

Relaxing the Relaxed Exist-Step Parallel Planning SemanticsRelaxing the Relaxed Exist-Step Parallel Planning Semantics

Tomáš Balyo (biotomas@gmail.com)
Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic

What is Planning?
● World states are described as values of state variables
● Actions change the state of the world by changing the values
of state variables by their effects
● Actions also have preconditions and are applicable only when
their preconditions hold in the given state

Objective: given a set a of actions, an intial world state and the
description of a goal state find a valid sequence of actions that
transforms the world from the initial state to a goal state

Example: delivering 2 packages to Las Vegas

Los Angeles San Francisco Las Vegas Los Angeles San Francisco Las Vegas

State Variables and their domains:
● Truck location T, dom(T)={LA, SF, LV}
● Package locations P and Q
dom(P) = dom(Q) = {LA, SF, LV, Tr}

Initial State: T=LA, P=LA, Q=SF
Goal State: P=LV, Q=LV

Actions:
● move(x,y)=[prec: {T=x}, eff: {T=y}]
● loadP(x)=[prec: {T=x, P=x}, eff: {P=Tr}]
● loadQ(x)=[prec: {T=x, Q=x}, eff: {Q=Tr}]
● dropP(x)=[prec: {T=x, P=Tr}, eff: {P=x}]
● dropQ(x)=[prec: {T=x, Q=Tr}, eff: {Q=x}]
Where x,y are LA, SF, and LV

Plan: loadP(LA), move(LA, SF), loadQ(SF), move(SF, LV), dropP(LV), dropQ(LV)
Using SAT solvers to solve planning problems
● Construct a formula Fk such that it is satisfiable if and only if
there is a plan of at most k steps
● Solve F1, F2, … using a SAT solver until you reach a
satisfiable formula Fn

● Extract a plan from the satisfying assignment of Fn

How to construct such a formula?
How many actions are in a step?

(step = set of actions)

 Four possible answers: (parallel planning semantics)

The foreach step
● The preconditions of all actions in a
step must already hold in the
beginning of the step
● The effects of all actions must hold
at the end of this step
● The actions in a step do not
interfere – they cannot destroy each
others preconditions by their effects
● The actions in a step can be turned
into a valid subplan sequence

The exist step
● The preconditions of all actions in a
step must already hold in the
beginning of the step
● The effects of all actions must hold
at the end of this step
● The actions in a step do not
interfere – they cannot destroy each
others preconditions by their effects
● The actions in a step can be turned
into a valid subplan sequence

The relaxed exist step
● The preconditions of all actions in a
step must already hold in the
beginning of the step
● The effects of all actions must hold
at the end of this step
● The actions in a step do not
interfere – they cannot destroy each
others preconditions by their effects
● The actions in a step can be turned
into a valid subplan sequence

Relaxed relaxed exist step
● The preconditions of all actions in a
step must already hold in the
beginning of the step
● The effects of all actions must hold
at the end of this step
● The actions in a step do not
interfere – they cannot destroy each
others preconditions by their effects
● The actions in a step can be turned
into a valid subplan sequence

NEWNEW

Example: shortest plans for different semantics
● foreach {loadP(LA)} ♦ {move(LA, SF)} ♦ {loadQ(SF)} ♦ {move(SF, LV)} ♦ {dropP(LV), dropQ(LV)} – 5 steps
● exist {loadP(LA), move(LA, SF)} ♦ {loadQ(SF), move(SF, LV)} ♦ {dropP(LV), dropQ(LV)} – 3 steps
● relaxed exist {loadP(LA), move(LA, SF), loadQ(SF)} ♦ {move(SF, LV), dropP(LV), dropQ(LV)} – 2 steps
● relaxed relaxed exist {loadP(LA), move(LA, SF), loadQ(SF), move(SF, LV), dropP(LV), dropQ(LV)} – 1 step

Conjectures
● Using a more relaxed semantics allows us
to find plans with fewer steps
● Fewer steps means fewer SAT formulas to
solve, which leads to finding plans faster

Basic ideas of the relaxed relaxed exist step SAT encoding
● The SAT encoding only approximates the semantics, i.e., the satisfiability of the
constructed formula Fk implies the existence of a k-step plan (not vice versa)
● The actions are ranked using cycle–ignoring topological sorting on the action
dependency graph (action ranking can be arbitrary as long as it is injective)
● The encoding allows only lower ranking actions before higher ranking ones in a step
● The encoding uses implication chains similar to those used in the exist step and
relaxed exist step encoding

Experimental setting
● We compared 3 of the 4 encodings on eight International
Planning Competition (IPC 2012) domains (20 problems each)
● All formulas were solved with the same SAT solver – Lingeling
● Computer: Intel i7 920 cpu @2.67 Ghz and 6 GB of memory
● The time limit was 30 minutes for a step
● We measured the number of problems that were solved within
the time limit and the number of steps needed

Domain
Foreach Step Exist Step Relaxed Relaxed E.S.

Solved Avg. Steps Solved Avg. Steps Solved Avg. Steps

Barman 8 46.3 8 36.6 14 14.8

Elevators 20 9.5 20 6.5 20 4.3

Parcprinter 20 13.5 20 13.5 20 1.5

Pegsol 7 22.8 13 24.0 19 8.6

Storage 15 9.2 19 7.9 19 4.3

Visitall 9 27.0 11 31.4 20 1.7

Woodwork 20 3.4 20 3.3 20 1.7

Zenotravel 16 5.9 16 4.5 15 2.7

Conclusion
● We have defined a novel parallel planning semantics and a
SAT encoding which approximates it
● The results of the experiments show that the new encoding
is successfull in solving IPC benchmark problems
● For the domains Pegsol, Barman, and Visitall we achieved
a significant improvement in the number of solved instances
● The average number of required steps decreased for all
domains, most significantly for the Visitall domain
● The encoding can be further improved to produce smaller
formulas and to better approximate the defined semantics

IEEE International Conference on Tools with Artificial Intelligence (ICTAI) - 2013

	Slide 1

