is called.

void unsetSolverInterrupt(): Removes the request to interrupt the search.

Using these four methods, a simple portfolio can be built. When using sev-
eral instances of the same deterministic SAT solver, some diversification can be
achieved by adding the clauses in a different order to each solver.

More options for diversification are made possible via the following two meth-
ods. A good way of diversification is to set default phase values for the variables
of the formula, i.e., truth values to be tried first. These are then used by the
core solver when selecting decision literals. In general many solver settings can
be changed to achieve diversification. Since these may be different for each core
solver we define a general method for diversification which the core solver can
implement in its own specific way.

void setPhase(int var, bool phase): This method is used to set a default

phase of a variable. The solver is allowed to ignore these suggestions.

void diversify(int rank, int size): This method tells the core solver to di-

versify its settings. The specifics of diversification are left to the solver. The
provided parameters can be used by the solver to determine how many solvers
are working on this problem (size) and which one of those is this solver (rank).
A trivial implementation of this method could be to set the pseudo-random
number generator seed of the core solver to rank.

The final three methods of the interface deal with clause sharing. The solvers
can produce and accept clauses. Not all the learned clauses are shared. It is
expected that each core solver initially offers only a limited number of clauses
which it considers most worthy of sharing. The solver should increase the number
of exported clauses when the method increaseClauseProduction is called. This
can be implemented by relaxing the constraints on the learned clauses selected
for exporting.

void addLearnedClause(vector<int> clause): This method is used to add

learned clauses received from other solvers of the portfolio. The core solver can
decide when and whether the clauses added using this method are actually con-
sidered during the search.

void setLearnedClauseCallback(LCCallback* callback): This method is

used to set a callback class that will process the clauses shared by this solver. To

6



export a clause, the core solver will call the void write(vector<int> clause)

method of the LCCallback class. Each clause exported by this method must be a
logical consequence of the clauses added using addClause or addLearnedClause.
void increaseClauseProduction(): Inform the solver that more learned clauses

should be shared. This could mean for example that learned clauses of bigger
size or higher glue value [1] will be shared.

The interface is designed to closely match current CDCL SAT solvers, but
any kind of SAT solver can be used. For example a local search SAT solver could
implement the interface by ignoring the calls to the clause sharing methods.

For our experiments we implemented the interface by writing binding code
for MiniSat [29] and Lingeling [4]. In the latter case no modifications to the
solver were required and the binding code only uses the incremental interface of
Lingeling. As for MiniSat, the code has been slightly modified to support the
three clause sharing methods.

6 The Portfolio Algorithm

In this section we describe the main algorithm used in HordeSat. As already
mentioned in section 4 we use two levels of parallelization. HordeSat can be
viewed as a multithreaded program that communicates using messages with
other instances of the same program. The communication is implemented using
the Message Passing Interface (MPI) [12]. Each MPI process runs the same
multithreaded program and takes care about the following tasks:

– Start the core solvers using solve. Use one fresh thread for each core solver.
– Read the formula and add its clauses to each core solver using addClause.
– Ensure diversification of the core solvers with respect to the other processes.
– Ensure that if one of the core solvers solves the problem all the other

core solvers and processes are notified and stopped. This is done by us-
ing setSolverInterrupt for each core solver and sending a message to all
the participating processes.

– Collect the exported clauses from the core solvers, filter duplicates and send
them to the other processes. Accept the exported clauses of the other pro-
cesses, filter them and distribute them to the core solvers.

The tasks of reading the input formula, diversification, and solver starting are
performed once after the start of the process. The communication of ending and
clause exchange is performed periodically in rounds until a solution is found. The
main thread sleeps between these rounds for a given amount of time specified as
a parameter of the solver (usually around 1 second). The threads running the
core solvers are working uninterrupted during the whole time of the search.

6.1 Diversification

Since we can only access the core solvers via the interface defined above, our
only tools for diversification are setting phases using the setPhase method and
calling the solver specific diversify method.

7



The setPhase method allows us to partition the search space in a semi-
explicit fashion. An explicit search space splitting into disjoint subspaces is usu-
ally done by imposing phase restrictions instead of just recommending them.
The explicit approach is used in parallel solvers utilizing guiding paths [9] and
dynamic work stealing [20].

We have implemented and tested the following diversification procedures
based on literal phase recommendations.

– Random. Each variable gets a phase recommendation for each core solver
randomly. Note that this is different from selecting a random phase each
time a decision is made for a variable in the CDCL procedure.

– Sparse. Each variable gets a random phase recommendation on exactly one
of the host solvers in the entire portfolio. For the other solvers no phase
recommendation is made for the given variable.

– Sparse Random. For each core solver each variable gets a random phase
recommendation with a probability of (#solvers)−1, where #solvers is the
total number of core solvers in the portfolio.

Each of these can be used in conjunction with the diversify method whose
behavior is defined by the core solvers. As already mentioned we use Lingeling
and MiniSat as core solvers. In case of MiniSat, we implemented the diversify

method by only setting the random seed. For Lingeling we copied the diver-
sification algorithm from Plingeling [4], which is the multi-threaded version of
Lingeling based on the portfolio approach and the winner of the parallel ap-
plication track of the 2014 SAT Competition [3]. In this algorithm 16 different
parameters of Lingeling are used for diversification.

6.2 Clause Sharing

The clause sharing in our portfolio happens periodically in rounds. Each round a
fixed sized (1500 integers in the implementation) message containing the literals
of the shared clauses is exchanged by all the MPI processes in an all-to-all fashion.
This is implemented by using the MPI Allgather [12] collective communication
routine defined by the MPI standard.

Each process prepares the message by collecting the learned clauses from
its core solvers. The clauses are filtered to remove duplicates. The fixed sized
message buffer is filled up with the clauses, shorter clauses are preferred. Clauses
that did not fit are discarded. If the buffer is not filled up to its full capacity
then one of the core solvers of the process is requested to increase its clause
production by calling the increaseClauseProduction method.

The detection of duplicate clauses is implemented by using Bloom filters [7].
A Bloom filter is a space-efficient probabilistic set data structure that allows
false-positive matches, which in our case means that some clauses might be
considered to be duplicates even if they are not. The usage of Bloom filters
requires a set of hash functions that map clauses to integers. We use the following

8



hash function which ensures that permuting the literals of a clause does not
change its hash value.

Hi(C) =
⊕
`∈C

` · primes[abs(` · i) mod |primes|]

where i > 0 is a parameter we are free to choose, C is a clause, ⊕ denotes
bitwise exclusive-or, and primes is an array of large prime numbers. Literals are
interpreted as integers in the usual way, i.e., xj as j and xj as −j.

Each MPI process maintains one Bloom filter gx for each of its core solvers
x and an additional global one g. When a core solver x exports a learned clause
C, the following steps are taken.

– Clause C is added to gx.
– If C 6∈ g, C is added to g as well as into a data structure e for export.
– If several core solvers concurrently try to access e, only one will succeed and

the new clauses of the other core solvers are ignored. This way, we avoid
contention at the shared resource e and rather ignore some clauses.

After the global exchange of learned clauses, the incoming clauses need to be
filtered for duplicates and distributed to the core solvers. The first task is done
by using the global Bloom filter g. For the second task we utilize the thread local
filters gx to ensure that each of them receives only new clauses.

All the Bloom filters are periodically reset, which allows the repeated sharing
of clauses after some time. Our initial experiments showed that this approach is
more beneficial than maintaining a strict “no duplicate clauses allowed”-policy.

Overall, there are three reasons why a clause offered by a core solver can get
discarded. One is that it was duplicate or wrongly considered to be duplicate due
to the probabilistic nature of Bloom filters. Second is that another core solver
was adding its clause to the data structure for global export at the same time.
The last reason is that it did not fit into the fixed size message sent to the other
MPI processes. Although important learned clauses might get lost, we believe
that this relaxed approach is still beneficial since it allows a simpler and more
efficient implementation of clause sharing.

7 Experimental Evaluation

To examine our portfolio-based parallel SAT solver HordeSat we did experiments
with two kinds of benchmarks. We used the benchmark formulas from the ap-
plication tracks of the 2011 and 2014 SAT Competitions [3] (545 instances) 2

and randomly generated 3-SAT formulas (200 sat and 200 unsat instances). The
random formulas have 250–440 variables and 4.25 times as many clauses, which
corresponds to the phase transition of 3-SAT problems [27].

2 Originally we only used the 2014 instances. A reviewer suggested to try the 2011
instances also, conjecturing that they would be harder to parallelize. Surprisingly,
the opposite turned out to be true.

9



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  20  40  60  80  100  120  140  160  180  200

Ti
m

e
 i
n
 s

e
co

n
d
s

Problems

Satisfiable Instances

No Diversification, No Sharing
Only Sharing

Only Diversification
Diversification and Sharing

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  20  40  60  80  100  120  140  160

Ti
m

e
 i
n
 s

e
co

n
d
s

Problems

Unsatisfiable Instances

No Diversification, No Sharing
Only Sharing

Only Diversification
Diversification and Sharing

Fig. 2. The influence of diversification and clause sharing on the performance of Horde-
Sat using Lingeling (16 processes with 1 thread each) on random 3-SAT problems.

The experiments were run on a cluster allowing us to reserve up to 128 nodes.
Each node has two octa-core Intel Xeon E5-2670 processors (Sandy Bridge) with
2.6 GHz and 64 GB of main memory. Therefore each node has 16 cores and
the total number of available cores is 2048. The nodes communicate using an
InfiniBand 4X QDR Interconnect and use the SUSE Linux Enterprise Server 11
(x86 64) (patch level 3) operating system. HordeSat was compiled using g++
(SUSE Linux) 4.3.4 [gcc-4 3-branch revision 152973] with the “-O3” flag.

If not stated otherwise, we use the following parameters: The time of sleeping
between clause sharing rounds is 1 second. The default diversification algorithm
is the combination of “sparse random” and the native diversification of the core
solver. In the current version two core solvers are supported – Lingeling and
MiniSat. The default value is Lingeling which is used in all the experiments
presented below. It is also possible to use a combination of Lingeling and MiniSat.

10



Using only Lingeling gives by far the best results on the used benchmarks. The
time limit per instance is 1 000 seconds for parallel solvers and 50 000 seconds for
the sequential solver Lingeling. Detailed results of all the presented experiments
as well as the source code of HordeSat and all the used benchmark problems can
be found at http://baldur.iti.kit.edu/hordesat.

7.1 Clause Sharing and Diversification

We investigated the individual influence of clause sharing and diversification
on the performance of our portfolio. In the case of application benchmarks we
obtained the unsurprising result that both diversification and clause sharing are
highly beneficial for satisfiable as well as unsatisfiable instances. However, for
random 3-SAT problems the results are more interesting.

By looking at the cactus plots in Figure 2 we can observe that clause sharing
is essential for unsatisfiable instances while not significant and even slightly
detrimental for satisfiable problems. On the other hand, diversification has only
a small benefit for unsatisfiable instances. This observation is related to a more
general question of intensification vs diversification in parallel SAT solving [13].

For the experiments presented in Figure 2 we used sparse diversification
combined with the diversify method, which in this case copies the behavior
of Plingeling. It is important to note that some diversification arises due to the
non-deterministic nature of Lingeling, even when we do not invoke it explicitly
by using the setPhase or diversify methods.

7.2 Scaling on Application Benchmarks

In parallel processing, one usually wants good scalability in the sense that the
speedup over the best sequential algorithm goes up near linearly with the number
of processors. Measuring scalability in a reliable and meaningful way is difficult
for SAT solving since running times are highly nondeterministic. Hence, we need
careful experiments on a large benchmark set chosen in an unbiased way. We
therefore use the application benchmarks of the 2011 and 2014 Sat Competi-
tions. Our sequential reference is Lingeling which won the most recent (2014)
competition. We ran experiments using 1,2,4,. . . ,512 processes with four threads
each, each cluster nodes runs 4 processes. The results are summarized in Figure 3
using cactus plots. We can observe that increased parallelism is always beneficial
for the 2011 benchmarks. In the case of all the benchmarks the benefits beyond
32 nodes are not apparent.

From a cactus plot it is not easy to see whether the additional performance
is a reasonable return on the invested hardware resources. Therefore Table 1
summarizes that information in several ways in order to quantify the overall
scalability of HordeSat on the union of the 2011 and 2013 benchmarks. We
compute speedups for all the instances solved by the parallel solver. For instances
not solved by Lingeling within its time limit T = 50 000s we generously assume
that it would solve them if given T + ε seconds and use the runtime of T for
speedup calculation. Column 4 gives the average of these values. We observe

11

http://baldur.iti.kit.edu/hordesat


 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200  250

Ti
m

e
 i
n
 s

e
co

n
d
s

Problems

Lingeling
1x4x4
2x4x4
4x4x4
8x4x4

16x4x4
32x4x4
64x4x4

128x4x4

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200  250  300  350  400  450  500

Ti
m

e
 i
n
 s

e
co

n
d
s

Problems

Lingeling
1x4x4
2x4x4
4x4x4
8x4x4

16x4x4
32x4x4
64x4x4

128x4x4

Fig. 3. The impact of doubling the number of processors on the runtime and the
number solved problems for the 2011 and the union of 2011 and 2013 application
instances. The labels represent (#nodes)x(#processes/node)x(#threads/process).

considerable superlinear speedups on average for all the configurations tried.
However, this average is not a very robust measure since it is highly dependent
on a few very large speedups that might be just luck. In Column 5 we show the
total speedup, which is the sum of sequential runtimes divided by the sum of
parallel runtimes and Column 6 contains the median speedup.

Nevertheless, these figures treat HordeSat unfairly since most instances are
actually too easy for investing a lot of hardware. Indeed, in parallel computing,
it is usual to analyze the performance on many processors using weak scaling
where one increases the amount of work involved in the considered instances
proportionally to the number of processors. Therefore in columns 7–9 we re-
strict ourselves to those instances where Lingeling needs at least 10p seconds
where p is the number of core solvers used by HordeSat. The average speedup

12



Core Parallel Both Speedup All Speedup Big

Solvers Solved Solved Avg. Tot. Med. Avg. Tot. Med. CBS

1x4x4 385 363 303 25.01 3.08 524 26.83 4.92 5.86

2x4x4 421 392 310 30.38 4.35 609 33.71 9.55 22.44

4x4x4 447 405 323 41.30 5.78 766 49.68 16.92 68.90

8x4x4 466 420 317 50.48 7.81 801 60.38 32.55 102.27

16x4x4 480 425 330 65.27 9.42 1006 85.23 63.75 134.37

32x4x4 481 427 399 83.68 11.45 1763 167.13 162.22 209.07

64x4x4 476 421 377 104.01 13.78 2138 295.76 540.89 230.37

128x4x4 476 421 407 109.34 13.05 2607 352.16 867.00 216.69

pling8 372 357 44 18.61 3.11 67 19.20 4.12 4.77

pling16 400 377 347 24.83 3.53 586 26.18 5.89 7.34

1x8x1 373 358 53 19.57 3.13 81 20.42 4.36 4.79

1x16x1 400 376 325 27.78 4.06 548 30.30 6.98 7.34

Table 1. HordeSat configurations (#nodes)x(#processes/node)x(#threads/process)
compared to Plingeling with a given number of threads. The second column is the
number of instances solved by the parallel solvers, the third is the number of instances
solved by both Lingeling and the parallel solver. The following six columns contain the
average, total, and median speedups for either all the instances solved by the parallel
solvers or only big instances (solved after 10(#threads) seconds by Lingeling). The last
column contains the “count based speedup” values defined in Subsection 7.2.

gets considerably larger as well as the total speedup, especially for the large con-
figurations. The median speedup also increases but remains slightly sublinear.
Figure 4 shows the distribution of speedups for these instances.

Another way to measure speedup robustly is to compare the times needed
to solve a given number of instances. Let T1 (Tp) denote the per instance time
limits of the sequential (parallel) solver (50 000s (1 000s) in our case). Let n1 (np)
denote the number of instances solved by the sequential (parallel) solver within
time T1 (Tp). If n1 ≥ np (n1 < np) let T ′1 (T ′p) denote the smallest time limit for
the sequential (parallel) solver such that it solves np (n1) instances within the
time limit T ′1 (T ′p). We define the count based speedup (CBS) as

CBS =

{
T1/T

′
p if n1 < np

T ′1/Tp otherwise .

The CBS scales almost linearly up to 512 cores and stagnates afterward.
We are not sure whether this indicates a scalability limit of HordeSat or rather
reflects a lack of sufficiently difficult instances – in our collection, there are only
65 eligible instances.

13



 0.1

 1

 10

 100

 1000

 10000

 100000

 0  50  100  150  200  250

S
p
e
e
d
u
p
s

Problems

2x4x4
4x4x4
8x4x4

16x4x4
32x4x4
64x4x4

128x4x4

Fig. 4. Distribution of speedups on the “big instances” – the data corresponding to
Columns 7–9 of Table 1.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  50  100  150  200  250  300  350  400

Ti
m

e
 i
n
 s

e
co

n
d
s

Problems

Lingeling (1 thread)
Plingeling (8 threads)

HordeSat 1x8x1 (8 threads)
Plingeling (16 threads)

HordeSat 1x16x1 (16 threads)

Fig. 5. Comparison of HordeSat and Plingeling with Lingeling on the 2011 and 2014
Sat Competition benchmarks.

7.3 Comparison with Plingeling

The most similar parallel SAT solver to our portfolio is the state-of-the-art solver
Plingeling [4]. Plingeling is the winner of the parallel track of the 2014 SAT
Competition. Both solvers are portfolio-based, they are using Lingeling and even
some diversification code is shared. The main differences are in the clause sharing
algorithms and that Plingeling does not run on clusters only single computers.
For this reason we can compare the two solvers only on a single node. The
results of this comparison on the benchmark problems of the 2011 and 2014 SAT
Competition are displayed in Figure 5. Speedup values are given in Table 1.

14



Both solvers significantly outperform Lingeling. The performance of Horde-
Sat and Plingeling is almost indistinguishable when running with 8 cores, while
on 16 cores HordeSat gets slightly ahead of Plingeling.

8 Conclusion

HordeSat has the potential to reduce solution times of difficult yet solvable
SAT instances from hours to minutes using hundreds of cores on commodity
clusters. This may open up new interactive applications of SAT solving. We find
it surprising that this was achieved using a relatively simple, portfolio based
approach that is independent of the underlying core solver. In particular, this
makes it likely that HordeSat can track future progress of sequential SAT solvers.

The Sat solver that works best with HordeSat for application benchmarks
is Lingeling. Plingeling is another parallel portfolio solver based on Lingeling
and it is also the winner of the most recent (2014) Sat Competition. Comparing
the performance of HordeSat and Plingeling reveals that HordeSat is almost
indistinguishable when running with 8 cores and slightly outperforms Plingeling
when running with 16 cores. This demonstrates that there is still room for the
improvement of shared memory based parallel portfolio solvers.

Our experiments on a cluster with up to 2048 processor cores show that
HordeSat is scalable in highly parallel environments. We observed superlinear
and nearly linear scaling in several measures such as average, total, and median
speedups, particularly on hard instances. In each case increasing the number of
available cores resulted in significantly reduced runtimes.

8.1 Future Work

An important next step is to work on the scalability of HordeSat for 1024 cores
and beyond. This will certainly involve more adaptive clause exchange strategies.
Even for single node configurations, low level performance improvements when
using modern machines with dozens of cores seem possible. We also would like
to investigate what benefits can be gained by having a tighter integration of
core solvers by extending the interface. Including other kinds of (not necessarily
CDCL – based) core solvers might also bring improvements.

When considering massively parallel SAT solving we probably have to move
to even more difficult instances to make that meaningful. When this also means
larger instances, memory consumption may be an issue when running many
instances of a SAT solver on a many-core machine. Here it might be interesting
to explore opportunities for sharing data structures for multiple SAT solvers or
to decompose problems into smaller subproblems by recognizing their structure.

Acknowledgment. We would like to thank Armin Biere for fruitful discussion
about the usage of the Lingeling API in a parallel setting.

15



References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: IJCAI. vol. 9, pp. 399–404 (2009)

2. Audemard, G., Simon, L.: Lazy clause exchange policy for parallel sat solvers. In:
Theory and Applications of Satisfiability Testing–SAT 2014, pp. 197–205. Springer
(2014)

3. Belov, A., Diepold, D., Heule, M.J., Järvisalo, M.: Sat competition 2014 (2014)

4. Biere, A.: Lingeling, plingeling and treengeling entering the sat competition 2013.
In: In Proceedings of SAT Competition 2013, A. Balint, A. Belov, M. J. H. Heule,
M. Järvisalo (editors), vol. B-2013-1 of Department of Computer Science Series of
Publications B pages 51-52, University of Helsinki, 2013. (2013)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Conflict-driven clause learning
sat solvers. Handbook of Satisfiability, Frontiers in Artificial Intelligence and Ap-
plications pp. 131–153 (2009)

6. Blochinger, W., Westje, W., Kuchlin, W., Wedeniwski, S.: Zetasat-boolean satisfia-
bility solving on desktop grids. In: Cluster Computing and the Grid, 2005. CCGrid
2005. IEEE International Symposium on. vol. 2, pp. 1079–1086. IEEE (2005)

7. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

8. Chrabakh, W., Wolski, R.: Gradsat: A parallel sat solver for the grid. In: Proceed-
ings of IEEE SC03 (2003)

9. Chrabakh, W., Wolski, R.: Gridsat: A chaff-based distributed sat solver for the
grid. In: Proceedings of the 2003 ACM/IEEE conference on Supercomputing. p. 37.
ACM (2003)

10. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof
explication. In: Computer Aided Verification. pp. 355–367. Springer (2003)

11. Gil, L., Flores, P., Silveira, L.M.: Pmsat: a parallel version of minisat. Journal on
Satisfiability, Boolean Modeling and Computation 6, 71–98 (2008)

12. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the mpi message passing interface standard. Parallel computing
22(6), 789–828 (1996)

13. Guo, L., Hamadi, Y., Jabbour, S., Sais, L.: Diversification and intensification in
parallel SAT solving. In: Cohen, D. (ed.) Principles and Practice of Constraint
Programming - CP 2010. Lecture Notes in Computer Science, vol. 6308, pp. 252–
265. Springer (2010)

14. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel sat solver. Journal on Sat-
isfiability, Boolean Modeling and Computation 6, 245–262 (2008)

15. Hölldobler, S., Manthey, N., Nguyen, V., Stecklina, J., Steinke, P.: A short overview
on modern parallel sat-solvers. In: Proceedings of the International Conference on
Advanced Computer Science and Information Systems. pp. 201–206 (2011)

16. Hyvärinen, A.E., Junttila, T., Niemelä, I.: Grid-based sat solving with itera-
tive partitioning and clause learning. In: Principles and Practice of Constraint
Programming–CP 2011, pp. 385–399. Springer (2011)

17. Hyvärinen, A.E., Junttila, T., Niemela, I.: Incorporating clause learning in grid-
based randomized sat solving. Journal on Satisfiability, Boolean Modeling and
Computation 6, 223–244 (2014)

18. Hyvärinen, A.E., Manthey, N.: Designing scalable parallel sat solvers. In: Theory
and Applications of Satisfiability Testing–SAT 2012, pp. 214–227. Springer (2012)

16



19. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Proceedings of IJ-
CAR 2012. LNCS, vol. 7364, pp. 355–370. Springer (2012)

20. Jurkowiak, B., Li, C.M., Utard, G.: A parallelization scheme based on work stealing
for a class of sat solvers. Journal of Automated Reasoning 34(1), 73–101 (2005)

21. Kautz, H.A., Selman, B., et al.: Planning as satisfiability. In: ECAI. vol. 92, pp.
359–363 (1992)

22. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning
for equivalence checking and functional property verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 21(12) (2002)

23. Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. Computers, IEEE Transactions on 48(5), 506–521 (1999)

24. Martins, R., Manquinho, V., Lynce, I.: An overview of parallel sat solving. Con-
straints 17(3), 304–347 (2012)

25. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient sat solver. In: Proceedings of the 38th annual Design Automation
Conference. pp. 530–535. ACM (2001)

26. Ohmura, K., Ueda, K.: c-sat: A parallel sat solver for clusters. In: Theory and
Applications of Satisfiability Testing-SAT 2009, pp. 524–537. Springer (2009)

27. Parkes, A.J.: Clustering at the phase transition. In: In Proc. of the 14th Nat. Conf.
on AI. pp. 340–345. AAAI Press / The MIT Press (1997)

28. Schulz, S., Blochinger, W.: Parallel sat solving on peer-to-peer desktop grids. Jour-
nal of Grid Computing 8(3), 443–471 (2010)

29. Sorensson, N., Een, N.: Minisat v1.13 a sat solver with conflict-clause minimization.
SAT 2005 (2005)

30. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms
for portfolio-based selection. AAAI Conference on Artificial Intelligence (2010)

17


