On Hierarchies over the SLUR Class

Tomas Balyo and Stefan Gursky and Petr Kucera* and Vaclav VIEek'
Department of Theoretical Computer Science and Mathealdtagic
Faculty of Mathematics and Physics, Charles UniversityragBe
Malostransk ram. 25, 118 00 Praha 1, Czech Republic

Abstract tion) is derived, then algorithm fixes this assignment, oth-
_) _ erwise it tries the other value. If both possibilities le&ds
SLUR is a class of the CNF formulae on which the single contradictions, the algorithm gives up. We say that a foemul
lookahead unit resolution algorithm for satisfiability (SAT) belongs to the SLUR class, if the SLUR algorithm does not

testing never fails. It is known that the SLUR class contains . i iblity of inistic choi
classes of Horn, hidden Horn, (hidden) extended Horn and give up for any possiblity of nondeterministic choices.

balanced formulae as a subclass. In recent paper it was proven In (Cepek and Kaera 2010Cepek, Kiera, and ek

that the SLUR class contains all canonical formulae. In this 2011) it was shown that problem of recognizing whether
paper we will extend this result by showing it suffices that all given formula belongs to class SLUR is coNP-complete. It
prime implicates can be derived in one resolution step from was also shown there that every formula containing all prime
input formula. We will also generalize previous hierarchy implicates of the represented function is contained in the

called SLUR{) which is built on top of the SLUR class. SLUR class. As a consegeunce we have that every function

has a SLUR representation.

1 Introduction In (VIgek 2009 Cepek, Kigera, and ek 2011) a hiear-
archy called SLUR{) was built on top of the SLUR class.
The idea of this hierarchy was thatiath level we choose

i variables simultaneously and we consider2alpossible
assignments of truth values to these variables. We will gen-

The satisfiability problem (SAT) is to decide whether a given
formulay in CNF has a satisfying assignment, i.e. whether
for some assignmerntof values O (false) or 1 (true) to vari-

ables we have thap(t) evaluates to 1 (true). This prob- eralize this hierarchy into the hierarchy called SLUR*(t
lem was the first one shown to be NP-complete (Cook 1971; can be seen as a vgriant of DPLL proycedure (Dav?;,qLoge—

Garey and Johnson 1979). Thus, unless P=NP, no poly- ,ann "anq | oveland 1962) which is allowed to backtrack at
nomial time algorithm can solve this problem. There mosti levels back. We shall show that SLUR(s properly

are, however, many classes of formulae for which poly- c,niained in SLURY) as well as some more results con-
nomial SAT algorithms are known. These classes of for- cerning SLUR*() hierarchy structure.

mulae include Horn formulae (Dowling and Gallier 1984; : . . _

X e . In Section 2 we will present basic definitions and known
Ir;ahllggci(l_l\g\?vl?svgl%'l 227’\/2/:"”1%%)8)1 ggzgnr:jlggelﬂol:r?rfgrﬁt- results. In Section 3 we will show that formulae that con-
lae (Chandru and Hoolfer 1991) énd CC-balanced formu- tains almost all prime implicates are contained in the SLUR

. v L class. Then in Section 4 we will present the SLUR{i-
lae (Conforti, Comtols, and Vuskovic 2006). These four erarchy and some of its properties. Finally, in Section 5 we

classes share an interesting property: the satisfiabild-p : . .
lem for formulae from these classes can be solved by unit will sum up the results and give some open questions.

resolution, namely by the single look-ahead unit resolu- o
tion (SLUR) algorithm (Schlipf et al. 1995; Franco and 2 Definitions and results

Van Gelder 2003). _ Boolean function o variablesis a mappingf : {0,1}"
The SLUR algorithm works as follows. In each step it 1 1} we say that functiory is satisfiableif there is an
chooses an unassigned variable and a truth value nonde-,. ~ {0,1}" such thatf (z) = 1.

terministically and then repeatedly performs as many unit

) X ; . A literal is either a variable or its negatioriClauseis a
propagations as possible. If no empty clause (i.e. corttradi

disjunction of literals. We assume that no clause contains

"~ *The third author thankfully acknowledges a support by the both pOSItlye and ”?gat!"e Ilterals_ with _the same variahle.

Czech Science Foundation (grant P202/10/1188) clause which contains just one literal is callait clause
"The first, the second and the fourth author gratefully acknowl- Formulaf”is in conjuntive normal form (CNF¥ it is a con-

edge a support by the Charles University Grant Agency (grant No. jucti_on of clauses. We shall often t_reat a clause asa set of
266111). its literals and a CNF as a set of its clauses. It is a well

iThis research was partially supported by SVV project number known fact that every Boolean function can be represented
263 314 by a formula in propositional logic (Boolean formula), par-

ticularly formula in conjunctive normal form (CNF) see e.g.
(Genesereth and Nilsson 1987).

The set of variables of a formuka will be denoted by/z.
We will use capitals for formulae and the same lower case
letters for the function that the given formula represents.

A mappingv : U — {0,1}, whereU C Vr is a subset
of variables is called gartial assignment We will write
v(F) for the formula we get fron#” after we substitute to the
variables off" and delete all the zeros from the clauses and
all satisfied clauses from the formula. If we get the empty
formula, then the original formul#’ is satisfied withw. On
the other hand if a formula contains an empty clause, it is
unsatisfiable. We will also writé'[z = 0] (or Flz = 1])
for a formula that we get after applying a partial assignment
that assigns judi (1, respectively) to the variabte.

For two Boolean functiong andg of n variables we write
f<gifvz e {0,1}"f(¥) =1 = ¢g(Z) = 1. Since each

depthd and there is no series of resolutions of depth smaller
thand which would deriveC. In particularC has resolution
depth O, if it belongs t&@ andC' has depth 1, if there are
clauses’, Cy € F such thatC' = R(C1, Cs).

In the following lines we will focus on results about and
extensions of Boolean formula’s class called SLUR. In this
paper we focus on the class of Boolean formulae called
SLUR (single look-ahead unit resolution). This class was
defined in (Franco and Van Gelder 2003; Schlipf et al. 1995).
Its definition uses an algorithm similar to well known DPLL
procedure (Davis, Logemann, and Loveland 1962). In fact
DPLL procedure on a SLUR formula always runs without
any backtracks larger than one level. The definition uses a
nondeterministic polynomial time Algorithm 2. The basic
operation used by this algorithm is unit propagation. Func-
tion unitprop(F") for a given formulaF' in CNF returns a
pair of values(F’, t), whereF”’ is the CNF formula that re-

formula represents a function and each clause can be seengjs from repeatedly performing unit resolution until motu

as a formula we can extend this notation to formulae and
clauses as well. We say thatkuseC; subsumes a clause
Cs if C7 < Cs holds, it is in fact equivalent t6'; C Cs.
A clause(C is called anmplicate off if f < C (e.g. each
clause of a representation pis its implicate).C is aprime
implicateif there is no other implicat€” subsuming”. We
say that a formuld’ is a canonical representation of func-
tion f if it consists of all prime implicates of. A formula
F is irredundantif removing any of its clauses changes the
function it represents.

We say that two clauses havecanflict in variablex if
there is a positive occurence @in one clause and negative

occurence in the other. Two claus€s = (CNH V) and
Cy = (CyVvx) areresolvable onx: if C; andC; do not have a

conflict in any variable. We writ&(C, C2) = C; VCsy and
this disjuction is called aesolvent clauses”; andC; are
calledparent clausesilt is a well-known fact that resolvent
of two implicates is an implicate again (see e.g. (Buning and
Letterman 1999)). Resolution in which one of the parent
clauses is a unit clause is calledit resolution

Let F' be a CNF representing Boolean functipnwe say,
that C' can be derived fronf’ by a series of resolutions if
there is a sequence of clauges . .., Cx = C such that ev-
eryC;, 1 <1 < keither belongs td”', orC; = R(Cj,, Cj,),
wherejq, jo < i. Itis a wellknown fact (see e.g. (Buning
and Letterman 1999)) that every prime implicatefafan be
derived fromF'. We definedepthof resolution derivation of
C from F as follows.

1. If C € F, then depth of resolution derivation 6fis 0.

2. If C can be derived fromF' by a series of resolutions
Ci,...,Cy = C, whereC = R(C;,C;) with i,j < k,
then depth of the derivation @ is maximum of depths
of resolution derivations of’; andC; increased by 1.

. If C cannot be derived fromt’ by a series of resolutions,
then we define depth of resolution derivation(®fas in-
finity.

Note, that definition of depth depends on given series of res-

olutions. We say, that' hasresolution depthi with respect

to CNF F, if C can be derived by a series of resolutions of

clauses remain in the formula, ahid the partial assignment
which satisfies unit clauses found and eliminated during uni
propagation. It is known, that unitprop can be implemented
in time linear in the length of formula (Dalal and Ether-
ington 1992).

Definition 1 We say that a functiot is in the SLUR class
if the SLUR algorithm (Algorithm 2) does not return “give
up” for any of nondeterministic choices in steps 5 and 16.

Algorithm 2 SLUR(F)

Input: A CNF formulaF’ with no empty clause
Output: A patrtial truth assignment satisfying, “un-
satisfiable”, or “give up”.

1: (F,t) := unitprop(F)
2: if F contains an empty claugieen return “unsat-
isfiable” endif
3: while F'is not empty
4: do
5: Select a variable present inF’
6: (F1,t1) := unitprop(F A7)
7. (Fs,t) := unitprop(F Av)
8: if both F; and F, contain an empty claughen
return “give up” endif
9: if F} contains an empty clause
10: then
11: (F,t) = (FQ,tUtQ)
12: else if F; contains an empty clause
13: then
14: (F,t) = (Fl,tUtl)
15: else
16: Choose one of the following two steps:
17: (F,t) = (Fl,tUtl)
18: (F,t) = (FQ,tUtg)
19: endif
20: enddo
21: return ¢

SLUR(?) Becauseg”’ = F[z := 0], we can observe, that’ v z is

Firstidea how to extend the SLUR class is not choosing just an implicate off. Indeed, letv be an arbitrary assignment
one variable in step 5 of SLUR algorithm but choose more Satisfying f and let us show, thagﬂ Vais sa}nsﬂed byv,
variables at once and search for partial assignments teatdo 100- Ifv(z) = 0, thenv s;amsﬂesf and thusC’(v) = 1. If
not lead to an empty clause after applying and performing v(z) = 1, then clearly(C” v z)(v) = 1. This implies, that
unitprop. The other thing one notices is that if all partid a there has to be a prime implicateof f such that
signments in the first run of while—cycle (line 3 of the SLUR '

.) C<C'Vrz
algorithm) creates an empty clause then the algorithm can

)

return “unsatisfiable”.
Using these two ideas a hierarchy called SLJR{here

1 is the number of variables chosen in one run of while cy-

cle, was defined inGepek, Kigera, and Viek 2011; VEek

2009). It can be easily proven that this hierarchy does not
collapse and each formula is contained in some level for hi-

erarchy (it is sufficient to takegreater than number of vari-
ables in the formula). Se€gépek, Kéera, and ek 2011;
VI€ek 2009) for details.

CANON(3)

The last definition we will need to formulate our main result
is the following.

Definition 3 Let F' be a CNF and letf be a Boolean func-
tion represented by'. We say thatF' belongs to class
CANON(), for i > 0, if every prime implicate off has
resolution depth with respect # not greater thar.

Note, that eactt” € CANON(0) contains all prime im-
plicates off (wheref is a Boolean function represented by
F). If I'is moreover prime, it is in fact the canonical rep-
resentation off. According to Cepek and Kaera 2010;
Cepek, Kitera, and Mtek 2011), every’ € CANON(0)
belongs to the SLUR class. In next section we will show,
that this remains true even for CANON(1), but it is not true
for CANON(2).

3 Main result: CANON(1) C SLUR

In (Cepek and Kdera 2010;Cepek, Kiera, and ek
2011) is shown that every formula containing all prime im-
plicates is actually in the SLUR class. This result is equiva
lent to CANONO0) C SLUR. The main result of this paper
is to extend this result to CANON) C SLUR. We will
start with showing that the class CANON(s closed under
partial assignments, which is the key part of the proof.

Lemma4 Let F € CANON1) and letz be any variable
of F. Then bothF[z := 0] and F[x := 1] are also in
CANON().

Proof We will show only the case := 0, the caser := 1is
similar. Let us denoté” = F'[x := 0], our goal is to prove
that F’ is in CANON(1), i.e. each of its prime implicates is
either inF’ or can be derived from it in one resolution step.
Let f denote the function representedByand letf’ denote
the function represented by .

Let us fix an arbitrary prime implicaté” of f” and let us
show, thatC’ € F”’ or there are two clauses;,Cy € F’
such thatC’ = R(C4,C5). That is exactly the property
required forF” to belong to CANONJ) and thus by this our
proof will be completed.

It follows, thatClz := 0] < (C' V z)[z := 0] = ¢’ and
becaus& is a prime implicate of’, while C[z := 0] is an
implicate of f/, we get, that in fact

Clz:=0]=C"

If C € F,thenclearlyC’ = C[z :=0] € F.

Let us now assume thét ¢ F'. From our assumption that
F € CANON(1) it follows, that there ar€,, C> € F such
thatC = R(C1,C5). We will divide the proof into several
cases.

1. Clause&C does not contain variable

(a) If the resolution step does not use variablas a con-
flict one, then alsar ¢ C7,Cs, which immediately
means that botld’; = Cy[x := 0] andCy = Cslz =
0] are present i including their conflict variable. We
can therefore do the same resolution step as before and
getC =C'= R(Cl, Cg)
If on the other hand the resolution step uses a con-
flict variable, then we can writ€; = AV z, Cy =
BV z,andC = R(C:,C3) = AV B for some clauses
A, B, which do not have a conflict. After substitution
to xz we getCi[z := 0] = AandCslz := 0] = 1. It
follows thatCy [z :=0=A< AVvB=C<(C'Vu,
where the last inequality follows from (1). Now since
Cy € F,wegetthat’;[z := 0] = A € F’ and because
C" is a prime implicate of’, it must be the case that in
factC' = A e F.
2. It remains to consider the case wh@&ncontainsz, but
C ¢ F. This case is in fact similar to the case when
C does not contain: and it was derived by a resolution
which did not user as a conflict variable. Let us again
assume, that' = R(Cy, Cs), whereCy,Cy € F. There-
fore Cy[x := 0], Ce[z := 0] are two resolvable clauses
which belong toF” and we have that’ = R(C[z :=
0],02[1 = OD

&

We will also need a simple observation about unsatisfiable
clauses from CANON().

Lemma5 If F is unsatisfiable and™ € CANON1), then
either F' contains an empty clause, or an empty clause is
generated duringnitprop(F).

)

(b)

Proof Let f denote the function represented By If F'is
unsatisfiable, therf has the only one prime implicate and
that is an empty clause. Let us denot@.itDue to the as-
sumption that?" € CANON(1), we get that eithef) € F,

or) = R(Cy,C5), whereC,Cy € F. In the latter case
the only possibility how an empty clause can be generated
in one resolution step is, if;, = z andCy, = T for some

variablez (or symmetricallyC; = z andCy =). This 4 SLUR*(7)

means, that an empty clause would be generated during unit

propagations> Let us return to the SLURY hierarchy, which was defined
in (VICek 2009;Cepek, Kuitera, and ek 2011). Let us

Now are ready to prove the main result of this section. consider the following formula

Theorem 6 If F'isin CANON() theniitis also in the SLUR

class. F=@vy)A@Vy)

. - . AzVyVaVb)AzVyvavb
Proof If F' is unsatisfiable, then by Lemma 5 Algorithm 2 (@vyVa ,) (xvyva ,) ()
(SLUR) would correctly recognize it after unit propagation AN@VyVaVb)A(zVyVvavb)
in step 2.

Let us assume, thak is satisfiable. Inductive use of It can be observed, that this formula is not in the SLUR(2)
Lemma 4 ensures, that at every step of the algorithm every class, if we choose andy and then we choose assignment
formula considered belongs to CANON(1). This is because = =y = 0, then the SLUR(2) algorithm gives up as it is left
every formula originates fronf’ by partial assignment, this ~ with a complete and thus unsatisfiable quadratic formula.
is also true for unit propagation. Note also, that uskhg © Here SLUR(2) actually does not take any advantage from
corresponds t@[v := 0] and usingF A v corresponds to the fact that it can choose two variables at once, because it
F[v := 1]. If at the beginning of the while cycle formula chooses two equivalent variables. If however after ch@psin
Fis satisfiable, then one df; and F; is satisfiable and if a value forz, the SLUR(2) algorithm would be allowed to
one of them is unsatisfiable, it contains an empty clause by perform unit propagation, then it would not chogsas the

Lemma 5. Thus at the beginning of the next cyEles again second variable and it would recognize, that in case 0
satisfiable and at the end the SLUR algorithm finds satisfy- the restis an unsatisfiable formula. This example leads us to
ing assignment hierarchy consisting of classes SLUR(in which the al-

_ gorithm also choosesvariables at each step, but it performs
This result can not be extended even more to class ynijt propagation between each of these choices rather then

CANON(2), as follows from the following example. The after all of them. Formally, SLUR%] class is defined using
following formula F* belongs to CANON(2), but it is not Algorithm 9.

SLUR.

_ = = N Definition 7 Formula F' is a member of SLUR*(i) class if
F=(zvyva)A@vgvhA@vyve AEVEVd). (3) Algorithm 9 does not return “give up” for any of nondeter-
It can be checked, that all other implicates which can be ministic choices made during its run.
derived by resolution froni” are the following:
Firstly we will show the recursive function (Algorithm 8)
(xVavb), (yVaVve), (gvbVvd), (TVevd), (aVbVevd) (4) that takes care of searching theecision assignments and

. . then the SLUR*() algorithm.
The last clause has resolution depth 2, and the remaining

clauses have resolution depth 1, thkis€ CANON(2).
However, it is not SLUR. If the SLUR algorithm first
chooses, b, ¢, andd and sets them all to 0, then it gets
a complete quadratic CNF, which is unsatisfiable and thus
the SLUR algorithm would give up. This implies, that it is . . .
not true, thathNFs from CA?NON(pZ) would aFI)I be SLUR. Output: A partla: aSS|gnfine3t W.h!Ch have not Ied_;o an
Above CNF F' has another interesting property. It is glrj::%tggs?ursl%: n:ahféxggsmns, or UNSAT ifno
the only prime and irredundant CNF representing the same 9 '
function f. And it is also the only one, which is not SLUR,

it suffices to add any other implicate from list (4) foto (F,t) := unitprop(F)
make it SLUR. . if F contains an empty claugben return UN-

Algorithm 8 test(F, k)

Input: A CNF formulaF’, number of decisiok which
remain to be made by the algorithm.

N

If e.g. we addz Vv a Vv b) to F, then the SLUR algorithm _ SAT endif _ _
would recognize an unsatisfiable formula during unit propa- o If k=0then return empty assignmerendif
gation after setting,, b, ¢, andd to 0 and thus it would not 4: e:=an undetermined literal (positive or negative)
give up. Ifz or y would be assigned a value befargb, c, 501y = test(F, k —1)
ord, or if one ofa, b, ¢, ord would be assigned value 1, then ¢ If previous test did not return UNSATien return
SLUR algorithm would get a satisfiable quadratic formula, tUt Ut endif
which is SLUR. The cases of the next three implicates in (4) 7: t4 := test(Fy, k — 1)
are symmetric. Adding the implicate v bV ¢V d) makes 8: if previous test did not return UNSARen return

the formula belong to CANON{ and therefore SLUR, be- t Ut U th endif
cause it is the only implicate with resolution depth 2. This 9: return UNSAT
is also an example of a function, that does not have a prime

and irredundant SLUR representation.

Algorithm 9 SLUR*(4, F)

Input: A CNF formulaF without any empty clause
Output: A partial truth assignment satisfying, “un-
satisfiable”, or “give up”.

(F,t) := unitprop(F)
if F' contains an empty clausieen return “unsat-
isfiable” endif
: while F'is not empty
: do
t' :=test(F, 1)
if previous test returned UNSAT
then
if it is the first run of thewhile cycle
then
return “unsatisfiable”
else
return “give up”
endif
endif
t:=tut
. enddo
:return ¢

3
4
5
6
7
8
9
10
11:
12:
13
14
15
16
17

Note, that all nondeterminism is now stored in step 4 of
procedurdest(Algorithm 8). In this step by choosing literal
instead of a variable we also give no preference to whether
the first value tested will be 1 or 0. The test procedure is in
fact a DPLL procedure (see (Davis, Logemann, and Love-
land 1962) for details), in which we bound our search by
given depth. Ifi is a fixed constant, algorithm SLUR}(
runs in polynomial time, though it is naturally exponential
with increasing.

It is easy to show that the SLUR*(i) hierarchy does not
collapse, i.e. for every > 1 the inclusion

SLUR*(i) C SLUR*(i + 1)

is strict, in fact exactly the same argumentation as for the
previous SLURY{) hierarchy can be usedCépek, Kigera,
and VIEek 2011; VEek 2009). Modification of the proof to
SLUR*(%) hierarchy is contained in the following lemma.

Lemma 10 For eachi there is a formulaF;,,; such that
F;11 € SLURY: + 1) \ SLURY3).

Proof Let us takeF;,; as the zero function written as a
CNF formula oni + 2 variablesV = {z1,...,xz;12}. There
are all possible combination of positive and negativediter

Fiu= N VoV V 7.

PCV \veP veEV\P

Now we can see that assigning values to atyple of vari-

new, because all clauses are too long. Thedastprop will
not derive the empty clause on such CNF and the algorithm
SLUR*(¢,F;41) will have to give up in the next step.

On the other hand, if we assign values to &y 1)-tuple
we will get a CNF of ther A Z form. Unitprop will derive
the empty clause on such a formula and so the algorithm
SLUR*(: 4+ 1,F;11) returns "unsatisfiable"(»

It can be immediately seen, that every CIRFon n vari-
ables belongs to SLUR#). It can be also observed that by
doing unit propagation before each choice, we do not loose
anything and thus

SLUR(i) C SLURX(i)

for everyi > 1, in particular SLURC SLUR*(1). The ex-
ample formula defined in (5) at the beginning of this section
shows, that in fact the inclusion SLUR C SLUR*(2) is
strict, this example can in fact be generalized to show the
following lemma. (Note, that in case= 1 we do not gain
anything and thus SLUR) = SLUR*(1)).

Lemma 11 For everyi > 1 we havgSLUR) \ SLUR —
1)] N SLURY(2) # 0.

Proof Let: > 1 be a fixed constant and let us consider the
following formula:
F (i VI2) A A (i VT) A (Y V1)
ANyt V... Vy VaVvVb) Ay V... Vy; VaVvb)
Ay V...Vy;VaVvVb) A(yr V...Vy; VaVvb)

This formula is logically equivalent to
(1< y2 e)
A <y1 V... Vy Vv ((avb)/\(avE)A(a\/b)A(avB)))

If the SLUR() algorithm chooses at first theé-tuple

Y1, .., and then it sets all these variables to 0, then it
will get an unsatisfiable complete quadratic formula on-vari
abless andb, which means, the SLUR)(algorithm will give

up.
On the other hand Algorithm 9 which performs unit prop-
agation after each pick of a variable will assign equivalent
valuesto allyy, .. ., y; variables after it will come across the
first one of them. So it can use the remaining step to deal
with the rest of the formula. Again, no problem can arise, if
the first chosen variable isor b. This means that formula

F belongs to SLUR*(2)$>

The following is now an easy corollary.

Corollary 12 For everyi > 1 we have that SLUR) C
SLURY).

Let us now return to the classes CANGN(Let F' be
CNF defined in (3), we have seen that this CNF belongs to
CANON(2), but it is not SLUR, now we can even observe,

ables some of the clauses disappear and the rest of the for-that ' does not belong to SLUR(2), this is because if the

mula is quadratic and unsatisfiable. E.g. if we assign arbi-
trary zero-one values toy , . .., x;, we get(x; 11 V x;42) A
(i1 VT32) AN(Tig1 V @is2) AN (Tig1 VTig2). Unit propaga-
tion after each variable assignment does not give us amythin

SLUR(2) algorithm chooses firatandb and sets them to O,
thenc andd and sets them to 0, what remains is a complete
unsatisfiable quadratic formula. Moreover, in this casé uni
propagation after choosing value faror ¢ does not help

and thusF' does not even belong to SLUR*(2). By concate-
nating copies off' by disjoint union, we could in fact get
an example of a formula showing the following lemma (we
omit formal proof).

Lemma 13 For everyi > 1 we have thafSLUR*i) \
SLURi — 1)] N CANON?2) # 0.

This means, that CANON(2) is not a subclass of any level
of SLUR*(7) hierarchy.

5 Conclusion

We focused on SLUR formulae and their generalizations
into two hierarchies. We have studied relations among
newly defined hierarchies of CANON(and SLUR*() for-
mulae and the hierarchy SLUR(defined in (VEek 2009;
Cepek, Kigera, and ek 2011). There is still open ques-
tion, whether there are natural classes which would contain
hierarchy CANONY{) and whether there is a satisfiability al-
gorithm for each of these classes, which would be polyno-
mial for a fixed:. Following definition of CANONY), there

is such an algorithm based on resolution. So we would like
to see, if there is a satisfiability algorithm based on urappr
agation and the SLUR algorithm.

References

Aspvall, B. 1980. Recognizing disguised nr(1) instances of
the satisfiability problem.Journal of Algorithmsl(1):97 —
103.

Buning, H. K., and Letterman, T. 1999Propositional
Logic: Deduction and Algorithms New York, NY, USA:
Cambridge University Press.

Chandru, V., and Hooker, J. N. 1991. Extended horn sets in
propositional logicJ. ACM38(1):205-221.

Conforti, M.; Corntjols, G.; and Vuskovic, K. 2006. Bal-
anced matrices. Discrete Mathematic806(19-20):2411—
2437.

Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. IfProceedings of the third annual ACM symposium
on Theory of computingSTOC '71, 151-158. New York,
NY, USA: ACM.

Dalal, M., and Etherington, D. W. 1992. A hierarchy
of tractable satisfiability problemdnformation Processing
Letters44(4):173-180.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A ma-
chine program for theorem-provinG.ommun. ACN5:394—
397.

Dowling, W., and Gallier, J. 1984. Linear time algorithms
for testing the satisfiability of propositional horn forrael
Journal of Logic Programmin@:267 — 284.

Franco, J., and Van Gelder, A. 2003. A perspective on cer-
tain polynomial-time solvable classes of satisfiabiliBis-
crete Appl. Math125:177-214.

Garey, M., and Johnson, D. 1979Computers and In-
tractability: A Guide to the Theory of NP-Completeness
San Francisco: W.H. Freeman and Company.

Genesereth, M. R., and Nilsson, N. J. 19&p6gical foun-
dations of artificial intelligence San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Itai, A., and Makowsky, J. 1987. Unification as a complexity
measure for logic programmingournal of Logic Program-
ming4:105 — 117.

Lewis, H. R. 1978. Renaming a set of clauses as a horn set.
J. ACM25:134-135.

Minoux, M. 1988. Ltur: A simplified linear time unit reso-
lution algorithm for horn formulae and computer implemen-
tation. Information Processing Lette9:1 — 12.

Schlipf, J. S.; Annexstein, F. S.; Franco, J. V.; and Swami-
nathan, R. P. 1995. On finding solutions for extended horn
formulas.Inf. Process. Lett54:133-137.

Cepek, O., and Kiera, P. 2010. Various notes on slur for-
mulae. InProceedings of the 13th Czech-Japan Seminar on
Data Analysis and Decision Making in Service Sciefd&e-

95.

Cepek, O.; Kgera, P.; and \dek, V. 2011. Properties of
slur formulae. sent to SOFSEM 2011.

VI€ek, V. 2009. Tidy booleovskch formul s efektivré
feSitelnym satem. Master’s thesis, Faculty of Mathematics
and Physics, Charles University in Prague, Czech Republic.

