VAR, Tomas Balyo (biotomas@gmail.com) &
SW@EF=37 y | gmall.c Lukas Chrpa (l.chrpa@hud.ac.uk)
Faculty of Mathematics and Physics, PARK Research Group University of
Charles University in Prague School of Computing and Engineering [HASeleUS ML,

. Inspiring tomorrow’s professionals
Czech Republic University of Huddersfield

Eliminating All Redundant Actions from Plans Using SAT and MaxSAT

What is Planning? Example: delivering 2 packages to Las Vegas
e World states are described as values of state variables.

* Actions change the state of the world by changing the values of :

state variables by their effects .
* Actions also have preconditions and are applicable only when - e ! ~

their preconditions hold in the given state. Los Angeles San Francisco Las Vegas I Los Angeles San Francisco Las Vegas

L , , o State Variables and their domains: Actions:
Objective: given a set a of actions, an intial world state and the e Truck location T, dom(T) = {LA, SF, LV} = move(x,y)=[prec: {T=x}, eff: {T=y}]
description of a goal state find a valid sequence of actions (a plan), » Package locations P and Q e [oadP(x)= [prec {T=x, P=x}, eff. {P=Tr}]
that transforms the world from the initial state to a goal state. dom(P) = dom(Q) = {LA, SF, LV, Tr} * loadQ(x)=[prec: {T=x, Q=x}, eff. {Q=Tr}]
* dropP(x)=[prec: {T=x, P=Tr}, eff. {P=x}]
Initial State: T=LA, P=LA, Q=SF » dropQ(x)=[prec: {T=x, Q=Tr}, eff: {Q=x]]

Redundant Actions and Plans Goal State: P=LV, Q=LV Where x,y are LA, SF, and LV

» Actions that can be removed from a plan without violating its validity
are called redundant actions (useless actions).

* Determining whether a plan is redundant, i.e., contains at least one
redundant action is NP — complete.

* A plan containing no redundant actions is a Perfectly Justified Plan.

Optimal Plan: loadP(LA), move(LA,SF), loadQ(SF), move(SF,LV), dropP(LV), dropQ(LV)

Some Redundant Plans
P1: loadP(LA), move(LA,SF), loadQ(SF), move(SF,LV), dropP(LV), dropQ(LV), move(LV,LA)

RemOVing Redundant Actions The first three move actions together are redundant.
» Prior to this work only incomplete polynomial heuristic algorithms T we remove them we obtain an optimal plan.
* Action Elimination (Nakhost, and Muller, 2010)
» Removing pairs and groups of inverse actions (Chrpa, McCluskey, P2: move(LA,LV), move(LV,SF), move(SF,LA), loadP(LA), move(LA,SF), loadQ(SF),

move(LV,LA) is redundant, the goal
conditions are already satisfied

Osborne, 2012) move(SF,LV), dropP(LV), dropQ(LV)
* Neither guarantees removing all redundant actions | We can remove sither move(LA.LV) + move(LV.LA) or
* The process of removing redundant action is not confluent, i.e., the move(LV.LA) + move(LA,SF) + move(SF.LV) to obtain a
result depends on the order in which we eliminate redundant actions perfectly justified plan. An optimal plan cannot be obtained.
* Achieving perfect justification does not mean, that no better resut/*
can be obtained (by eliminating different redundant actions) P3: loadP(LA), move(LA, LV), move(LV,LA), move(LA,SF), move(SF,LV), dropP(LV),

move(LV,SF), loadQ(SF), move(SF, LV), dropQ(LV)

Our Approach: Encode Plan Redundancy into SAT

IncrementalRedundancyElimination (11, P)

We construct a CNF formula for a problem and plan o ancodRedundancy(TL, P) - Solver addCiavses(encodeRedundancy(rl,)
» The formula contains Boolean variables a; representing whether 2 while isSatisfiable(Fr,) do o: while solver.isSatisfiable() do

thei-th action of the original plan is required for a reduced plan. . ﬁi:Z?pfsamss'gnmem(FM) o “’52‘”’\?55’55?5 .tia?sfignmemo

» Each satisfying assignment of the formula represents a valid / Fi1,p := encodeRedundancy(ll, P) solver.addClause(C)

reduced plan for the given plan and planning problem. oo reum”e oot iClausa(gy~ FeleeThen

* Using the truth values of a; we can determine which actions are mo - Pi=Py '

IT11 P
redundant. return

MaximumRedundancyEliminaion (11, P)

ME1 F = encodeMaximumHedundancy(H’ P) USing the enCOding to eliminate rEdundancy
w2 ¢ := partialMaxSatSolver(F) » By adding a clause (—a,V...V—a,) to the previous formula we obtain a formula that is
MR3 return P, s : , , , ,
| satisfiable if and only if the input plan is redundant for the given problem.

» Using this encoding iteratively we can indetify and remove all redundant actions from a plan.
* A more efficient incremental SAT based implementation of the algorithm is also possible.
* To eliminate the maximum number of redundant actions we can use partial MaxSAT solving

* Apartial MaxSAT solver satisfies all hard clauses and as many soft clauses as possible

Table 1: Experimental results on the plans for the IPC 2011 domains found by the planners Fast Downward, Metric FF, and
Madagascar. The planners were run with a time limit of 10 minutes. The column "#Plans™ contains the number of plans found
and "Length” represents the sum of their lengths. By A 47 and T'a 1, we mean the total number of removed redundant actions
and the time in seconds it took for all plans for a given algorithm ALG. The algorithms are Action Elimination (AE), Action
Elimination followed by SAT reduction (AE+S), SAT reduction on the original plan (SAT), and maximum elimination using a

MaxSat solver (MAX).

Domain #Plans Length | Agrp Tap | Aapts Tapss | Bsar Tsar | Apax Tuax .
— TR R TR A IR T » We use our CNF formula as hard clauses and (—a,) as soft clauses (for each action)
elevators 20 4625 94 0,84 94 2,41 94 3,45 94 0,19

floortile 5 234 22 0,06 22 0,20 22 0,27 22 0,00

. m)m?,fstery 13 451 0 0,05 0 0,47 0 (48 0 0,00 Experiments

S parking 20 1494 4 0,17 4 1,21 4 1,26 4 0,03 . W _ d th d | bt . d b t ’[f th t ’[f . | F t

S pegsol 20 644 0 0,11 0 L1l 0 1,18 0 002 € eXaminea our metnoas on pians obtalined DY Stale-0l-the-art SallsiiCing planners (dS

S scanalyzer 0 83 26 010 26 L6 26 13) 26 00 Downward and Madagascar) for problems from the International Planning Competition (IPC

% sokoban 17 5094 | 244 0,62 458 3,25 458 8,39 460 1,84 / 2011 d m -n 20 r bl m h

= tidybot 16 1046 064 0,14 64 0,91 64 1,28 64 0,03) omains (p obliems .eaC) . .
transport 17 4059 | 289 065| 289 164 289 293 290 020 We used Satdj for SAT solving and QmaxSAT for partial MaxSAT solving
vstall) 2 8TI0 122506l BAT A RS R * The experiments were run on a PC with Intel i7 960 cpu @3.20 Ghz and 24 GB of memory
woodworking 20 1605 27 041 27 1,16 27 1,33 30 0,03
barman 8 1785 | 303 0,25 303 1,59 303 3,53 318 0,30
elevators 20 11122 | 2848 1,46 3017 4,13 | 3021 17,62 3138 2,03 Co n cl us i o n
floortile 20 1722 30 0,39 30 1,05 30 1,32 30 0,03 . S . . .

_ nomystery 15 480 0 006 0 051 0 03| 0 00l * Plans obtained by satisficing planners on IPC domains often contain a lot of redundant actions

5 parking 18 1005 L2 02 bz LT b2 LTS R A * Our new methods can remove more redundant actions than the previous approach

b pegsol 19 603 0 0,09 0 1,06 0 110 0 0,01 : : :

E Jp— s 47| 22 0| 2 oss| 2 16| 26 005 * Despite the NP — completeness of the problem of removing all redundant actions, all the
sokoban I 2 002 2 013 2 029 2 00 redundant actions (even the maximum sets of redundant actions) can be eliminated very quickly.
tidybor 10 124 338 06 8Ost a8 i 30008 * Thanks to the excellent performance of state-of-the-art SAT and MaxSAT solvers our SAT
transport 4 1446 | 508 0,20 539 0,40 332 1,65 333 0,16 , , ,
woodworking | 20 1325 | 0 031 o Ll 0 120 0 00l encoding based algorithms have very low runtimes.

24" International Conference on Automated Planning and Scheduling (ICAPS) - 2014

	Slide 1

