
Eliminating All Redundant Actions from Plans Using SAT and MaxSAT

Tomáš Balyo
Department of Theoretical Computer Science

and Mathematical Logic,
Faculty of Mathematics and Physics

Charles University in Prague
biotomas@gmail.com

Lukáš Chrpa
PARK Research Group

School of Computing and Engineering
University of Huddersfield

l.chrpa@hud.ac.uk

Abstract

Satisfiability (SAT) techniques are often successfully
used for solving planning problems. In this paper we
show, that SAT and maximum satisfiability (MaxSAT)
can be also used for post-processing optimization of
plans. We will restrict ourselves to improving plans by
removing redundant actions from them which is a spe-
cial case of plans optimization. There exist polynomial
algorithms for removing redundant actions, but none
of them can remove all such actions since guarantee-
ing that a plan does not contain redundant actions is
NP-complete. We introduce two new algorithms, based
on SAT and MaxSAT, which remove all redundant ac-
tions. The MaxSAT based algorithm additionally guar-
antees to remove a maximum set of redundant actions.
We test the described algorithms on plans obtained by
state-of-the-art planners on IPC 2011 benchmarks. The
proposed algorithms are very fast for these plans despite
the complexity results.

Introduction
Automated Planning is an important research area for its
good application potential (Ghallab, Nau, and Traverso
2004). With intelligent systems becoming ubiquitous there
is a need for planning systems to operate in almost real-time.
Sometimes it is necessary to provide a solution in a very lit-
tle time to avoid imminent danger (e.g damaging a robot)
and prevent significant financial losses. Satisficing planning
engines such as FF (Hoffmann and Nebel 2001), Fast Down-
ward (Helmert 2006) or LPG (Gerevini, Saetti, and Serina
2003) are often able to solve a given problem quickly, how-
ever, quality of solutions might be low. Optimal planning
engines, which guarantee the best quality solutions, often
struggle even on simple problems. Therefore, a reasonable
way how to improve the quality of the solutions produced
by satisficing planning engines is to use post-planning opti-
mization techniques.

In this paper we restrict ourselves to optimizing plans
by only removing redundant actions from them. Guarantee-
ing that a plan does not contain redundant actions is NP-
complete (Fink and Yang 1992). There are polynomial al-
gorithms, which remove most of the redundant actions, but
none of them removes all such actions. We propose two
new algorithms which are guaranteed to remove them all.

One uses satisfiability (SAT) solving, the other one relies on
maximum satisfiability (MaxSAT) solving. We compare our
algorithms with a heuristic algorithm on plans obtained by
state-of-the-art planners on IPC 2011 benchmarks.

Related Work
Various techniques have been proposed for post-planning
plan optimization. Westerberg and Levine (2001) proposed
a technique based on Genetic Programming, however, it is
not clear whether it is required to hand code optimization
policies for each domain as well as how much runtime is
needed for such a technique. Planning Neighborhood Graph
Search (Nakhost and Müller 2010) is a technique which ex-
pands a limited number of nodes around each state along
the plan and then by applying Dijsktra‘s algorithm finds a
better quality (shorter) plan. This technique is anytime since
we can iteratively increase the limit for expanded nodes in
order to find plans of better quality. AIRS (Estrem and Kreb-
sbach 2012) improves quality of plans by identifying subop-
timal subsequences of actions according to heuristic estima-
tion (a distance between given pairs of states). If the heuris-
tic indicates that states might be closer than they are, then
a more expensive (optimal) planning technique is used to
find a better sequence of actions connecting the given states.
A similar approach exists for optimizing parallel plans (Ba-
lyo, Barták, and Surynek 2012). A recent technique (Sid-
diqui and Haslum 2013) uses plan deordering into ‘blocks’
of partially ordered subplans which are then optimized. This
approach is efficient since it is able to optimize subplans
where actions might be placed far from each other in a totaly
ordered plan.

Determining and removing redundant actions from plans
is a specific sub-category of post-planning plan optimiza-
tion. An influential work (Fink and Yang 1992) defines four
categories of redundant actions and provides complexity re-
sults for each of the categories. One of the categories refers
to Greedily justified actions. A greedily justified action in
the plan is, informally said, such an action which if it and
actions dependent on it are removed from the plan, the plan
becomes invalid. Greedy justification is used in the Ac-
tion Elimination (AE) algorithm (Nakhost and Müller 2010)
which is discussed in detail later in the text. Another of
the categories refers to Perfectly Justified plans, plans in
which no redundant actions can be found. Minimal reduc-

tion of plans (Nakhost and Müller 2010) is a special case
of Perfectly Justified plans having minimal cost of the plan.
Both Perfect Justification and Minimal reduction are NP-
complete. Determining redundant pairs of inverse actions
(inverse actions are those that revert each other’s effects),
which aims to eliminate the most common type of redun-
dant actions in plans, has been also recently studied (Chrpa,
McCluskey, and Osborne 2012a; 2012b).

Preliminaries
In this section we give the basic definitions and properties
used in the rest of the paper.

Satisfiability
A Boolean variable is a variable with two possible values
True and False. A literal of a Boolean variable x is either x
or ¬x (positive or negative literal). A clause is a disjunction
(OR) of literals. A clause with only one literal is called a unit
clause and with two literals a binary clause. An implication
of the form x ⇒ (y1 ∨ · · · ∨ yk) is equivalent to the clause
(¬x ∨ y1 ∨ · · · ∨ yk). A conjunctive normal form (CNF)
formula is a conjunction (AND) of clauses. A truth assign-
ment φ of a formula F assigns a truth value to its variables.
The assignment φ satisfies a positive (negative) literal if it
assigns the value True (False) to its variable and φ satisfies
a clause if it satisfies any of its literals. Finally, φ satisfies
a CNF formula if it satisfies all of its clauses. A formula F
is said to be satisfiable if there is a truth assignment φ that
satisfies F . Such an assignment is called a satisfying assign-
ment. The satisfiability problem (SAT) is to find a satisfying
assignment of a given CNF formula or determine that it is
unsatisfiable.

Partial Maximum Satisfiability
A partial maximum satisfiability (PMaxSAT) formula is a
CNF formula consisting of two kinds of clauses called hard
and soft clauses. A PMaxSAT formula is satisfied under a
truth assignment φ if it satisfies all of its hard clauses.

The partial maximum satisfiability problem (PMaxSAT)
is to find a satisfying assignment φ for a given PMaxSAT
formula such that φ satisfies as many soft clauses as possi-
ble.

Planning
In this section we give the formal definitions related to
planning. We will use the multivalued SAS+ formalism
(Bäckström and Nebel 1995) instead of the classical STRIPS
formalism (Fikes and Nilsson 1971) based on propositional
logic.

A planning task Π in the SAS+ formalism is defined as a
tuple Π = {X,O, sI , sG} where
• X = {x1, . . . , xn} is a set of multivalued variables with

finite domains dom(xi).
• O is a set of actions (or operators). Each action a ∈ O

is a tuple (pre(a), eff(a)) where pre(a) is the set of pre-
conditions of a and eff(a) is the set of effects of a. Both
preconditions and effects are of the form xi = v where
v ∈ dom(xi).

• A state is a set of assignments to the state variables. Each
state variable has exactly one value assigned from its re-
spective domain. We denote by S the set of all states.
sI ∈ S is the initial state. sG is a partial assignment of
the state variables (not all variables have assigned values)
and a state s ∈ S is a goal state if sG ⊆ s.
An action a is applicable in the given state s if pre(a) ⊆

s. By s′ = apply(a, s) we denote the state after executing
the action a in the state s, where a is applicable in s. All
the assignments in s′ are the same as in s except for the as-
signments in eff(a) which replace the corresponding (same
variable) assignments in s.

A (sequential) planP of length k for a given planning task
Π is a sequence of actions P = {a1, . . . , ak} such that sG ⊆
apply(ak, apply(ak−1 . . . apply(a2, apply(a1, sI)) . . .)).
We will denote by |P | the length of the plan P .

Redundant Plans
A plan P for a planning task Π is called redundant if there is
a subsequence P ′ of P (|P ′| < |P |), such that P ′ is a valid
plan for Π. The actions in P that are not present in P ′ are
called redundant actions. A plan which is not redundant is
called a perfectly justified plan.

A plan P for a planning task Π is called an optimal plan
if there is no other plan P ′ for Π such that |P ′| < |P |. Note,
that a perfectly justified plan is not necessarily an optimal
plan. On the other hand, an optimal plan is always perfectly
justified.

Determining whether a plan is perfectly justified is NP-
complete (Fink and Yang 1992). Nevertheless, there are sev-
eral heuristic approaches, which can identify most of the
redundant actions in plans in polynomial time. One of the
most efficient of these approaches was introduced in (Fink
and Yang 1992) under the name Linear Greedy Justification.
It was reinvented in (Nakhost and Müller 2010) and called
Action Elimination. In this paper we use the latter name.

Action Elimination (see Figure 1) tests for each action if it
is greedily justified. An action is greedily justified if remov-
ing it and all the following actions that depend on it makes
the plan invalid. One such test runs in O(np) time, where
n = |P | and p is the maximum number of preconditions
and effects any action has. Every action in the plan is tested,
therefore Action Elimination runs in O(n2p) time.

There are plans, where Action Elimination cannot elim-
inate all redundant actions (Nakhost and Müller 2010). An
interesting question is how often this occurs for the plan-
ning domains used in the planning competitions (Coles et
al. 2012). To find out, first we need to design an algorithm
that always eliminates all redundant actions, i.e., find per-
fectly justified plans. As mentioned earlier, this problem is
NP-complete and therefore we find it reasonable to solve it
using a SAT reduction approach. In the next section we will
introduce a translation of this problem into SAT.

Satisfiability Encoding of Plan Redundancy
This section is devoted to introducing an algorithm, which
given a planning task Π and a valid plan P for Π, outputs a

ActionElimination (Π, P)
AE01 s := sI
AE02 i := 1
AE03 repeat
AE04 mark(ai)
AE05 s′ := s
AE06 for j := i+ 1 to |P | do
AE07 if applicable(aj , s′) then
AE08 s′ := apply(aj , s′)
AE09 else
AE10 mark(aj)
AE11 if goalSatisfied(s′) then
AE12 P := removeMarked(P)
AE13 else
AE14 unmarkAllActions()
AE15 s := apply(ai, s)
AE16 i := i+ 1
AE17 until i > |P |
AE18 return P

Figure 1: Pseudo-code of the Action Elimination algorithm
as presented in (Nakhost and Müller 2010).

CNF formula FΠ,P , such that FΠ,P is satisfiable if and only
if P is a redundant plan for Π.

We provide several definitions which are required to un-
derstand the concept of our approach. An action a is called
a supporting action for a condition c if c ∈ eff(a). An ac-
tion a is an opposing action of a condition c := xi = v
if xi = v′ ∈ eff(a) where v 6= v′. The rank of an action
a in a plan P is its order in the sequence P . We will de-
note by Opps(c, i, j) the set of ranks of opposing actions
of the condition c which have their rank between i and j
(i ≤ j). Similarly, by Supps(c, i) we will mean the set of
ranks of supporting actions of the condition c which have
ranks smaller than i.

In our encoding we will have two kinds of variables. First,
we will have one variable for each action in the plan P ,
which will represent whether the action is required for the
plan. We will say that ai = True if the i-th action of P (the
action with the rank i) is required. The second kind of vari-
ables will be option variables, their purpose and meaning is
described below.

The main idea of the translation is to encode the fact, that
if a certain condition ci is required to be true at some time i
in the plan, then one of the following must hold:

• The condition ci is true since the initial state and there is
no opposing action of ci with a rank smaller than i.

• There is a supporting action aj of ci with the rank j and
there is no opposing action of ci with the rank between j
and i.

These two kinds of properties represent the options for sat-
isfying ci. There is at most one option of the first kind and at
most |P | of the second kind. For each one of them we will
use a new option variable yc,i,k, which will be true if the
condition c at time i is satisfied using the k-th option.

Now we demonstrate how to encode the fact, that we re-
quire condition c to hold at time i. If c is in the initial state,
then the first option will be expressed using the following
conjunction of clauses.

Fc,i,0 =
∧

j∈Opps(c,0,i)

(¬yc,i,0 ∨ ¬aj)

These clauses are equivalent to the implications below. The
implications represent that if the given option is true, then
none of the opposing actions can be true.

(yc,i,0 ⇒ ¬aj);∀j ∈ Opps(c, 0, i)
For each supporting action aj (j ∈ Supps(c, i)) with rank
j we will introduce an option variable yc,i,j and add the fol-
lowing subformula.

Fc,i,j = (¬yc,i,j ∨ aj)
∧

k∈Opps(c,j,i)

(¬yc,i,j ∨ ¬ak)

These clauses are equivalent to the implications that if the
given option is true, then the given supporting action is true
and all the opposing actions located between them are false.
Finally, for the condition c to hold at time i we need to add
the following clause, which enforces at least one option vari-
able to be true.

Fc,i = (yc,i,0
∨

j∈Supps(c,i)

yc,i,j)

Using the encoding of the condition requirement it is now
easy to encode the dependencies of the actions from the in-
put plan and the goal conditions of the problem. For an ac-
tion ai with the rank i we will require that if this action vari-
able is true, then all of its preconditions must be true at time
i. For an action ai the following clauses will enforce, that
if the action variable is true, then all the preconditions must
hold.

Fai =
∧

c∈pre(ai)

(¬ai ∨ Fc,i) ∧ Fc,i,0
∧

j∈Supps(c,i)

Fc,i,j

We will need to add these clauses for each action in the plan.
Let us call these clauses FA.

FA =
∧
ai∈P

Fai

For the goal we will just require all the goal conditions to
be true in the end of the plan. Let n = |P |, then the goal
conditions are encoded using the following clauses.

FG =
∧
c∈sG

Fc,n ∧ Fc,n,0 ∧
j∈Supps(c,n)

Fc,n,j

The last clause we need to add is related to the redundancy

property of the plan. The following clause is satisfied if at
least one of the actions in the plan is omitted.

FR =

(∨
ai∈P

¬ai

)

Finally, the whole formula FΠ,P consists of the redun-
dancy clause, the goal clauses, and the action dependency
clauses for each action in P .

FΠ,P = FR ∧ FG ∧ FA

If the formula is satisfiable, we also want to use its sat-
isfying assignment to construct a new reduced plan. A plan
obtained using a truth assignment φ will be denoted as Pφ.
We define Pφ to be a subsequence of P such that the i-th
action of P is present in Pφ if and only if φ(ai) = True.

Lemma 1. An assignment φ satisfies FG ∧FA if and only if
Pφ is a valid plan for Π.

Proof. (sketch) A plan is valid if all the actions in it are ap-
plicable when they should be applied and the goal conditions
are satisfied in the end. We constructed the clauses of FG to
enforce that at least one option of satisfying each condition
will be true. The selected option will then force the required
action and none of its opposing actions to be in the plan. Us-
ing the same principles, the clauses in FA guarantee that if
an action is present in the plan, then all its preconditions will
hold when the action is applied.

Proposition 1. The formula FΠ,P is satisfiable if and only
if P is a redundant plan for Π.

Proof. The clause FR is satisfied by an assignment φ if and
only if at least one ai is false, i.e., not present in Pφ which
implies |Pφ| < |P |. Using the previous lemma, we can con-
clude, that the entire formula FΠ,P = FR ∧ FG ∧ FA is
satisfied of and only if there is a valid plan, which can be
obtained from P by omitting at least one of its actions.

Let us conclude this section by computing the following
upper bound on the size of the formula FΠ,P .

Proposition 2. Let p be the maximum number of precondi-
tions of any action in P ,g the number of goal conditions
of Π, and n = |P |. Then the formula FΠ,P has at most
n2p+ng+n variables and n3p+n2g+np+g+1 clauses,
from which n3p+ n2g are binary clauses.

Proof. The are n action variables. For each required condi-
tion we have at most n option variables, since there are at
most n supporting actions for any condition in the plan. We
will require at most (g + np) conditions for the g goal con-
ditions and the n actions with at most p preconditions each.
Therefore the total number of option variables is n(np+ g).

For the encoding of each condition at any time we use
at most n options. Each of these options are encoded us-
ing n binary clauses (the are at most n opposing actions for
any condition). Additionally we have one long clause saying
that at least one of the options must be true. We have np re-
quired conditions because of the actions and g for the goal
conditions. Therefore in total we have at most (np + g)n2

binary clauses and (np+ g) longer clauses related to condi-
tions. There is one additional long clause – the redundancy
clause.

Making Plans Perfectly Justified
In this section we describe how to use the encoding de-
scribed in the previous section to convert any given plan into
a perfectly justified plan.

The idea is very similar to the standard planning as SAT
approach (Kautz and Selman 1992), where we repeatedly
construct formulas and call a SAT solver until we find a plan.
In this case we start with a plan, and keep improving it by
SAT calls until it is perfectly justified.

RedundancyElimination (Π, P)
I1 FΠ,P := encodeRedundancy(Π, P)
I2 while isSatisfiable(FΠ,P) do
I3 φ := getSatAssignment(FΠ,P)
I4 P := Pφ
I5 FΠ,P := encodeRedundancy(Π, P)
I6 return P

Figure 2: Pseudo-code of the SAT based redundancy elimi-
nation algorithm. It returns a perfectly justified plan.

The algorithm’s pseudo-code is presented in Figure 2. It
uses a SAT solver to determine whether a plan is perfectly
justified or it can be improved. It can be improved if the
formula FΠ,P is satisfiable. In this case a new plan is con-
structed using the satisfying assignment. The while loop of
the algorithm runs at most |P | times, since every time at least
one action is removed from P (in practice several actions are
removed in each step).

The algorithm can be implemented in a more efficient
manner if we have access to an incremental SAT solver. We
need the simplest kind of incrementality – adding clauses.

IncrementalRedundancyElimination (Π, P)
II01 solver = new SatSolver
II02 solver.addClauses(encodeRedundancy(Π, P))
II03 while solver.isSatisfiable() do
II04 φ := solver.getSatAssignment()
II06 C :=

∨
{¬ai|ai ∈ Pφ}

II07 solver.addClause(C)
II08 foreach ai ∈ P do if φ(ai) = False then
II09 solver.addClause({¬ai})
II10 P := Pφ
II11 return P

Figure 3: Pseudo-code of the incremental SAT based redun-
dancy elimination algorithm.

The incremental algorithm is presented in Figure 3. It
adds a new clause C in each iteration of the while loop.
This clause is a redundancy clause for the actions remaining
in the current plan. It will enforce, that the next satisfying
assignment will remove at least one further action. The re-
dundancy clauses added in the previous iterations could be
removed, but it is not necessary. The algorithm also adds unit
clauses to enforce that the already eliminated actions cannot
be reintroduced.

The algorithms presented in this section are guaranteed to
produce plans that are perfectly justified, i.e., it is not possi-
ble to remove any further actions from them. Nevertheless,
it might be the case, that if we had removed a different set
of redundant actions from the initial plan, we could have ar-
rived at a shorter perfectly justified plan. In other words, the
elimination of redundancy is not confluent. The following
example demonstrates this fact.

Example 1. Let us have a simple path planning scenario
on a graph with n vertices v1, . . . , vn and edges (vi, vi+1)
for each i < n and (vn, v1) to close the circle. We have one
agent traveling on the graph from v1 to vn. We have two
move actions for each edge (for both directions), in total 2n
move actions. The optimal plan for the agent is a one action
plan {move(v1, vn)}.

Let us assume that we are given the following plan
for redundancy elimination: {move(v1, vn), move(vn, v1),
move(v1, v2), move(v2, v3), . . ., move(vn−1, vn)}.

The plan can be made perfectly justified by either remov-
ing all but the first action (and obtaining the optimal plan)
or by removing the first two actions (ending up a with a plan
of n actions). Action elimination would remove the first two
actions, for the SAT algorithm we cannot tell which actions
would be removed, it depends on the satisfying assignment
the SAT solver returns.

The example shows us, that it matters very much in what
order we remove the actions and achieving perfect justifica-
tion does not necessarily mean we did a good job. What we
actually want is to remove as many actions as possible. How
to do this efficiently is described in the next section.

Maximum Redundancy Elimination
In the section we describe how to do the best possible re-
dundancy elimination for a plan. The problem of maximum
redundancy elimination (MRE) is to find a subsequence R
of redundant actions in a plan P , such that there is no other
subsequenceR′ of redundant actions which is longer thanR.
A similar notion (minimal reduction) was defined for plans
with actions costs (Nakhost and Müller 2010).

The plan resulting from MRE is always perfectly justified,
on the other hand a plan might be perfectly justified and at
the same time much longer than a plan obtained by MRE
(see Example 1).

The solution we propose for MRE is also based on our
redundancy encoding, but instead of a SAT solver we will
use a partial maximum satisfiability (PMaxSAT) solver. We
will construct a PMaxSAT formula, which is very similar to
the formula used for redundancy elimination.

A PMaxSAT formula consists of hard and soft clauses.
The hard clauses will be the clauses we used for redundancy
elimination without the redundancy clause FR.

HΠ,P = FG ∧ FA
The soft clauses will be unit clauses containing the negations
of the action variables.

SΠ,P =
∧
ai∈P

(¬ai)

The PMaxSAT solver will find an assignment φ that satisfies
all the hard clauses (which enforces the validity of the plan
Pφ due to Lemma 1) and satisfies as many soft clauses as
possible (which removes as many actions as possible).

MaximumRedundancyEliminaion (Π, P)
MR1 F := encodeMaximumRedundancy(Π, P)
MR2 φ := partialMaxSatSolver(F)
MR3 return Pφ

Figure 4: Pseudo-code of the maximum redundancy elimi-
nation algorithm.

The algorithm (Figure 4) is now very simple and straight-
forward. We just construct the formula and use a PMaxSAT
solver to obtain an optimal satisfying assignment. Using this
assignment we construct an improved plan the same way as
we did in the SAT based redundancy elimination algorithm.

Experimental Evaluation
In this section we present the results of our experimental
study regarding elimination of redundant actions from plans.
We implemented the Action Elimination algorithm as well
as the SAT and MaxSAT based algorithms and used plans
obtained by several planners for the problems of the Interna-
tional Planning Competition (Coles et al. 2012).

Experimental Settings
Since, our tools take input in the SAS+ format, we used
Helmert’s translation tool, which is a part of the Fast Down-
ward planning system (Helmert 2006), to translate the IPC
benchmark problems that are provided in PDDL.

To obtain the initial plans, we used the following state-of-
the-art planners: FastDownward (Helmert 2006), Metric FF
(Hoffmann 2003), and Madagascar (Rintanen 2013). Each
of these planners was configured to find plans as fast as pos-
sible and ignore plan quality.

We tested four redundancy elimination methods:
• Action Elimination (AE) is our own Java implementation

of the Action Elimination algorithm as displayed in Fig-
ure 1.

• Action Elimination + SAT (AE+S) is an algorithm that
first runs Action Elimination on the initial plan and in-
cremental SAT reduction (see Figure 3) on the result. We
used the incremental Java SAT solver Sat4j (Berre and
Parrain 2010).

• SAT Reduction (SAT) is using the incremental SAT reduc-
tion directly without using Action Elimination for prepro-
cessing (same as AE+S without AE).

• Maximum Elimination (MAX) is a Partial MaxSAT reduc-
tion based algorithm displayed in Figure 4. We imple-
mented the translation in Java and used the QMaxSAT
(Koshimura et al. 2012) state-of-the-art MaxSAT solver
written in C++ to solve the instances.

For each of these methods we measured the total runtime
and the total number of removed redundant actions for each
domain and planner.

Table 1: Experimental results on the plans for the IPC 2011 domains found by the planners Fast Downward, Metric FF, and
Madagascar. The planners were run with a time limit of 10 minutes. The column ”#Plans” contains the number of plans found
and ”Length” represents the sum of their lengths. By ∆ALG and TALG we mean the total number of removed redundant actions
and the time in seconds it took for all plans for a given algorithm ALG. The algorithms are Action Elimination (AE), Action
Elimination followed by SAT reduction (AE+S), SAT reduction on the original plan (SAT), and maximum elimination using a
MaxSat solver (MAX).

Domain #Plans Length ∆AE TAE ∆AE+S TAE+S ∆SAT TSAT ∆MAX TMAX

M
et

ri
c

FF

elevators 20 4273 79 0,81 79 2,31 79 3,14 79 0,17
floortile 2 81 10 0,02 10 0,08 10 0,10 10 0,00
nomystery 5 107 0 0,01 0 0,16 0 0,17 0 0,00
parking 18 1546 124 0,18 124 1,13 124 1,60 124 0,03
pegsol 20 637 0 0,10 0 1,10 0 1,16 0 0,02
scanalyzer 18 571 30 0,06 30 0,78 30 0,88 30 0,01
sokoban 13 2504 6 0,39 6 2,34 6 2,52 6 0,36
tidybot 17 1136 144 0,17 144 0,92 144 1,66 144 0,04
transport 6 1329 164 0,34 164 0,82 164 2,15 165 0,25
visitall 3 1137 166 0,14 166 0,47 166 0,97 172 0,08
woodworking 19 1471 22 0,37 22 1,14 22 1,28 22 0,02

Fa
st

D
ow

nw
ar

d

barman 20 3749 528 0,52 582 3,44 596 7,18 629 0,44
elevators 20 4625 94 0,84 94 2,41 94 3,45 94 0,19
floortile 5 234 22 0,06 22 0,20 22 0,27 22 0,00
nomystery 13 451 0 0,05 0 0,47 0 0,48 0 0,00
parking 20 1494 4 0,17 4 1,21 4 1,26 4 0,03
pegsol 20 644 0 0,11 0 1,11 0 1,18 0 0,02
scanalyzer 20 823 26 0,10 26 1,16 26 1,33 26 0,03
sokoban 17 5094 244 0,62 458 5,25 458 8,39 460 1,84
tidybot 16 1046 64 0,14 64 0,91 64 1,28 64 0,03
transport 17 4059 289 0,65 289 1,64 289 2,93 290 0,20
visitall 20 28776 122 3,66 122 9,47 122 12,89 122 7,77
woodworking 20 1605 27 0,41 27 1,16 27 1,33 30 0,03

M
ad

ag
as

ca
r

barman 8 1785 303 0,25 303 1,59 303 3,53 318 0,30
elevators 20 11122 2848 1,46 3017 4,13 3021 17,62 3138 2,03
floortile 20 1722 30 0,39 30 1,05 30 1,32 30 0,03
nomystery 15 480 0 0,06 0 0,51 0 0,53 0 0,01
parking 18 1663 152 0,20 152 1,17 152 1,78 152 0,03
pegsol 19 603 0 0,09 0 1,06 0 1,10 0 0,01
scanalyzer 18 1417 232 0,24 232 0,88 232 1,61 236 0,05
sokoban 1 121 22 0,02 22 0,13 22 0,29 22 0,01
tidybot 16 1224 348 0,16 348 0,84 348 2,13 350 0,08
transport 4 1446 508 0,20 539 0,40 532 1,65 553 0,16
woodworking 20 1325 0 0,31 0 1,11 0 1,21 0 0,01

All the experiments were run on a computer with Intel
Core i7 960 CPU @ 3.20 GHz processor and 24 GB of mem-
ory. The planners had a time limit of 10 minutes to find the
initial plans. The benchmark problems are taken from the
satisficing track of IPC 2011 (Coles et al. 2012).

Experimental Results
The results of our experiments are displayed in Table 1. We
can immediately notice that the runtime of all of our meth-
ods is very low. None of the methods takes more than one
second on average for any of the plans. Note, that the run-
time of the MAX method is often the smallest contrary to
the fact, that it is the only one which guarantees eliminating
the maximum number of redundant actions (AE+S and SAT
only guarantee perfect justification).

Looking at the number of removed actions in Table 1
we can make several interesting observations. For exam-
ple, in the nomystery and pegsol domains no redundant ac-
tions were found in plans obtained by any planner and also
Madagascar’s plans for the woodworking domain were al-
ways perfectly justified. In the most cases the AE algorithm
provides perfectly justified plans (this is when the values of
∆AE and ∆AE+S are equal). The SAT method performs
better than AE+S on barman for Fast Downward and ele-
vators for Madagascar, but removes less actions on trans-
port for Madagascar. Although both methods reach perfect
justification, the results are different since removing redun-
dant actions is not confluent (see example 1). As expected,
the MAX method removes the highest (or equal) number of
actions in each case. It is strictly dominant for 11 planner
domain combinations. Considering the good runtime perfor-
mance of this method we can conclude, that MAX is the best
way of eliminating redundant actions.

Conclusions
In this paper, we have introduced a SAT encoding for the
problem of detecting redundant actions in plans and used it
to build two algorithms for plan optimization. One is based
on SAT solving and the other on partial MaxSAT solving.
Contrary to existing algorithms, both of our algorithms guar-
antee, that they output a plan with no redundant actions. Ad-
ditionally, the MaxSAT based algorithm always eliminates a
maximum set of redundant actions. According to our experi-
ments done on IPC benchmark problems with plans obtained
by state-of-the-art planners, our newly proposed algorithms
perform very well in practice.

Acknowledgments The research is supported by the
Czech Science Foundation under the contract P103/10/1287
and by the Grant Agency of Charles University under con-
tract no. 600112. This research was also supported by the
SVV project number 260 104.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11:625–656.
Balyo, T.; Barták, R.; and Surynek, P. 2012. Shortening
plans by local re-planning. In Proceedings of ICTAI, 1022–
1028.

Berre, D. L., and Parrain, A. 2010. The sat4j library, release
2.2. JSAT 7(2-3):59–64.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012a. De-
termining redundant actions in sequential plans. In Proceed-
ings of ICTAI, 484–491.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012b. Op-
timizing plans through analysis of action dependencies and
independencies. In Proceedings of ICAPS, 338–342.
Coles, A. J.; Coles, A.; Olaya, A. G.; Celorrio, S. J.; López,
C. L.; Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition. AI Magazine 33(1).
Estrem, S. J., and Krebsbach, K. D. 2012. Airs: Anytime
iterative refinement of a solution. In Proceedings of FLAIRS,
26–31.
Fikes, R., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.
Fink, E., and Yang, Q. 1992. Formalizing plan justifications.
In In Proceedings of the Ninth Conference of the Canadian
Society for Computational Studies of Intelligence, 9–14.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research (JAIR) 20:239 –
290.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating ”ignoring delete lists” to numeric state variables.
Journal Artificial Intelligence Research (JAIR) 20:291–341.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proceedings of ECAI, 359–363.
Koshimura, M.; Zhang, T.; Fujita, H.; and Hasegawa, R.
2012. Qmaxsat: A partial max-sat solver. JSAT 8(1/2):95–
100.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Proceedings of ICAPS, 121–128.
Rintanen, J. 2013. Planning as satisfiability: state of the art.
http://users.cecs.anu.edu.au/ jussi/satplan.html.
Siddiqui, F. H., and Haslum, P. 2013. Plan quality optimisa-
tion via block decomposition. In Proceedings of IJCAI.
Westerberg, C. H., and Levine, J. 2001. Optimising plans
using genetic programming. In Proceedings of ECP, 423–
428.

