
Shortening Plans by Local Re-Planning

Tomáš Balyo1 and Roman Barták1

1Faculty of Mathematics and Physics
Charles University

Prague, Czech Republic
{tomas.balyo, roman.bartak}@mff.cuni.cz

Pavel Surynek1,2

2 Kobe University
5-1-1 Fukae-minamimachi, Higashinada-ku

Kobe 658-0022, Japan
pavel.surynek@mff.cuni.cz

Abstract—There exist planning algorithms that can quickly find
sub-optimal plans even for large problems and planning
algorithms finding optimal plans but only for smaller problems.
In this paper we attempt to integrate both approaches. We
present an anytime technique for improving plan quality, in
particular decreasing the plan makespan, via substituting parts
of the plan by makespan-optimal sub-plans. The technique
guarantees optimality though it is primarily intended to quickly
improve plan quality. We experimentally compare various
approaches to local improvements and we show that our method
has significantly better makespan score than the SASE planner,
which is one of the best optimal planners.

Keywords-planning; makespan optimization

I. INTRODUCTION
Classical AI planning deals with the problem of finding a

partially ordered set of actions that transfers the world from
some initial state to a state satisfying a certain goal condition.
As it is typical for many hard combinatorial optimization
problems, there is a trade-off between the plan quality and the
time necessary to find the plan. There exist planners such as
LPG [6] and SGPLAN [9] that generate quickly plans for many
problem domains but the plan quality may be bad while other
planners such as SASE [10] generate optimal plans with the
trade-off of longer runtime. In this paper we attempt to improve
the quality of plans generated by sub-optimal planners by doing
local optimizations of the plans. More precisely, we will be
improving makespan of parallel plans by optimizing sub-plans
using SAT-based techniques such as SASE that are successful
for finding makespan-optimal plans.

The idea of making local repairs in a sub-optimal plan to
improve the plan towards optimal makespan or towards better
visual quality has already appeared in domain-dependent
planning. In [13] and [15] authors try to improve solutions of
cooperative-path finding (CPF) where the task is to plan
movements of agents so that they do not collide with each
other. Improvements are done by ad-hoc local changes such as
avoiding busy locations, eliminating agent’s waiting, and
replacing movements along long paths with shortcuts. In these
cases the pattern of improvement is fixed which may cause that
redundancies of a priori unknown pattern remain in the
solution. Applying SAT-based mechanisms to improve
solutions of CPF problems where sub-solutions are replaced by
makespan-optimal ones has been proposed in [14]. This
approach is trying to overcome the limitation imposed by the
fixed set of improvement patterns. The SAT-based approach

allows discovering redundancy or inefficiency of any pattern.
A special domain-dependent propositional encoding of the CPF
problem has been used.

Since domain-independent propositional encodings for
planning such as SATPLAN [11] or SASE [10] are already
available, we tried to apply the SAT-based solution
improvement technique from CPF also in the domain-
independent planning in this work. This is however not the first
time that certain quality improvements in SAT-based domain-
independent planning have been considered. In [7] the authors
proposed to optimize the number of actions in the iterative
process where a plan containing fewer actions is generated at
each iteration. This is achieved through adding preference
constraints into the propositional formulation of the problem.

From the broader perspective, our work is also related to
techniques for compression of schedules [5] that apply the
critical path method to reduce the makespan and to increase the
parallelism of the schedule. Contrary to this approach, the
parallelism is not restricted by the number of execution units
but rather by the semantics of a planning instance in our case.

In this paper we propose a method that works as follows.
We start with a sub-optimal plan and select one of its sub-
plans. From this sub-plan we generate a new planning problem
and using a SAT-based technique we find a makespan-optimal
plan for this problem. This optimal plan substitutes the original
sub-plan in the large plan and this way we decrease the
makespan of the plan. The process is repeated with other sub-
plans until a given stopping criterion is reached. We will
propose several methods how to select the sub-plan and we
compare these methods experimentally using the problems
from the International Planning Competition [12].

The paper is organized as follows. We will first formally
describe the planning problem to be solved. Then we will give
details of our methods, namely how we define the planning
problem from the sub-plan and how we find the makespan
optimal plan for this problem. A large portion of the text will
be devoted to the experimental study of the proposed methods
and suggesting possible ways how to improve the method.

II. FORMAL BACKGROUND
In this paper we focus on optimizing makespan of parallel

plans. Parallel planning deals with the problem of finding a
sequence of sets of independent actions called a parallel plan
that transfers the world from a given initial state to a state

satisfying a given goal condition. The state is defined as a set
of propositions that are true in a given state. The goal condition
is defined as a set of propositions that must hold in the goal
state – state S satisfies the goal condition G if G ⊆ S. Each
action is a triple (Cond, PosEff, NegEff) of sets of propositions
such that PosEff ∩ NegEff = ∅. Action A is applicable to state
S if CondA ⊆ S. If the action A is applicable to state S then the
resulting state after applying the action is γ(S, A) = (S ∪
PosEffA \ NegEffA). We can apply a sequence of actions A1,…,
An to state S, if A1 is applicable to state S and each Ai is
applicable to γ(…γ(γ(S, A1), A2)…, Ai-1). We denote the final
state γ(S, (A1,…, An)). Action A is relevant to a goal G if
PosEffA ∩ G ≠ ∅ and NegEffA ∩ G = ∅. The regression set
for goal G and action A that is relevant to G is
γ-1(G, A) = ((G \ PosEffA) ∪ CondA). The regression set
characterizes the set of states (via a goal condition) such that
goal G is reachable from any of these states by applying action
A. We can define the regression set for G and for a sequence of
actions A1,…, An if A1 is relevant to G and each Ai is relevant
to γ-1(…γ-1(γ-1(G, A1), A2)…, Ai-1). We denote the final
regression set γ-1(G, (A1,…, An)). Two actions A and B are
called independent if NegEffB ∩ (CondA ∪ PosEffA) = ∅ and
NegEffA ∩ (CondB ∪ PosEffB) = ∅. Independent actions do
not influence each other. Hence if independent actions are
applicable to some state then they can be applied in any order
to obtain an identical state. Formally, the set P of pairwise
independent actions is applicable to state S if ∀A∈P
CondA ⊆ S. The resulting state is then γ(S, P) = (S ∪ (∪A∈P
PosEffA) \ (∪A∈P NegEffA)). The parallel plan is makespan
optimal, if there does not exist any shorter parallel plan.

Another way to formalize the planning problem is using the
SAS+ formalism [8] based on multivalued state variables
instead of propositions. A world state is specified by the values
of all state variables. The goal conditions and the preconditions
of actions are expressed as required values of certain state
variables and the effects of actions are assignments of values to
some state variables. An action is applicable to a state if its
preconditions are satisfied in the given state, i.e., if the state
variables included in the action’s preconditions are properly
assigned. The resulting state after applying an action has some
of its variables set to the new values as specified by the action’s
effects. Two actions are independent if they use disjunctive sets
of state variables. A set of independent actions is applicable to
a state if all the actions in the set are applicable to the state. A
set of such actions transforms a state to a new state where the
effects of all actions are applied. A parallel plan is a sequence
of applicable sets of independent actions, which transfer the
initial state into a state satisfying the goal condition. The
makespan of the parallel plan is the length of the sequence.
Classical proposition formulation can be automatically
converted to SAS+ formalism [8] for which efficient SAT-
encoding exists [10]. We use this encoding in our approach.

III. METHODOLOGY
Assume that we have a sub-optimal parallel plan and we

want to shorten its makespan. We propose a method of local
improvements of the plan that is based on selecting a sub-plan
of the plan, finding a better sub-plan, and substituting the

original sub-plan by this better sub-plan in the original plan. To
formulate this method precisely we must answer several
questions. First, how is the sub-plan selected? Second, how is a
better sub-plan found? Our idea is based on using existing
planning techniques, namely the SAT-based approach, to find a
better plan. Hence, the second question consists of two
additional questions. How does a sub-plan define a planning
problem? How do we solve optimally that planning problem?
The final question is how many times we should repeat this
local improvement process.

In the following sections we shall answer the above
questions. We will first show how to formulate a planning
problem from the sub-plan selected from a larger plan and how
to improve the sub-plan by finding a plan with a smaller
makespan. Then we will show how to select the sub-plans for
optimizations, in particular, we will present several ideas of
shifting a window over the plan to define where the local
improvements will be realized. The stopping criterion will also
be presented there.

IV. LOCAL ENHANCEMENTS
Assume that we have a parallel plan consisting of a

sequence of sets of independent actions P1,…, Pn and this plan
transfers the world from the state S to a state satisfying the goal
condition G. Let Pi,…,Pj, i<j, be a sub-sequence of the above
plan to be optimized. The makespan of this sub-plan is (j-i+1)
so optimizing the sub-plan means finding a parallel plan P’1,…,
P’k such that k < (j-i+1) and plan P1,…, Pi-1, P’1,…, P’k,
Pj+1,…, Pn reaches the goal G from state S. In other words, we
attempt to substitute the original sub-plan by a shorter sub-plan
that is consistent with the rest of the plan. This new shorter
plan is found by applying classical SAT-based techniques to a
specific planning problem. We shall now show how to
formulate this planning problem and how to solve it.

A. Identifying Local Sub-Problems
Let P1,…, Pn be a plan reaching goal G from state S and

Pi,…, Pj be a sub-sequence of that plan We formulate the
planning problem Psub to be solved as follows. The initial state
of Psub is defined as the state γ(S, (P1,…, Pi-1)); if i = 1 then we
define the initial state of Psub as S. Analogously, the goal Gsub
of Psub is defined as γ-1(G, (Pn,…, Pj+1)) ; if j = n then the goal
Gsub equals G. Obviously, if we find a plan P’1,…, P’k that
solves Psub then P’1 is applicable to γ(S, (P1,…, Pi-1)) etc. so
(P1,…, Pi-1, P’1,…, P’k) is a valid plan that reaches goal Gsub.
Because Gsub = γ-1(G, (Pn,…, Pj+1)) contains the precondition of
Pj+1 (see the definition of the regression set), the action set Pj+1
is applicable to state γ(S, (P1,…, Pi-1, P’1,…, P’k)). Similarly
propositions from the precondition of Pj+2 are either among the
effects of Pj+1 or in Gsub. Hence Pj+2 is applicable to state γ(S,
(P1,…, Pi-1, P’1,…, P’k, Pj+1)). Together (P1,…, Pi-1, P’1,…, P’k,
Pj+1,…, Pn) is a valid plan that reaches goal G from state S.
Figure 1 illustrates the process of substituting a sub-plan with a
shorter sub-plan.

B. Optimizing Local Sub-Plans
As mentioned above, we use a SAT technique to optimize

the sub-plan. The basic idea is the following. For the planning

problem Psub and a parameter k we create a SAT formula Fk
which is satisfiable if and only if there is a parallel plan for Psub
of size k or shorter. To obtain this SAT formula we use the
SASE encoding, which is described in [10]. If the formula Fk is
satisfiable, then we can efficiently extract a parallel plan of size
k (or shorter) from its satisfying assignment.

A standard approach for solving planning problems via
SAT is to iteratively solve Fk for k =1,2,… until Fk is satisfiable
(Kautz and Selman, 1999). Since we have an upper bound on
the length of the solution of Psub (it is the size s of the sub-plan
we want to improve), we can start searching for a better sub-
plan by solving from Fs-1 downwards, i.e., solving Fs-1, Fs-2 ,…
until we find an unsatisfiable formula Fm. At that moment we
can conclude that the optimal plan of Psub has the size m+1.
Then, from the satisfying assignment of Fm+1 we extract the
optimal plan for the local sub-problem. If the first formula Fs-1
is unsatisfiable, then the makespan of the sub-plan cannot be
improved, since it is already makespan optimal.

Generating and solving SAT formulas in a downward
fashion has several advantages over the standard approach in
our application. First, the expected number of generated and
solved formulas is usually lower for long sub-plans. Second,
the SASE encoding allows us to create the sequence of SAT
formulas incrementally if proceeding downwards. More
precisely, we can generate Fi-1 from Fi by only adding new
clauses to Fi. Some SAT solvers support incremental SAT
solving and can therefore solve a sequence of such formulas
more efficiently if they are supplied in an incremental way to
the solver.

V. PLAN WINDOW SHIFTING
In this section we give some methods how to select the

local sub-problems (or plan windows) we wish to improve.

The first and the simplest idea is selecting the windows
randomly. We select two random numbers between 1 and the
length of the plan and try optimizing the window between
them. We repeat selecting random windows until we run out of
time or we select the entire plan as our window and
successfully optimize it.

Another approach is to systematically shift a window of a
certain size through the plan. A Systematical window shifting
(SWS) procedure has three parameters: (window size, window
shift, and fixed point). It works by moving a window of the
specified size through a plan from its beginning increasing its
starting position by the window shift parameter until the end of
the plan is reached. Note that the last window in the iteration
may be shorter than the specified window size. The fixed-point
parameter of the SWS procedure specifies whether the iteration
is repeated if any window has been improved. In particular, if
any of the windows during the shifting is improved and the
fixed-point parameter is set to the value True, then the SWS
procedure with the same parameters is repeated. Figure 2 gives
a pseudo-code of procedure SWS.

There are many ways to set the parameter window shift. In
our experiments we tried two methods – shifting the window
by the window size (then the subsequent windows are not
overlapping), we call this method fullstep; and shifting the
window by the half size of the window (the next window
shares its first half with the previous window), we call this
method halfstep.

The remaining question is what window size should be
used. For domain independent planning we prefer a parameter-
free solving method so we propose two methods both based on
incrementally increasing the window size. The method called	

turbo increases the window size by 1 and the method called
exponential (or just expo) increases the window size by the
factor of 3/2 (NextSize ← 3/2*Size). While	
 turbo focuses more
on smaller windows, expo tries to reach larger windows faster.
For both methods we suggest starting with the initial size 3
where some makespan improvement may happen.
Theoretically, window size 2 may also lead to improving plan
makespan, but we believe that such improvement is so easy
that the planner generating the initial plan would find it.

When optimizing a window, we also specify a time limit for
its optimization to avoid spending too much time on optimizing
hard windows. The time limit depends only on the size of
window to be optimized and the remaining time (we assume
that the entire plan optimization process is launched with a time
limit). The time limit is computed using the following formula:

Limit = RemainingTime / (PlanSize / windowSize)
The idea behind this formula is that we give a window so

much time, that in the case of timeouts the remaining time
would still be enough to optimize the rest of the plan with
windows of the same size.

	
 G	
 S	
 Gsub	
 original	
 plan	

	
 G	
 S	
 Gsub	
 shortened	
 plan	

Figure 1. Substituting a sub-plan by a shorter sub-plan (arrows

indicate causal relations between the action). SWS(P, size, shift, fp)
 repeat
 Start <- 1
 Change <- false
 repeat
 P’ <- optimize(P, Start, Size)
 if P’ ≠ P then
 Change <- true
 P <- P’
 endif
 Start <- Start + Shift
 until Start >= makespan(P)
 until not(fp and Change)

Figure 2. Procedure for window shifting over plan P.

VI. EXPERIMENTAL STUDY
To evaluate properties of the proposed methods we did an

experimental study comparing various combinations of the
methods. In particular, we compared eight systematic
approaches as specified in Table 1 and we also used the
random method where the maximal window size was 20. This
size was deduced from the experiment with the expo method
that explored large windows but almost never found any
improvement for window of size larger than 20 due to time
limit. We used the LPG planner [6] to generate the initial plans.
Because we are improving the makespan, we used the SASE
[10] planner to compare the quality of plans generated by our
method. The SASE planner is currently one of the best
makespan-optimal planners.

Our experimental study focused on three aspects. Our initial
goal was improving plan makespan, so we compared
cumulative makespan of all methods. Of course, we want the
method to be competitive also in terms of runtime, so we also
compared the time efficiency of the methods. We also
examined the above-mentioned properties of our methods using
the performance score functions proposed in the learning track
of IPC-6 [4]. The speed score of a system S over a set of
benchmark problems is the sum of the scores over all the test
problems in the set. The score of a system S on a problem P is
0 if P is unsolved in the given time limit and TP

*/TP otherwise,
where TP

* is the lowest measured CPU time required to solve P
by any of the tested systems and TP is the CPU time of the
evaluated system S on the problem P. Analogously we define
the makespan score, the only difference is, that instead of CPU
time we consider the makespan of the resulting plans. For both
scores higher values indicate better performance. Finally, we
looked inside the methods and we tried to find the reason for
the behavior of the methods.

All experiments were run on a cluster of identical PC
computers with Intel Core i7 920@2.67GHz processors, 6GB
of main memory running Gentoo Linux 2.0.3 (kernel version
3.0.26). We used SAT4J [1] to implement our SAT-based
window improvements, while SASE used the precosat [2] SAT
solver. All auxiliary procedures were implemented in Java.

TABLE I. DESCRIPTION OF METHOD PARAMETERS

method win. size
increase

window shift fixed point

expo-fullstep size*3/2 size no
expo-fullstep-fp size*3/2 size yes
expo-halfstep size*3/2 size/2 no
expo-halfstep-fp size*3/2 size/2 yes
turbo-fullstep size+1 size no
turbo-fullstep-fp size+1 size yes
turbo-halfstep size+1 size/2 no
turbo-halfstep-fp size+1 size/2 yes

A. Plan Quality
Our initial motivation was improving the plan quality, namely
makespan, for a planner that can find plans quickly, but with
lower quality of plans. Table 3 shows the comparison of
cumulative makespan for all 189 solved problems (total
makespan) and for 135 problems that both SASE and our

method can solve (joint makespan). The table shows that plans
generated by LPG have more than five times larger makespan
than the plans generated by SASE and that all our methods
significantly reduce the makespan. In fact, the plans improved
by our methods are very close to the optimal plans produced
by SASE. Table 4 gives a comparison of makespan scores. All
our methods outperform both SASE and LPG, with turbo-­‐
halfstep-­‐fp being the method with the best performance. Both
tables show that it is worth to scan the windows systematically
over the plan rather than trying them completely randomly.
The experiment also confirms the expectation that using the
iterations with fixed points leads to better plans and that
overlapping windows also contribute to smaller makespan.
The experiment also shows that it is better to increase the size
of the window conservatively between the iterations. In
summary, it seems that to get the largest quality improvement,
it is better to use smaller windows that are overlapping and to
increase the window only when no improvement with the
current window size can be found.

TABLE II. THE NUMBER OF SOLVED PROBLEMS

domain SASE Our method
(via LPG)

Common

depots 22 16 22 16
driverlog 20 17 20 17
freecell 20 6 4 4
pipesworld 50 34 31 28
rovers 40 17 40 17
storage 30 15 30 15
tpp 30 30 22 22
zenotravel 20 16 20 16
solved 232 151 189 135

TABLE III. COMPARISON OF PLAN MAKESPAN

method total makespan joint makespan
LPG 14531 100% 6752 548%
expo-fullstep 4411 30% 1911 155%
expo-fullstep-fp 3434 24% 1665 135%
expo-halfstep 3577 25% 1660 135%
expo-halfstep-fp 3138 22% 1550 126%
turbo-fullstep 3426 24% 1589 129%
turbo-fullstep-fp 3156 22% 1563 127%
turbo-halfstep 3076 21% 1515 123%
turbo-halfstep-fp 3013 21% 1540 125%
random-20 6351 44% 1935 157%
SASE 1232 100%

TABLE IV. COMPARISON OF MAKESPAN SCORES

method makespan score ∆LPG ∆SASE
LPG 71,27 0,00 -75,38
expo-fullstep 158,33 87,05 11,67
expo-fullstep-fp 170,41 99,14 23,76
expo-halfstep 169,48 98,21 22,83
expo-halfstep-fp 177,16 105,88 30,50
turbo-fullstep 172,67 101,40 26,02
turbo-fullstep-fp 175,57 104,30 28,92
turbo-halfstep 177,65 106,38 31,00
turbo-halfstep-fp 179,53 108,25 32,87
random-20 159,76 88,49 13,11
SASE 146,65 75,38 0,00

B. Efficiency
In this section we will focus on the runtimes of the

methods. Table 5 shows the cumulative runtimes for 135
problems solved by all methods. The clear winner is the LPG
planner. Note that the runtimes of our methods do not include
the time to find the initial plan (the runtime of LPG needs to be
added). Table 6 contains the speed scores of the methods and
shows an even more significant lead of LPG than the total
runtime comparison.

There are not significant differences between the runtimes
and speed scores of our methods. This is because we are doing
local improvements until we find the optimal plan (the last
window covers completely the plan) or the time limit is
reached. For larger plans we frequently reach the time limit,
which is reflected in the total runtime. In general, our methods
are about one order of magnitude slower than LPG but only a
few times slower than SASE.

We also measured when we found the last improvement of
the plan (improving runtime). The results are quite interesting
and promising for future improvements. For the best
combination of methods turbo-­‐halfstep-­‐fp, the time to find the
best plan is very close to the runtime of SASE while we still
have the advantage that thanks to LPG we can find more plans.
Nevertheless, it seems that our methods in the core form waste
about 40% of runtime by continuing attempts to improve the
plan. Finding a better stopping criterion would improve the
runtime while preserving the quality of found plans.

TABLE V. COMPARISON OF RUNTIMES (IN SECONDS)

method total
runtime

improving
runtime

efficacy

LPG 6 604
expo-fullstep 63 195 41 409 66%
expo-fullstep-fp 54 568 35 540 65%
expo-halfstep 55 652 40 340 72%
expo-halfstep-fp 52 018 31 798 61%
turbo-fullstep 52 446 34 637 66%
turbo-fullstep-fp 53 834 30 478 57%
turbo-halfstep 50 251 33 749 67%
turbo-halfstep-fp 52 568 29 472 56%
random-20 63 082 49 647 79%
SASE 23 220

TABLE VI. COMPARISON OF SPEED SCORES

method speed
score

∆LPG ∆SASE

LPG 167,02 0,00 147,06
expo-fullstep 5,89 -161,13 -14,07
expo-fullstep-fp 6,51 -160,51 -13,45
expo-halfstep 6,46 -160,56 -13,50
expo-halfstep-fp 6,44 -160,58 -13,52
turbo-fullstep 6,73 -160,28 -13,23
turbo-fullstep-fp 6,34 -160,67 -13,61
turbo-halfstep 6,85 -160,17 -13,11
turbo-halfstep-fp 6,61 -160,40 -13,34
random-20 5,41 -161,61 -14,55
SASE 19,96 -147,06 0,00

C. Looking Inside
So far we looked at global properties of the compared

methods. From the comparison of runtimes, it seems that we
are wasting some time by continuing to run the local
optimizations without obtaining further improvement. In this
section, we shall look inside the proposed methods to uncover
other possible inefficiencies that may help to further improve
the methods. In particular, we will explore the number of
windows that each method tries to optimize for each window
size and we look at how many of these windows actually lead
to improving the makespan.

Figure 3 shows the number of windows as the relation of
the window size for the random method. Recall that in this
method, we placed the windows with uniform distribution of
their size randomly in the plan (we used windows of maximal
size 20). We measured the number of tried windows and the
number of windows that lead to improvement of the plan (left)
and we computed the ratio (success rate) between these
numbers (right). The results are not very surprising. The
number of tried windows decreases exponentially with the size
of the windows and the very small windows are less successful
during optimizations. In general, only a small number of tried
enhancements lead to real improvement of makespan that
shows that the random method is very inefficient. An
interesting observation may be that windows of size 13 are
particularly successful during optimizations. We also did an
experiment with the unlimited size of the windows, and the
windows of size 13 were also among the peaks of the success

Figure 3. Description of scanning windows based on their size (X axis) for the random method.

rate. Note, that this is a cumulative result for all the tested
domains and a more detailed study of particular domains may
reveal whether this window size is really common for different
domains.

Figure 4 shows the same measurements for all four versions
of the turbo method. The graph comparing the success rate per
window size is of particular interest. The graph clearly shows
that using the fixed point in iterations significantly degrades the
success rate of optimizing the windows. In other words, we are
wasting time by trying to optimize the windows of the same
size again and again while any window of a given size is still
being improved. Nevertheless, recall that the fixed-point
strategy generally reached better plans and the runtime was
comparable to the methods without the fixed point. The reason
could be that the fixed-point strategies spent more time with
smaller windows where the optimization is much faster. The
graphs showing the number of tried windows confirm this
hypothesis. The conclusion is that optimizing smaller windows
contribute a lot to the overall plan makespan.

The graphs also show that using overlapping windows
decreases the number of successful optimizations
independently of whether the fixed point is or is not used. The
explanation could be that if we optimize a given window then
the overlapping window has already its first half optimal (for

the halfstep method) so the chance for further improvement is
lower. Still, overlapping windows lead to better plans (Table
3). The reason could be that this method allows the planner to
reallocate faster the actions to proper layers of the parallel plan.

In summary, the experiment shows that there is still a big
possibility for improving the runtime by focusing on windows
with a higher chance for improvement. The open question is
how to effectively identify such windows.

Figure 5 shows basically the same study as above for the
expo method. The behavior is identical to the turbo method
though the graphs look different. It is interesting to see that the
fullstep method achieves very good efficiency for larger
windows while this method produces the worst plans (Table 3).
The reason could be that this method does the optimization of
larger windows, which is time consuming, while the same
improvement can be done using the smaller windows much
faster. This confirms our hypothesis that it is better to focus on
smaller windows.

The peaks in the graphs showing the number of windows in
Figure 5 correspond to the sizes of windows that are actively
tried by the expo method. Recall that we start with the window
of size 3 and for each next iteration we increase the size of the
window by half so we get windows of size 4, 6, 9, 13, 19, 28.

Figure 4. Description of scanning windows based on their size (X axis) for the turbo methods.

Figure 5. Description of scanning windows based on their size (X axis) for the expo methods.

Nevertheless, the method may also explore windows of
different sizes than those describe above. These are the
windows covering the rest of the plan at the end of iterations.

To conclude the study, we compared the methods with the
best success rates in a single graph. In particular, Figure 6
shows the fullstep versions without the fixed point of turbo and
expo methods and the random method. The graphs show that
the random method exploits uniformly windows of all sizes
with very low success rate of actual improvements. The turbo
method focuses on smaller windows and though it reaches the
worst success rate for larger windows, the turbo method still
finds the plans with the smallest makespan. The expo method
has a very good success rate for the larger windows (most
attempts lead to plan improvement), but because optimizing
large plans is time consuming, the overall makespan is still
worse than for the turbo method.

VII. CONCLUSIONS
In this paper we proposed a method for improving quality

of plans by doing local enhancements of sub-optimal plans. In
particular, we focused on improving plan makespan by
optimizing sub-plans using a SAT-based method. We
experimentally compared several methods how to select a sub-
plan and its size for optimization. The best results were
achieved by systematically exploring partially overlapping sub-
plans with the constant increase of sub-plan size between the
iterations. This method gives both the smallest overall
makespan and the smallest runtime among the explored
methods. All the methods significantly improved quality of
plans produced by the LPG planner and made the quality
comparable to plans generated by the optimal SASE planner. In
fact, we achieved significantly better makespan score than the
SASE planner thanks to solving more problems. Though the
methods are still slower than SASE, they can find solutions for
more problems thanks to exploiting the LPG planner (but any
sub-optimal planner can be used to find the initial plan). The
general conclusion from the experimental study is that it is
worth optimizing a larger number of smaller sub-plans than
trying a smaller number of larger sub-plans. The reason is that
the runtime to optimize a sub-plan increases significantly with
the size of the sub-plan.

By deeper experimental comparison we identified several
points of the method that can contribute to better runtime.
Based on our observations the runtime can be further improved
by omitting sub-plans that cannot be improved and by better
stopping criterion of the method. For example, sub-plans that
cannot be improved can be discovered through some kind of
fast planning-graph reasoning [3] or simply because they were
already tried. This second criterion is slightly more
complicated because even if the sub-plan has already been
explored, the goal condition may change if a sub-plan in the
later part of the plan has been changed. Regarding the stopping
criterion, it seems that the algorithm can stop with some
maximal window size as the large windows rarely lead to
improvement if the smaller windows were carefully optimized
and the remaining runtime is limited. Exploring these
opportunities is part of future research.

ACKNOWLEDGEMENTS
Research is supported by the Czech Science Foundation

under the contract P103/10/1287 and by the Grant Agency of
Charles University under contracts no. 266111 and 600112.

REFERENCES
[1] Berre, D.L., Parrain, A. 2010. The Sat4j library, release 2.2. JSAT 7 (2-

3) (2010), pp. 59–64.
[2] Biere, A. 2012. Precosat home page. http://fmv.jku.at/precosat/

[accessed on February 2012]
[3] Blum, A. L. and Furst M. L. 1997. Fast planning through planning

graph analysis. Artificial Intelligence, Volume 90 (1-2), 281-300, AAAI
Press.

[4] Fern, A., Khardon, R., and Tadepalli, P. 2008. Learning track of the 6th
international planning competition. http://eecs.oregonstate.edu/ipc-learn/
[accessed on July, 2012]

[5] Ge, Y., Yun, D. Y. Y. 1996. Simultaneous Compression of Makespan
and Number of Processors Using CRP, Proceedings of IPPS 1996, pp.
332-338, IEEE Computer Society.

[6] Gerevini, A., Serina, I. 2002. LPG: a Planner based on Local Search for
Planning Graphs. Proceedings of AIPS-2002, pp. 13-22, AAAI Press.

[7] Giunchiglia, E., Maratea, M. 2009. Improving Plan Quality in SAT-
Based Planning”, Proceedings of AI*IA 2009, pp. 253-263, LNCS
5883, Springer.

[8] Helmert, M. 2006. The Fast Downward Planning System. Journal of
Artificial Intelligence Research (JAIR) 26 (2006), pp. 191–246, AAAI
Press.

Figure 6. Comparison of all methods.

[9] Hsu Ch-W., Wah, B. W., Huang, R., and Chen, Y. 2006. Handling Soft
Constraints and Preferences in SGPlan. Proceedings of the ICAPS 2006
Workshop on Preferences and Soft Constraints in Planning.

[10] Huang, R., Chen, Y., Zhang, W. 2010. A Novel Transition Based
Encoding Scheme for Planning as Satisfiability. Proceedings of AAAI
2010, pp. 89-94, AAAI Press.

[11] Kautz, H., Selman, B. 1999. Unifying SAT-based and Graph-based
Planning, Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI 1999), pp. 318-325, Morgan Kaufmann.

[12] Koenig, S. 2012 (editor). International Planning Competition (IPC),
http://ipc.icaps-conference.org/, University of Southern California,
[accessed on July, 2012].

[13] Surynek, P. 2011. Redundancy Elimination in Highly Parallel Solutions
of Motion Coordination Problems, Proceedings of ICTAI 2011, pp. 701-
708, IEEE Press.

[14] Surynek, P. 2012. A SAT-Based Approach to Cooperative Path-Finding
Using All-Different Constraints, SoCS 2012, in press.

[15] Wang, K. C., Botea, A., Kilby, P. 2011. Solution Quality Improvements
for Massively Multi-Agent Pathfinding. Proceedings of AAAI 2011,
AAAI Press.

