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Abstract—There exist planning algorithms that can quickly find 
sub-optimal plans even for large problems and planning 
algorithms finding optimal plans but only for smaller problems. 
In this paper we attempt to integrate both approaches. We 
present an anytime technique for improving plan quality, in 
particular decreasing the plan makespan, via substituting parts 
of the plan by makespan-optimal sub-plans. The technique 
guarantees optimality though it is primarily intended to quickly 
improve plan quality. We experimentally compare various 
approaches to local improvements and we show that our method 
has significantly better makespan score than the SASE planner, 
which is one of the best optimal planners. 

Keywords-planning; makespan optimization 

I.  INTRODUCTION 
Classical AI planning deals with the problem of finding a 

partially ordered set of actions that transfers the world from 
some initial state to a state satisfying a certain goal condition. 
As it is typical for many hard combinatorial optimization 
problems, there is a trade-off between the plan quality and the 
time necessary to find the plan. There exist planners such as 
LPG [6] and SGPLAN [9] that generate quickly plans for many 
problem domains but the plan quality may be bad while other 
planners such as SASE [10] generate optimal plans with the 
trade-off of longer runtime. In this paper we attempt to improve 
the quality of plans generated by sub-optimal planners by doing 
local optimizations of the plans. More precisely, we will be 
improving makespan of parallel plans by optimizing sub-plans 
using SAT-based techniques such as SASE that are successful 
for finding makespan-optimal plans. 

The idea of making local repairs in a sub-optimal plan to 
improve the plan towards optimal makespan or towards better 
visual quality has already appeared in domain-dependent 
planning. In [13] and [15] authors try to improve solutions of 
cooperative-path finding (CPF) where the task is to plan 
movements of agents so that they do not collide with each 
other. Improvements are done by ad-hoc local changes such as 
avoiding busy locations, eliminating agent’s waiting, and 
replacing movements along long paths with shortcuts. In these 
cases the pattern of improvement is fixed which may cause that 
redundancies of a priori unknown pattern remain in the 
solution. Applying SAT-based mechanisms to improve 
solutions of CPF problems where sub-solutions are replaced by 
makespan-optimal ones has been proposed in [14]. This 
approach is trying to overcome the limitation imposed by the 
fixed set of improvement patterns. The SAT-based approach 

allows discovering redundancy or inefficiency of any pattern. 
A special domain-dependent propositional encoding of the CPF 
problem has been used. 

Since domain-independent propositional encodings for 
planning such as SATPLAN [11] or SASE [10] are already 
available, we tried to apply the SAT-based solution 
improvement technique from CPF also in the domain-
independent planning in this work. This is however not the first 
time that certain quality improvements in SAT-based domain-
independent planning have been considered. In [7] the authors 
proposed to optimize the number of actions in the iterative 
process where a plan containing fewer actions is generated at 
each iteration. This is achieved through adding preference 
constraints into the propositional formulation of the problem. 

From the broader perspective, our work is also related to 
techniques for compression of schedules [5] that apply the 
critical path method to reduce the makespan and to increase the 
parallelism of the schedule. Contrary to this approach, the 
parallelism is not restricted by the number of execution units 
but rather by the semantics of a planning instance in our case. 

In this paper we propose a method that works as follows. 
We start with a sub-optimal plan and select one of its sub-
plans. From this sub-plan we generate a new planning problem 
and using a SAT-based technique we find a makespan-optimal 
plan for this problem. This optimal plan substitutes the original 
sub-plan in the large plan and this way we decrease the 
makespan of the plan. The process is repeated with other sub-
plans until a given stopping criterion is reached. We will 
propose several methods how to select the sub-plan and we 
compare these methods experimentally using the problems 
from the International Planning Competition [12]. 

The paper is organized as follows. We will first formally 
describe the planning problem to be solved. Then we will give 
details of our methods, namely how we define the planning 
problem from the sub-plan and how we find the makespan 
optimal plan for this problem. A large portion of the text will 
be devoted to the experimental study of the proposed methods 
and suggesting possible ways how to improve the method. 

II. FORMAL BACKGROUND 
In this paper we focus on optimizing makespan of parallel 

plans. Parallel planning deals with the problem of finding a 
sequence of sets of independent actions called a parallel plan 
that transfers the world from a given initial state to a state 



satisfying a given goal condition. The state is defined as a set 
of propositions that are true in a given state. The goal condition 
is defined as a set of propositions that must hold in the goal 
state – state S satisfies the goal condition G if G ⊆ S. Each 
action is a triple (Cond, PosEff, NegEff) of sets of propositions 
such that PosEff ∩ NegEff = ∅. Action A is applicable to state 
S if CondA ⊆ S. If the action A is applicable to state S then the 
resulting state after applying the action is γ(S, A) = (S ∪ 
PosEffA \ NegEffA). We can apply a sequence of actions A1,…, 
An to state S, if A1 is applicable to state S and each Ai is 
applicable to γ(…γ(γ(S, A1), A2)…, Ai-1). We denote the final 
state γ(S, (A1,…, An)). Action A is relevant to a goal G if 
PosEffA ∩ G ≠ ∅ and NegEffA ∩ G = ∅. The regression set 
for goal G and action A that is relevant to G is 
γ-1(G, A) = ((G \ PosEffA) ∪ CondA). The regression set 
characterizes the set of states (via a goal condition) such that 
goal G is reachable from any of these states by applying action 
A. We can define the regression set for G and for a sequence of 
actions A1,…, An if A1 is relevant to G and each Ai is relevant 
to γ-1(…γ-1(γ-1(G, A1), A2)…, Ai-1). We denote the final 
regression set γ-1(G, (A1,…, An)). Two actions A and B are 
called independent if NegEffB ∩ (CondA ∪ PosEffA) = ∅ and 
NegEffA ∩ (CondB ∪ PosEffB) = ∅. Independent actions do 
not influence each other. Hence if independent actions are 
applicable to some state then they can be applied in any order 
to obtain an identical state. Formally, the set P of pairwise 
independent actions is applicable to state S if ∀A∈P 
CondA ⊆ S. The resulting state is then γ(S, P) = (S ∪ (∪A∈P 
PosEffA) \ (∪A∈P NegEffA)). The parallel plan is makespan 
optimal, if there does not exist any shorter parallel plan.  

Another way to formalize the planning problem is using the 
SAS+ formalism [8] based on multivalued state variables 
instead of propositions. A world state is specified by the values 
of all state variables. The goal conditions and the preconditions 
of actions are expressed as required values of certain state 
variables and the effects of actions are assignments of values to 
some state variables. An action is applicable to a state if its 
preconditions are satisfied in the given state, i.e., if the state 
variables included in the action’s preconditions are properly 
assigned. The resulting state after applying an action has some 
of its variables set to the new values as specified by the action’s 
effects. Two actions are independent if they use disjunctive sets 
of state variables.  A set of independent actions is applicable to 
a state if all the actions in the set are applicable to the state. A 
set of such actions transforms a state to a new state where the 
effects of all actions are applied. A parallel plan is a sequence 
of applicable sets of independent actions, which transfer the 
initial state into a state satisfying the goal condition. The 
makespan of the parallel plan is the length of the sequence. 
Classical proposition formulation can be automatically 
converted to SAS+ formalism [8] for which efficient SAT-
encoding exists [10]. We use this encoding in our approach. 

III. METHODOLOGY 
Assume that we have a sub-optimal parallel plan and we 

want to shorten its makespan. We propose a method of local 
improvements of the plan that is based on selecting a sub-plan 
of the plan, finding a better sub-plan, and substituting the 

original sub-plan by this better sub-plan in the original plan. To 
formulate this method precisely we must answer several 
questions. First, how is the sub-plan selected? Second, how is a 
better sub-plan found? Our idea is based on using existing 
planning techniques, namely the SAT-based approach, to find a 
better plan. Hence, the second question consists of two 
additional questions. How does a sub-plan define a planning 
problem? How do we solve optimally that planning problem? 
The final question is how many times we should repeat this 
local improvement process. 

In the following sections we shall answer the above 
questions. We will first show how to formulate a planning 
problem from the sub-plan selected from a larger plan and how 
to improve the sub-plan by finding a plan with a smaller 
makespan. Then we will show how to select the sub-plans for 
optimizations, in particular, we will present several ideas of 
shifting a window over the plan to define where the local 
improvements will be realized. The stopping criterion will also 
be presented there. 

IV. LOCAL ENHANCEMENTS 
Assume that we have a parallel plan consisting of a 

sequence of sets of independent actions P1,…, Pn and this plan 
transfers the world from the state S to a state satisfying the goal 
condition G. Let Pi,…,Pj, i<j, be a sub-sequence of the above 
plan to be optimized. The makespan of this sub-plan is (j-i+1) 
so optimizing the sub-plan means finding a parallel plan P’1,…, 
P’k such that k <  (j-i+1) and plan P1,…, Pi-1, P’1,…, P’k, 
Pj+1,…, Pn reaches the goal G from state S. In other words, we 
attempt to substitute the original sub-plan by a shorter sub-plan 
that is consistent with the rest of the plan. This new shorter 
plan is found by applying classical SAT-based techniques to a 
specific planning problem. We shall now show how to 
formulate this planning problem and how to solve it. 

A. Identifying Local Sub-Problems 
Let P1,…, Pn be a plan reaching goal G from state S and 

Pi,…, Pj be a sub-sequence of that plan We formulate the 
planning problem Psub to be solved as follows. The initial state 
of Psub is defined as the state γ(S, (P1,…, Pi-1)); if i = 1 then we 
define the initial state of Psub as S. Analogously, the goal Gsub 
of Psub is defined as γ-1(G, (Pn,…, Pj+1)) ; if j = n then the goal 
Gsub equals G. Obviously, if we find a plan P’1,…, P’k that 
solves Psub then P’1 is applicable to γ(S, (P1,…, Pi-1)) etc. so 
(P1,…, Pi-1, P’1,…, P’k) is a valid plan that reaches goal Gsub. 
Because Gsub = γ-1(G, (Pn,…, Pj+1)) contains the precondition of 
Pj+1 (see the definition of the regression set), the action set Pj+1 
is applicable to state γ(S, (P1,…, Pi-1, P’1,…, P’k)). Similarly 
propositions from the precondition of Pj+2 are either among the 
effects of Pj+1 or in Gsub. Hence Pj+2 is applicable to state γ(S, 
(P1,…, Pi-1, P’1,…, P’k, Pj+1)). Together (P1,…, Pi-1, P’1,…, P’k, 
Pj+1,…, Pn) is a valid plan that reaches goal G from state S. 
Figure 1 illustrates the process of substituting a sub-plan with a 
shorter sub-plan. 

B. Optimizing Local Sub-Plans 
As mentioned above, we use a SAT technique to optimize 

the sub-plan. The basic idea is the following. For the planning 



problem Psub and a parameter k we create a SAT formula Fk 
which is satisfiable if and only if there is a parallel plan for Psub 
of size k or shorter. To obtain this SAT formula we use the 
SASE encoding, which is described in [10]. If the formula Fk is 
satisfiable, then we can efficiently extract a parallel plan of size 
k (or shorter) from its satisfying assignment. 

A standard approach for solving planning problems via 
SAT is to iteratively solve Fk for k =1,2,… until Fk is satisfiable 
(Kautz and Selman, 1999). Since we have an upper bound on 
the length of the solution of Psub (it is the size s of the sub-plan 
we want to improve), we can start searching for a better sub-
plan by solving from Fs-1 downwards, i.e., solving Fs-1, Fs-2 ,… 
until we find an unsatisfiable formula Fm. At that moment we 
can conclude that the optimal plan of Psub has the size m+1. 
Then, from the satisfying assignment of Fm+1 we extract the 
optimal plan for the local sub-problem. If the first formula Fs-1 
is unsatisfiable, then the makespan of the sub-plan cannot be 
improved, since it is already makespan optimal. 

Generating and solving SAT formulas in a downward 
fashion has several advantages over the standard approach in 
our application. First, the expected number of generated and 
solved formulas is usually lower for long sub-plans. Second, 
the SASE encoding allows us to create the sequence of SAT 
formulas incrementally if proceeding downwards. More 
precisely, we can generate Fi-1 from Fi by only adding new 
clauses to Fi. Some SAT solvers support incremental SAT 
solving and can therefore solve a sequence of such formulas 
more efficiently if they are supplied in an incremental way to 
the solver. 

V. PLAN WINDOW SHIFTING 
In this section we give some methods how to select the 

local sub-problems (or plan windows) we wish to improve.  

The first and the simplest idea is selecting the windows 
randomly. We select two random numbers between 1 and the 
length of the plan and try optimizing the window between 
them. We repeat selecting random windows until we run out of 
time or we select the entire plan as our window and 
successfully optimize it. 

Another approach is to systematically shift a window of a 
certain size through the plan. A Systematical window shifting 
(SWS) procedure has three parameters: (window size, window 
shift, and fixed point). It works by moving a window of the 
specified size through a plan from its beginning increasing its 
starting position by the window shift parameter until the end of 
the plan is reached. Note that the last window in the iteration 
may be shorter than the specified window size. The fixed-point 
parameter of the SWS procedure specifies whether the iteration 
is repeated if any window has been improved. In particular, if 
any of the windows during the shifting is improved and the 
fixed-point parameter is set to the value True, then the SWS 
procedure with the same parameters is repeated. Figure 2 gives 
a pseudo-code of procedure SWS.  

There are many ways to set the parameter window shift. In 
our experiments we tried two methods – shifting the window 
by the window size (then the subsequent windows are not 
overlapping), we call this method fullstep; and shifting the 
window by the half size of the window (the next window 
shares its first half with the previous window), we call this 
method halfstep. 

The remaining question is what window size should be 
used. For domain independent planning we prefer a parameter-
free solving method so we propose two methods both based on 
incrementally increasing the window size. The method called	  
turbo increases the window size by 1 and the method called 
exponential (or just expo) increases the window size by the 
factor of 3/2 (NextSize ← 3/2*Size). While	  turbo focuses more 
on smaller windows, expo tries to reach larger windows faster. 
For both methods we suggest starting with the initial size 3 
where some makespan improvement may happen. 
Theoretically, window size 2 may also lead to improving plan 
makespan, but we believe that such improvement is so easy 
that the planner generating the initial plan would find it. 

When optimizing a window, we also specify a time limit for 
its optimization to avoid spending too much time on optimizing 
hard windows. The time limit depends only on the size of 
window to be optimized and the remaining time (we assume 
that the entire plan optimization process is launched with a time 
limit). The time limit is computed using the following formula: 

Limit = RemainingTime / (PlanSize / windowSize) 
The idea behind this formula is that we give a window so 

much time, that in the case of timeouts the remaining time 
would still be enough to optimize the rest of the plan with 
windows of the same size. 

	   G	  S	   Gsub	  original	  plan	  

 
	   G	  S	   Gsub	  shortened	  plan	  

 
Figure 1.  Substituting a sub-plan by a shorter sub-plan (arrows 

indicate causal relations between the action). SWS(P, size, shift, fp) 
  repeat 
    Start <- 1 
    Change <- false 
    repeat 
      P’ <- optimize(P, Start, Size) 
      if P’ ≠ P then 
        Change <- true 
        P <- P’ 
      endif 
      Start <- Start + Shift 
    until Start >= makespan(P) 
  until not(fp and Change) 

Figure 2.  Procedure for window shifting over plan P. 



VI. EXPERIMENTAL STUDY 
To evaluate properties of the proposed methods we did an 

experimental study comparing various combinations of the 
methods. In particular, we compared eight systematic 
approaches as specified in Table 1 and we also used the 
random method where the maximal window size was 20. This 
size was deduced from the experiment with the expo method 
that explored large windows but almost never found any 
improvement for window of size larger than 20 due to time 
limit. We used the LPG planner [6] to generate the initial plans. 
Because we are improving the makespan, we used the SASE 
[10] planner to compare the quality of plans generated by our 
method. The SASE planner is currently one of the best 
makespan-optimal planners. 

Our experimental study focused on three aspects. Our initial 
goal was improving plan makespan, so we compared 
cumulative makespan of all methods. Of course, we want the 
method to be competitive also in terms of runtime, so we also 
compared the time efficiency of the methods. We also 
examined the above-mentioned properties of our methods using 
the performance score functions proposed in the learning track 
of IPC-6 [4]. The speed score of a system S over a set of 
benchmark problems is the sum of the scores over all the test 
problems in the set. The score of a system S on a problem P is 
0 if P is unsolved in the given time limit and TP

*/TP otherwise, 
where TP

* is the lowest measured CPU time required to solve P 
by any of the tested systems and TP is the CPU time of the 
evaluated system S on the problem P. Analogously we define 
the makespan score, the only difference is, that instead of CPU 
time we consider the makespan of the resulting plans. For both 
scores higher values indicate better performance. Finally, we 
looked inside the methods and we tried to find the reason for 
the behavior of the methods. 

All experiments were run on a cluster of identical PC 
computers with Intel Core i7 920@2.67GHz processors, 6GB 
of main memory running Gentoo Linux 2.0.3 (kernel version 
3.0.26). We used SAT4J [1] to implement our SAT-based 
window improvements, while SASE used the precosat [2] SAT 
solver. All auxiliary procedures were implemented in Java. 

TABLE I.  DESCRIPTION OF METHOD PARAMETERS 

method win. size 
increase 

window shift fixed point 

expo-fullstep size*3/2 size no 
expo-fullstep-fp size*3/2 size yes 
expo-halfstep size*3/2 size/2 no 
expo-halfstep-fp size*3/2 size/2 yes 
turbo-fullstep size+1 size no 
turbo-fullstep-fp size+1 size yes 
turbo-halfstep size+1 size/2 no 
turbo-halfstep-fp size+1 size/2 yes 

A. Plan Quality 
Our initial motivation was improving the plan quality, namely 
makespan, for a planner that can find plans quickly, but with 
lower quality of plans. Table 3 shows the comparison of 
cumulative makespan for all 189 solved problems (total 
makespan) and for 135 problems that both SASE and our 

method can solve (joint makespan). The table shows that plans 
generated by LPG have more than five times larger makespan 
than the plans generated by SASE and that all our methods 
significantly reduce the makespan. In fact, the plans improved 
by our methods are very close to the optimal plans produced 
by SASE. Table 4 gives a comparison of makespan scores. All 
our methods outperform both SASE and LPG, with turbo-‐
halfstep-‐fp being the method with the best performance. Both 
tables show that it is worth to scan the windows systematically 
over the plan rather than trying them completely randomly. 
The experiment also confirms the expectation that using the 
iterations with fixed points leads to better plans and that 
overlapping windows also contribute to smaller makespan. 
The experiment also shows that it is better to increase the size 
of the window conservatively between the iterations. In 
summary, it seems that to get the largest quality improvement, 
it is better to use smaller windows that are overlapping and to 
increase the window only when no improvement with the 
current window size can be found. 

TABLE II.  THE NUMBER OF SOLVED PROBLEMS 

domain SASE Our method 
(via LPG) 

Common 

depots 22 16 22 16 
driverlog 20 17 20 17 
freecell 20 6 4 4 
pipesworld 50 34 31 28 
rovers 40 17 40 17 
storage 30 15 30 15 
tpp 30 30 22 22 
zenotravel 20 16 20 16 
solved 232 151 189 135 

TABLE III.  COMPARISON OF PLAN MAKESPAN 

method total makespan joint makespan 
LPG 14531 100% 6752 548% 
expo-fullstep 4411 30% 1911 155% 
expo-fullstep-fp 3434 24% 1665 135% 
expo-halfstep 3577 25% 1660 135% 
expo-halfstep-fp 3138 22% 1550 126% 
turbo-fullstep 3426 24% 1589 129% 
turbo-fullstep-fp 3156 22% 1563 127% 
turbo-halfstep 3076 21% 1515 123% 
turbo-halfstep-fp 3013 21% 1540 125% 
random-20 6351 44% 1935 157% 
SASE   1232 100% 

TABLE IV.  COMPARISON OF MAKESPAN SCORES 

method makespan score ∆LPG ∆SASE 
LPG 71,27 0,00 -75,38 
expo-fullstep 158,33 87,05 11,67 
expo-fullstep-fp 170,41 99,14 23,76 
expo-halfstep 169,48 98,21 22,83 
expo-halfstep-fp 177,16 105,88 30,50 
turbo-fullstep 172,67 101,40 26,02 
turbo-fullstep-fp 175,57 104,30 28,92 
turbo-halfstep 177,65 106,38 31,00 
turbo-halfstep-fp 179,53 108,25 32,87 
random-20 159,76 88,49 13,11 
SASE 146,65 75,38 0,00 



B. Efficiency 
In this section we will focus on the runtimes of the 

methods. Table 5 shows the cumulative runtimes for 135 
problems solved by all methods. The clear winner is the LPG 
planner. Note that the runtimes of our methods do not include 
the time to find the initial plan (the runtime of LPG needs to be 
added). Table 6 contains the speed scores of the methods and 
shows an even more significant lead of LPG than the total 
runtime comparison. 

There are not significant differences between the runtimes 
and speed scores of our methods. This is because we are doing 
local improvements until we find the optimal plan (the last 
window covers completely the plan) or the time limit is 
reached. For larger plans we frequently reach the time limit, 
which is reflected in the total runtime. In general, our methods 
are about one order of magnitude slower than LPG but only a 
few times slower than SASE. 

We also measured when we found the last improvement of 
the plan (improving runtime). The results are quite interesting 
and promising for future improvements. For the best 
combination of methods turbo-‐halfstep-‐fp, the time to find the 
best plan is very close to the runtime of SASE while we still 
have the advantage that thanks to LPG we can find more plans. 
Nevertheless, it seems that our methods in the core form waste 
about 40% of runtime by continuing attempts to improve the 
plan. Finding a better stopping criterion would improve the 
runtime while preserving the quality of found plans. 

TABLE V.  COMPARISON OF RUNTIMES (IN SECONDS) 

method total 
runtime 

improving 
runtime 

efficacy 

LPG 6 604   
expo-fullstep 63 195 41 409 66% 
expo-fullstep-fp 54 568 35 540 65% 
expo-halfstep 55 652 40 340 72% 
expo-halfstep-fp 52 018 31 798 61% 
turbo-fullstep 52 446 34 637 66% 
turbo-fullstep-fp 53 834 30 478 57% 
turbo-halfstep 50 251 33 749 67% 
turbo-halfstep-fp 52 568 29 472 56% 
random-20 63 082 49 647 79% 
SASE 23 220   

TABLE VI.  COMPARISON OF SPEED SCORES 

method speed 
score 

∆LPG ∆SASE 

LPG 167,02 0,00 147,06 
expo-fullstep 5,89 -161,13 -14,07 
expo-fullstep-fp 6,51 -160,51 -13,45 
expo-halfstep 6,46 -160,56 -13,50 
expo-halfstep-fp 6,44 -160,58 -13,52 
turbo-fullstep 6,73 -160,28 -13,23 
turbo-fullstep-fp 6,34 -160,67 -13,61 
turbo-halfstep 6,85 -160,17 -13,11 
turbo-halfstep-fp 6,61 -160,40 -13,34 
random-20 5,41 -161,61 -14,55 
SASE 19,96 -147,06 0,00 

C. Looking Inside 
So far we looked at global properties of the compared 

methods. From the comparison of runtimes, it seems that we 
are wasting some time by continuing to run the local 
optimizations without obtaining further improvement. In this 
section, we shall look inside the proposed methods to uncover 
other possible inefficiencies that may help to further improve 
the methods. In particular, we will explore the number of 
windows that each method tries to optimize for each window 
size and we look at how many of these windows actually lead 
to improving the makespan. 

Figure 3 shows the number of windows as the relation of 
the window size for the random method. Recall that in this 
method, we placed the windows with uniform distribution of 
their size randomly in the plan (we used windows of maximal 
size 20). We measured the number of tried windows and the 
number of windows that lead to improvement of the plan (left) 
and we computed the ratio (success rate) between these 
numbers (right). The results are not very surprising. The 
number of tried windows decreases exponentially with the size 
of the windows and the very small windows are less successful 
during optimizations. In general, only a small number of tried 
enhancements lead to real improvement of makespan that 
shows that the random method is very inefficient. An 
interesting observation may be that windows of size 13 are 
particularly successful during optimizations. We also did an 
experiment with the unlimited size of the windows, and the 
windows of size 13 were also among the peaks of the success 

     
Figure 3.  Description of scanning windows based on their size (X axis) for the random method. 

 



rate. Note, that this is a cumulative result for all the tested 
domains and a more detailed study of particular domains may 
reveal whether this window size is really common for different 
domains. 

Figure 4 shows the same measurements for all four versions 
of the turbo method. The graph comparing the success rate per 
window size is of particular interest. The graph clearly shows 
that using the fixed point in iterations significantly degrades the 
success rate of optimizing the windows. In other words, we are 
wasting time by trying to optimize the windows of the same 
size again and again while any window of a given size is still 
being improved. Nevertheless, recall that the fixed-point 
strategy generally reached better plans and the runtime was 
comparable to the methods without the fixed point. The reason 
could be that the fixed-point strategies spent more time with 
smaller windows where the optimization is much faster. The 
graphs showing the number of tried windows confirm this 
hypothesis. The conclusion is that optimizing smaller windows 
contribute a lot to the overall plan makespan. 

The graphs also show that using overlapping windows 
decreases the number of successful optimizations 
independently of whether the fixed point is or is not used. The 
explanation could be that if we optimize a given window then 
the overlapping window has already its first half optimal (for 

the halfstep method) so the chance for further improvement is 
lower. Still, overlapping windows lead to better plans (Table 
3). The reason could be that this method allows the planner to 
reallocate faster the actions to proper layers of the parallel plan. 

In summary, the experiment shows that there is still a big 
possibility for improving the runtime by focusing on windows 
with a higher chance for improvement. The open question is 
how to effectively identify such windows. 

Figure 5 shows basically the same study as above for the 
expo method. The behavior is identical to the turbo method 
though the graphs look different. It is interesting to see that the 
fullstep method achieves very good efficiency for larger 
windows while this method produces the worst plans (Table 3). 
The reason could be that this method does the optimization of 
larger windows, which is time consuming, while the same 
improvement can be done using the smaller windows much 
faster. This confirms our hypothesis that it is better to focus on 
smaller windows. 

The peaks in the graphs showing the number of windows in 
Figure 5 correspond to the sizes of windows that are actively 
tried by the expo method. Recall that we start with the window 
of size 3 and for each next iteration we increase the size of the 
window by half so we get windows of size 4, 6, 9, 13, 19, 28. 

       
Figure 4.  Description of scanning windows based on their size (X axis) for the turbo methods. 

       
Figure 5.  Description of scanning windows based on their size (X axis) for the expo methods. 

 



Nevertheless, the method may also explore windows of 
different sizes than those describe above. These are the 
windows covering the rest of the plan at the end of iterations. 

To conclude the study, we compared the methods with the 
best success rates in a single graph. In particular, Figure 6 
shows the fullstep versions without the fixed point of turbo and 
expo methods and the random method. The graphs show that 
the random method exploits uniformly windows of all sizes 
with very low success rate of actual improvements. The turbo 
method focuses on smaller windows and though it reaches the 
worst success rate for larger windows, the turbo method still 
finds the plans with the smallest makespan. The expo method 
has a very good success rate for the larger windows (most 
attempts lead to plan improvement), but because optimizing 
large plans is time consuming, the overall makespan is still 
worse than for the turbo method. 

VII. CONCLUSIONS 
In this paper we proposed a method for improving quality 

of plans by doing local enhancements of sub-optimal plans. In 
particular, we focused on improving plan makespan by 
optimizing sub-plans using a SAT-based method. We 
experimentally compared several methods how to select a sub-
plan and its size for optimization. The best results were 
achieved by systematically exploring partially overlapping sub-
plans with the constant increase of sub-plan size between the 
iterations. This method gives both the smallest overall 
makespan and the smallest runtime among the explored 
methods. All the methods significantly improved quality of 
plans produced by the LPG planner and made the quality 
comparable to plans generated by the optimal SASE planner. In 
fact, we achieved significantly better makespan score than the 
SASE planner thanks to solving more problems. Though the 
methods are still slower than SASE, they can find solutions for 
more problems thanks to exploiting the LPG planner (but any 
sub-optimal planner can be used to find the initial plan). The 
general conclusion from the experimental study is that it is 
worth optimizing a larger number of smaller sub-plans than 
trying a smaller number of larger sub-plans. The reason is that 
the runtime to optimize a sub-plan increases significantly with 
the size of the sub-plan. 

By deeper experimental comparison we identified several 
points of the method that can contribute to better runtime. 
Based on our observations the runtime can be further improved 
by omitting sub-plans that cannot be improved and by better 
stopping criterion of the method. For example, sub-plans that 
cannot be improved can be discovered through some kind of 
fast planning-graph reasoning [3] or simply because they were 
already tried. This second criterion is slightly more 
complicated because even if the sub-plan has already been 
explored, the goal condition may change if a sub-plan in the 
later part of the plan has been changed. Regarding the stopping 
criterion, it seems that the algorithm can stop with some 
maximal window size as the large windows rarely lead to 
improvement if the smaller windows were carefully optimized 
and the remaining runtime is limited. Exploring these 
opportunities is part of future research. 
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