
On Hierarchies over the SLUR Class

Tomáš Balyo and Štefan Gurský and Petr Kučera∗ and Václav Vlček† ‡

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics, Charles University in Prague

Malostransḱe ńam. 25, 118 00 Praha 1, Czech Republic

Abstract

SLUR is a class of the CNF formulae on which the single
lookahead unit resolution algorithm for satisfiability (SAT)
testing never fails. It is known that the SLUR class contains
classes of Horn, hidden Horn, (hidden) extended Horn and
balanced formulae as a subclass. In recent paper it was proven
that the SLUR class contains all canonical formulae. In this
paper we will extend this result by showing it suffices that all
prime implicates can be derived in one resolution step from
input formula. We will also generalize previous hierarchy
called SLUR(i) which is built on top of the SLUR class.

1 Introduction
The satisfiability problem (SAT) is to decide whether a given
formulaϕ in CNF has a satisfying assignment, i.e. whether
for some assignmentt of values 0 (false) or 1 (true) to vari-
ables we have thatϕ(t) evaluates to 1 (true). This prob-
lem was the first one shown to be NP-complete (Cook 1971;
Garey and Johnson 1979). Thus, unless P=NP, no poly-
nomial time algorithm can solve this problem. There
are, however, many classes of formulae for which poly-
nomial SAT algorithms are known. These classes of for-
mulae include Horn formulae (Dowling and Gallier 1984;
Itai and Makowsky 1987; Minoux 1988), hidden Horn for-
mulae (Lewis 1978; Aspvall 1980), extended Horn formu-
lae (Chandru and Hooker 1991), and CC-balanced formu-
lae (Conforti, Cornǔtjols, and Vuskovic 2006). These four
classes share an interesting property: the satisfiability prob-
lem for formulae from these classes can be solved by unit
resolution, namely by the single look-ahead unit resolu-
tion (SLUR) algorithm (Schlipf et al. 1995; Franco and
Van Gelder 2003).

The SLUR algorithm works as follows. In each step it
chooses an unassigned variable and a truth value nonde-
terministically and then repeatedly performs as many unit
propagations as possible. If no empty clause (i.e. contradic-

∗The third author thankfully acknowledges a support by the
Czech Science Foundation (grant P202/10/1188)

†The first, the second and the fourth author gratefully acknowl-
edge a support by the Charles University Grant Agency (grant No.
266111).

‡This research was partially supported by SVV project number
263 314

tion) is derived, then algorithm fixes this assignment, oth-
erwise it tries the other value. If both possibilities leadsto
contradictions, the algorithm gives up. We say that a formula
belongs to the SLUR class, if the SLUR algorithm does not
give up for any possiblity of nondeterministic choices.

In (Čepek and Kǔcera 2010;Čepek, Kǔcera, and Vľcek
2011) it was shown that problem of recognizing whether
given formula belongs to class SLUR is coNP-complete. It
was also shown there that every formula containing all prime
implicates of the represented function is contained in the
SLUR class. As a conseqeunce we have that every function
has a SLUR representation.

In (Vl ček 2009;Čepek, Kǔcera, and Vľcek 2011) a hiear-
archy called SLUR(i) was built on top of the SLUR class.
The idea of this hierarchy was that ati-th level we choose
i variables simultaneously and we consider all2i possible
assignments of truth values to these variables. We will gen-
eralize this hierarchy into the hierarchy called SLUR*(i). It
can be seen as a variant of DPLL procedure (Davis, Loge-
mann, and Loveland 1962) which is allowed to backtrack at
mosti levels back. We shall show that SLUR(i) is properly
contained in SLUR*(i) as well as some more results con-
cerning SLUR*(i) hierarchy structure.

In Section 2 we will present basic definitions and known
results. In Section 3 we will show that formulae that con-
tains almost all prime implicates are contained in the SLUR
class. Then in Section 4 we will present the SLUR*(i) hi-
erarchy and some of its properties. Finally, in Section 5 we
will sum up the results and give some open questions.

2 Definitions and results
Boolean function onn variablesis a mappingf : {0, 1}n 7→
{0, 1}. We say that functionf is satisfiableif there is an
x ∈ {0, 1}n such thatf(x) = 1.

A literal is either a variable or its negation.Clauseis a
disjunction of literals. We assume that no clause contains
both positive and negative literals with the same variable.A
clause which contains just one literal is calledunit clause.
FormulaF is in conjuntive normal form (CNF)if it is a con-
juction of clauses. We shall often treat a clause as a set of
its literals and a CNF as a set of its clauses. It is a well
known fact that every Boolean function can be represented
by a formula in propositional logic (Boolean formula), par-

ticularly formula in conjunctive normal form (CNF) see e.g.
(Genesereth and Nilsson 1987).

The set of variables of a formulaF will be denoted byVF .
We will use capitals for formulae and the same lower case
letters for the function that the given formula represents.

A mappingv : U → {0, 1}, whereU ⊆ VF is a subset
of variables is called apartial assignment. We will write
v(F) for the formula we get fromF after we substitute to the
variables ofF and delete all the zeros from the clauses and
all satisfied clauses from the formula. If we get the empty
formula, then the original formulaF is satisfied withv. On
the other hand if a formula contains an empty clause, it is
unsatisfiable. We will also writeF [x = 0] (or F [x = 1])
for a formula that we get after applying a partial assignment
that assigns just0 (1, respectively) to the variablex.

For two Boolean functionsf andg of n variables we write
f ≤ g if ∀~x ∈ {0, 1}nf(~x) = 1 ⇒ g(~x) = 1. Since each
formula represents a function and each clause can be seen
as a formula we can extend this notation to formulae and
clauses as well. We say that aclauseC1 subsumes a clause
C2 if C1 ≤ C2 holds, it is in fact equivalent toC1 ⊆ C2.
A clauseC is called animplicate off if f ≤ C (e.g. each
clause of a representation off is its implicate).C is aprime
implicateif there is no other implicateC ′ subsumingC. We
say that a formulaF is a canonical representation of func-
tion f if it consists of all prime implicates off . A formula
F is irredundantif removing any of its clauses changes the
function it represents.

We say that two clauses have aconflict in variablex if
there is a positive occurence ofx in one clause and negative
occurence in the other. Two clausesC1 = (C̃1 ∨ x) and
C2 = (C̃2∨x) areresolvable onx if C̃1 andC̃2 do not have a
conflict in any variable. We writeR(C1, C2) = C̃1∨ C̃2 and
this disjuction is called aresolvent, clausesC1 andC2 are
calledparent clauses. It is a well-known fact that resolvent
of two implicates is an implicate again (see e.g. (Buning and
Letterman 1999)). Resolution in which one of the parent
clauses is a unit clause is calledunit resolution.

LetF be a CNF representing Boolean functionf , we say,
thatC can be derived fromF by a series of resolutions if
there is a sequence of clausesC1, . . . , Ck = C such that ev-
eryCi, 1 ≤ i ≤ k either belongs toF , orCi = R(Cj1 , Cj2),
wherej1, j2 < i. It is a wellknown fact (see e.g. (Buning
and Letterman 1999)) that every prime implicate off can be
derived fromF . We definedepthof resolution derivation of
C from F as follows.

1. If C ∈ F , then depth of resolution derivation ofC is 0.

2. If C can be derived fromF by a series of resolutions
C1, . . . , Ck = C, whereC = R(Ci, Cj) with i, j < k,
then depth of the derivation ofC is maximum of depths
of resolution derivations ofCi andCj increased by 1.

3. If C cannot be derived fromF by a series of resolutions,
then we define depth of resolution derivation ofC as in-
finity.

Note, that definition of depth depends on given series of res-
olutions. We say, thatC hasresolution depthd with respect
to CNFF , if C can be derived by a series of resolutions of

depthd and there is no series of resolutions of depth smaller
thand which would deriveC. In particularC has resolution
depth 0, if it belongs toF andC has depth 1, if there are
clausesC1, C2 ∈ F such thatC = R(C1, C2).

In the following lines we will focus on results about and
extensions of Boolean formula’s class called SLUR. In this
paper we focus on the class of Boolean formulae called
SLUR (single look-ahead unit resolution). This class was
defined in (Franco and Van Gelder 2003; Schlipf et al. 1995).
Its definition uses an algorithm similar to well known DPLL
procedure (Davis, Logemann, and Loveland 1962). In fact
DPLL procedure on a SLUR formula always runs without
any backtracks larger than one level. The definition uses a
nondeterministic polynomial time Algorithm 2. The basic
operation used by this algorithm is unit propagation. Func-
tion unitprop(F) for a given formulaF in CNF returns a
pair of values(F ′, t), whereF ′ is the CNF formula that re-
sults from repeatedly performing unit resolution until no unit
clauses remain in the formula, andt is the partial assignment
which satisfies unit clauses found and eliminated during unit
propagation. It is known, that unitprop can be implemented
in time linear in the length of formulaϕ (Dalal and Ether-
ington 1992).

Definition 1 We say that a functionF is in the SLUR class
if the SLUR algorithm (Algorithm 2) does not return “give
up” for any of nondeterministic choices in steps 5 and 16.

Algorithm 2 SLUR(F)

Input: A CNF formulaF with no empty clause
Output: A partial truth assignment satisfyingF , “un-

satisfiable”, or “give up”.

1: (F, t) := unitprop(F)
2: if F contains an empty clausethen return “unsat-

isfiable”endif
3: while F is not empty
4: do
5: Select a variablex present inF
6: (F1, t1) := unitprop(F ∧ v)
7: (F2, t2) := unitprop(F ∧ v)
8: if bothF1 andF2 contain an empty clausethen

return “give up” endif
9: if F1 contains an empty clause

10: then
11: (F, t) := (F2, t ∪ t2)
12: else ifF2 contains an empty clause
13: then
14: (F, t) := (F1, t ∪ t1)
15: else
16: Choose one of the following two steps:
17: (F, t) := (F1, t ∪ t1)
18: (F, t) := (F2, t ∪ t2)
19: endif
20: enddo
21: return t

SLUR(i)
First idea how to extend the SLUR class is not choosing just
one variable in step 5 of SLUR algorithm but choose more
variables at once and search for partial assignments that does
not lead to an empty clause after applying and performing
unitprop. The other thing one notices is that if all partial as-
signments in the first run of while–cycle (line 3 of the SLUR
algorithm) creates an empty clause then the algorithm can
return “unsatisfiable”.

Using these two ideas a hierarchy called SLUR(i), where
i is the number of variables chosen in one run of while cy-
cle, was defined in (̌Cepek, Kǔcera, and Vľcek 2011; Vľcek
2009). It can be easily proven that this hierarchy does not
collapse and each formula is contained in some level for hi-
erarchy (it is sufficient to takei greater than number of vari-
ables in the formula). See (Čepek, Kǔcera, and Vľcek 2011;
Vl ček 2009) for details.

CANON(i)
The last definition we will need to formulate our main result
is the following.

Definition 3 LetF be a CNF and letf be a Boolean func-
tion represented byF . We say thatF belongs to class
CANON(i), for i ≥ 0, if every prime implicate off has
resolution depth with respect toF not greater thani.

Note, that eachF ∈ CANON(0) contains all prime im-
plicates off (wheref is a Boolean function represented by
F). If F is moreover prime, it is in fact the canonical rep-
resentation off . According to (̌Cepek and Kǔcera 2010;
Čepek, Kǔcera, and Vľcek 2011), everyF ∈ CANON(0)
belongs to the SLUR class. In next section we will show,
that this remains true even for CANON(1), but it is not true
for CANON(2).

3 Main result: CANON(1) ⊆ SLUR
In (Čepek and Kǔcera 2010;Čepek, Kǔcera, and Vľcek
2011) is shown that every formula containing all prime im-
plicates is actually in the SLUR class. This result is equiva-
lent to CANON(0) ⊆ SLUR. The main result of this paper
is to extend this result to CANON(1) ⊆ SLUR. We will
start with showing that the class CANON(1) is closed under
partial assignments, which is the key part of the proof.

Lemma 4 Let F ∈ CANON(1) and letx be any variable
of F . Then bothF [x := 0] and F [x := 1] are also in
CANON(1).

Proof We will show only the casex := 0, the casex := 1 is
similar. Let us denoteF ′ = F [x := 0], our goal is to prove
thatF ′ is in CANON(1), i.e. each of its prime implicates is
either inF ′ or can be derived from it in one resolution step.
Let f denote the function represented byF and letf ′ denote
the function represented byF ′.

Let us fix an arbitrary prime implicateC ′ of f ′ and let us
show, thatC ′ ∈ F ′ or there are two clausesC1, C2 ∈ F ′

such thatC ′ = R(C1, C2). That is exactly the property
required forF ′ to belong to CANON(1) and thus by this our
proof will be completed.

BecauseF ′ = F [x := 0], we can observe, thatC ′ ∨ x is
an implicate off . Indeed, letv be an arbitrary assignment
satisfyingf and let us show, thatC ′ ∨ x is satisfied byv,
too. If v(x) = 0, thenv satisfiesf ′ and thusC ′(v) = 1. If
v(x) = 1, then clearly(C ′ ∨ x)(v) = 1. This implies, that
there has to be a prime implicateC of f such that

C ≤ C ′ ∨ x (1)

It follows, thatC[x := 0] ≤ (C ′ ∨ x)[x := 0] = C ′ and
becauseC ′ is a prime implicate off ′, whileC[x := 0] is an
implicate off ′, we get, that in fact

C[x := 0] = C ′. (2)

If C ∈ F , then clearlyC ′ = C[x := 0] ∈ F .
Let us now assume thatC 6∈ F . From our assumption that

F ∈ CANON(1) it follows, that there areC1, C2 ∈ F such
thatC = R(C1, C2). We will divide the proof into several
cases.

1. ClauseC does not contain variablex.
(a) If the resolution step does not use variablex as a con-

flict one, then alsox 6∈ C1, C2, which immediately
means that bothC1 = C1[x := 0] andC2 = C2[x :=
0] are present inF ′ including their conflict variable. We
can therefore do the same resolution step as before and
getC = C ′ = R(C1, C2).

(b) If on the other hand the resolution step usesx as a con-
flict variable, then we can writeC1 = A ∨ x, C2 =
B ∨ x̄, andC = R(C1, C2) = A ∨B for some clauses
A,B, which do not have a conflict. After substitution
to x we getC1[x := 0] = A andC2[x := 0] = 1. It
follows thatC1[x := 0] = A ≤ A ∨B = C ≤ C ′ ∨ x,
where the last inequality follows from (1). Now since
C1 ∈ F , we get thatC1[x := 0] = A ∈ F ′ and because
C ′ is a prime implicate off ′, it must be the case that in
factC ′ = A ∈ F ′.

2. It remains to consider the case whenC containsx, but
C 6∈ F . This case is in fact similar to the case when
C does not containx and it was derived by a resolution
which did not usex as a conflict variable. Let us again
assume, thatC = R(C1, C2), whereC1, C2 ∈ F . There-
fore C1[x := 0], C2[x := 0] are two resolvable clauses
which belong toF ′ and we have thatC ′ = R(C1[x :=
0], C2[x := 0]).

♦

We will also need a simple observation about unsatisfiable
clauses from CANON(1).

Lemma 5 If F is unsatisfiable andF ∈ CANON(1), then
either F contains an empty clause, or an empty clause is
generated duringunitprop(F).

Proof Let f denote the function represented byF . If F is
unsatisfiable, thenf has the only one prime implicate and
that is an empty clause. Let us denote it∅. Due to the as-
sumption thatF ∈ CANON(1), we get that either∅ ∈ F ,
or ∅ = R(C1, C2), whereC1, C2 ∈ F . In the latter case
the only possibility how an empty clause can be generated
in one resolution step is, ifC1 = x andC2 = x for some

variablex (or symmetricallyC1 = x andC2 = x). This
means, that an empty clause would be generated during unit
propagation.♦

Now are ready to prove the main result of this section.

Theorem 6 If F is in CANON(1) then it is also in the SLUR
class.

Proof If F is unsatisfiable, then by Lemma 5 Algorithm 2
(SLUR) would correctly recognize it after unit propagation
in step 2.

Let us assume, thatF is satisfiable. Inductive use of
Lemma 4 ensures, that at every step of the algorithm every
formula considered belongs to CANON(1). This is because
every formula originates fromF by partial assignment, this
is also true for unit propagation. Note also, that usingF ∧ v
corresponds toF [v := 0] and usingF ∧ v corresponds to
F [v := 1]. If at the beginning of the while cycle formula
F is satisfiable, then one ofF1 andF2 is satisfiable and if
one of them is unsatisfiable, it contains an empty clause by
Lemma 5. Thus at the beginning of the next cycleF is again
satisfiable and at the end the SLUR algorithm finds satisfy-
ing assignment.♦

This result can not be extended even more to class
CANON(2), as follows from the following example. The
following formula F belongs to CANON(2), but it is not
SLUR.

F = (x∨y∨a)∧ (x∨y∨b)∧ (x∨y∨c)∧ (x∨y∨d). (3)

It can be checked, that all other implicates which can be
derived by resolution fromF are the following:

(x∨a∨b), (y∨a∨c), (y∨b∨d), (x∨c∨d), (a∨b∨c∨d) (4)

The last clause has resolution depth 2, and the remaining
clauses have resolution depth 1, thusF ∈ CANON(2).
However, it is not SLUR. If the SLUR algorithm first
choosesa, b, c, andd and sets them all to 0, then it gets
a complete quadratic CNF, which is unsatisfiable and thus
the SLUR algorithm would give up. This implies, that it is
not true, that CNFs from CANON(2) would all be SLUR.

Above CNFF has another interesting property. It is
the only prime and irredundant CNF representing the same
functionf . And it is also the only one, which is not SLUR,
it suffices to add any other implicate from list (4) toF to
make it SLUR.

If e.g. we add(x ∨ a ∨ b) toF , then the SLUR algorithm
would recognize an unsatisfiable formula during unit propa-
gation after settinga, b, c, andd to 0 and thus it would not
give up. Ifx or y would be assigned a value beforea, b, c,
or d, or if one ofa, b, c, ord would be assigned value 1, then
SLUR algorithm would get a satisfiable quadratic formula,
which is SLUR. The cases of the next three implicates in (4)
are symmetric. Adding the implicate(a ∨ b ∨ c ∨ d) makes
the formula belong to CANON(1) and therefore SLUR, be-
cause it is the only implicate with resolution depth 2. This
is also an example of a function, that does not have a prime
and irredundant SLUR representation.

4 SLUR*(i)

Let us return to the SLUR(i) hierarchy, which was defined
in (Vl ček 2009;Čepek, Kǔcera, and Vľcek 2011). Let us
consider the following formula

F =(x ∨ y) ∧ (x ∨ y)

∧ (x ∨ y ∨ a ∨ b) ∧ (x ∨ y ∨ a ∨ b)

∧ (x ∨ y ∨ a ∨ b) ∧ (x ∨ y ∨ a ∨ b)

(5)

It can be observed, that this formula is not in the SLUR(2)
class, if we choosex andy and then we choose assignment
x = y = 0, then the SLUR(2) algorithm gives up as it is left
with a complete and thus unsatisfiable quadratic formula.
Here SLUR(2) actually does not take any advantage from
the fact that it can choose two variables at once, because it
chooses two equivalent variables. If however after choosing
a value forx, the SLUR(2) algorithm would be allowed to
perform unit propagation, then it would not choosey as the
second variable and it would recognize, that in casex = 0
the rest is an unsatisfiable formula. This example leads us to
hierarchy consisting of classes SLUR*(i), in which the al-
gorithm also choosesi variables at each step, but it performs
unit propagation between each of these choices rather then
after all of them. Formally, SLUR*(i) class is defined using
Algorithm 9.

Definition 7 FormulaF is a member of SLUR*(i) class if
Algorithm 9 does not return “give up” for any of nondeter-
ministic choices made during its run.

Firstly we will show the recursive function (Algorithm 8)
that takes care of searching thei-decision assignments and
then the SLUR*(i) algorithm.

Algorithm 8 test(F , k)

Input: A CNF formulaF , number of decisionk which
remain to be made by the algorithm.

Output: A partial assignment which have not led to an
empty clause afterk decisions, or UNSAT if no
such assignment exists.

1: (F, t) := unitprop(F)
2: if F contains an empty clausethen return UN-

SAT endif
3: if k=0 then return empty assignmentendif
4: e :=an undetermined literal (positive or negative)
5: t′1 := test(F1, k − 1)
6: if previous test did not return UNSATthen return

t ∪ t1 ∪ t′1 endif
7: t′2 := test(F2, k − 1)
8: if previous test did not return UNSATthen return

t ∪ t2 ∪ t′2 endif
9: return UNSAT

Algorithm 9 SLUR*(i, F)

Input: A CNF formulaF without any empty clause
Output: A partial truth assignment satisfyingF , “un-

satisfiable”, or “give up”.

1: (F, t) := unitprop(F)
2: if F contains an empty clausethen return “unsat-

isfiable”endif
3: while F is not empty
4: do
5: t′ :=test(F , i)
6: if previous test returned UNSAT
7: then
8: if it is the first run of thewhilecycle
9: then

10: return “unsatisfiable”
11: else
12: return “give up”
13: endif
14: endif
15: t := t ∪ t′

16: enddo
17: return t

Note, that all nondeterminism is now stored in step 4 of
proceduretest(Algorithm 8). In this step by choosing literal
instead of a variable we also give no preference to whether
the first value tested will be 1 or 0. The test procedure is in
fact a DPLL procedure (see (Davis, Logemann, and Love-
land 1962) for details), in which we bound our search by
given depth. Ifi is a fixed constant, algorithm SLUR*(i)
runs in polynomial time, though it is naturally exponential
with increasingi.

It is easy to show that the SLUR*(i) hierarchy does not
collapse, i.e. for everyi ≥ 1 the inclusion

SLUR*(i) (SLUR*(i+ 1)

is strict, in fact exactly the same argumentation as for the
previous SLUR(i) hierarchy can be used (Čepek, Kǔcera,
and Vľcek 2011; Vľcek 2009). Modification of the proof to
SLUR*(i) hierarchy is contained in the following lemma.

Lemma 10 For each i there is a formulaFi+1 such that
Fi+1 ∈ SLUR*(i+ 1) \ SLUR*(i).

Proof Let us takeFi+1 as the zero function written as a
CNF formula oni+2 variablesV = {x1, . . . , xi+2}. There
are all possible combination of positive and negative literals:

Fi+1 =
∧

P⊆V


∨

v∈P

v ∨
∨

v∈V \P

v


 .

Now we can see that assigning values to anyi-tuple of vari-
ables some of the clauses disappear and the rest of the for-
mula is quadratic and unsatisfiable. E.g. if we assign arbi-
trary zero-one values tox1, . . . , xi, we get(xi+1 ∨ xi+2) ∧
(xi+1∨xi+2)∧(xi+1∨xi+2)∧(xi+1∨xi+2). Unit propaga-
tion after each variable assignment does not give us anything

new, because all clauses are too long. The lastunitprop will
not derive the empty clause on such CNF and the algorithm
SLUR*(i,Fi+1) will have to give up in the next step.

On the other hand, if we assign values to any(i+1)-tuple
we will get a CNF of thex ∧ x form. Unitprop will derive
the empty clause on such a formula and so the algorithm
SLUR*(i+ 1,Fi+1) returns ”unsatisfiable”.♦

It can be immediately seen, that every CNFF onn vari-
ables belongs to SLUR*(n). It can be also observed that by
doing unit propagation before each choice, we do not loose
anything and thus

SLUR(i) ⊆ SLUR*(i)

for everyi ≥ 1, in particular SLUR⊆ SLUR*(1). The ex-
ample formula defined in (5) at the beginning of this section
shows, that in fact the inclusion SLUR(2) ⊆ SLUR*(2) is
strict, this example can in fact be generalized to show the
following lemma. (Note, that in casei = 1 we do not gain
anything and thus SLUR(1) = SLUR*(1)).

Lemma 11 For everyi > 1 we have[SLUR(i) \ SLUR(i−
1)] ∩ SLUR*(2) 6= ∅.

Proof Let i > 1 be a fixed constant and let us consider the
following formula:

F = (y1 ∨ y2) ∧ . . . ∧ (yi−1 ∨ yi) ∧ (yi ∨ y1)

∧(y1 ∨ . . . ∨ yi ∨ a ∨ b) ∧ (y1 ∨ . . . ∨ yi ∨ a ∨ b)

∧(y1 ∨ . . . ∨ yi ∨ a ∨ b) ∧ (y1 ∨ . . . ∨ yi ∨ a ∨ b)

This formula is logically equivalent to

(y1 ↔ y2 ↔ . . . ↔ yi)

∧
(
y1 ∨ . . . ∨ yi ∨

(
(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ b) ∧ (ā ∨ b̄)

))

If the SLUR(i) algorithm chooses at first thei-tuple
y1, . . . , yi, and then it sets all these variables to 0, then it
will get an unsatisfiable complete quadratic formula on vari-
ablesa andb, which means, the SLUR(i) algorithm will give
up.

On the other hand Algorithm 9 which performs unit prop-
agation after each pick of a variable will assign equivalent
values to ally1, . . . , yi variables after it will come across the
first one of them. So it can use the remaining step to deal
with the rest of the formula. Again, no problem can arise, if
the first chosen variable isa or b. This means that formula
F belongs to SLUR*(2).♦

The following is now an easy corollary.

Corollary 12 For every i > 1 we have that SLUR(i) (

SLUR*(i).

Let us now return to the classes CANON(i). Let F be
CNF defined in (3), we have seen that this CNF belongs to
CANON(2), but it is not SLUR, now we can even observe,
thatF does not belong to SLUR(2), this is because if the
SLUR(2) algorithm chooses firsta andb and sets them to 0,
thenc andd and sets them to 0, what remains is a complete
unsatisfiable quadratic formula. Moreover, in this case unit
propagation after choosing value fora or c does not help

and thusF does not even belong to SLUR*(2). By concate-
nating copies ofF by disjoint union, we could in fact get
an example of a formula showing the following lemma (we
omit formal proof).

Lemma 13 For every i ≥ 1 we have that[SLUR*(i) \
SLUR*(i− 1)] ∩ CANON(2) 6= ∅.

This means, that CANON(2) is not a subclass of any level
of SLUR*(i) hierarchy.

5 Conclusion
We focused on SLUR formulae and their generalizations
into two hierarchies. We have studied relations among
newly defined hierarchies of CANON(i) and SLUR*(i) for-
mulae and the hierarchy SLUR(i) defined in (Vľcek 2009;
Čepek, Kǔcera, and Vľcek 2011). There is still open ques-
tion, whether there are natural classes which would contain
hierarchy CANON(i) and whether there is a satisfiability al-
gorithm for each of these classes, which would be polyno-
mial for a fixedi. Following definition of CANON(i), there
is such an algorithm based on resolution. So we would like
to see, if there is a satisfiability algorithm based on unit prop-
agation and the SLUR algorithm.

References
Aspvall, B. 1980. Recognizing disguised nr(1) instances of
the satisfiability problem.Journal of Algorithms1(1):97 –
103.

Buning, H. K., and Letterman, T. 1999.Propositional
Logic: Deduction and Algorithms. New York, NY, USA:
Cambridge University Press.

Chandru, V., and Hooker, J. N. 1991. Extended horn sets in
propositional logic.J. ACM38(1):205–221.

Conforti, M.; Cornǔtjols, G.; and Vuskovic, K. 2006. Bal-
anced matrices.Discrete Mathematics306(19-20):2411–
2437.

Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. InProceedings of the third annual ACM symposium
on Theory of computing, STOC ’71, 151–158. New York,
NY, USA: ACM.

Dalal, M., and Etherington, D. W. 1992. A hierarchy
of tractable satisfiability problems.Information Processing
Letters44(4):173–180.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A ma-
chine program for theorem-proving.Commun. ACM5:394–
397.

Dowling, W., and Gallier, J. 1984. Linear time algorithms
for testing the satisfiability of propositional horn formulae.
Journal of Logic Programming3:267 – 284.

Franco, J., and Van Gelder, A. 2003. A perspective on cer-
tain polynomial-time solvable classes of satisfiability.Dis-
crete Appl. Math.125:177–214.

Garey, M., and Johnson, D. 1979.Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
San Francisco: W.H. Freeman and Company.

Genesereth, M. R., and Nilsson, N. J. 1987.Logical foun-
dations of artificial intelligence. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Itai, A., and Makowsky, J. 1987. Unification as a complexity
measure for logic programming.Journal of Logic Program-
ming4:105 – 117.
Lewis, H. R. 1978. Renaming a set of clauses as a horn set.
J. ACM25:134–135.
Minoux, M. 1988. Ltur: A simplified linear time unit reso-
lution algorithm for horn formulae and computer implemen-
tation. Information Processing Letters29:1 – 12.
Schlipf, J. S.; Annexstein, F. S.; Franco, J. V.; and Swami-
nathan, R. P. 1995. On finding solutions for extended horn
formulas.Inf. Process. Lett.54:133–137.

Čepek, O., and Kǔcera, P. 2010. Various notes on slur for-
mulae. InProceedings of the 13th Czech-Japan Seminar on
Data Analysis and Decision Making in Service Science, 85–
95.
Čepek, O.; Kǔcera, P.; and Vľcek, V. 2011. Properties of
slur formulae. sent to SOFSEM 2011.
Vl ček, V. 2009. Ťrı́dy booleovsḱych formuĺı s efektivňe
řěsitelńym satem. Master’s thesis, Faculty of Mathematics
and Physics, Charles University in Prague, Czech Republic.

