

Eliminating All Redundant Actions
from Plans Using SAT and MaxSAT

Tomáš Balyo
Lukáš Chrpa

Charles University in Prague

Outline
● Problem description
● Definitions – SAT, MaxSAT, SAS+
● Redundant plans
● SAT encoding of plan reduction
● Removing all redundant actions
● Removing the maximum number of redundant

actions
● Experimental results on IPC 2011 domains

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta Boston Cleveland

Atlanta Boston Cleveland

Goal State
● Both packages in Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B),
Move(B,C), Unload(P1,C), Unload(P2,C)

Shortest possible plan
with 6 actions

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta Boston Cleveland

Atlanta Boston Cleveland

Goal State
● Both packages in Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B),
Move(B,C), Unload(P1,C), Unload(P2,C),
Move(C,A)

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta Boston Cleveland

Atlanta Boston Cleveland

Goal State
● Both packages in Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B),
Move(B,C), Unload(P1,C), Unload(P2,C),
Move(C,A)Move(C,A)

Redundant

Why is that last
“move“ in the plan?

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta Boston Cleveland

Atlanta Boston Cleveland

Goal State
● Both packages in Cleveland

Redundant plan:Move(A,C), Move(C,A), Load(P1,A),
Move(A,B), Load(P2,B), Move(B,C),
Unload(P1,C), Unload(P2,C)

Problem Description

Initial State
● A package in Atlanta and Boston
● A truck in Atlanta

Atlanta Boston Cleveland

Atlanta Boston Cleveland

Goal State
● Both packages in Cleveland

Redundant plan:Move(A,C), Move(C,B), Load(P2,B),
Move(B,A), Move(A,C), Unload(P2,C),
Move(C,B), Move(B,A), Load(P1,A),
Move(A,B), Move(B,C), Unload(P2,C)

12 actions, none
can be removed

Problem Description
● Our goal is to remove all redundant actions

from plans in order to improve them
● After removing all redundant action, plans can

be often further improved by replacing actions
● But we will not deal with such optimization

– There are other algorithms for that
● Plans obtained by satisficing planners often

contain many redundant actions

Definitions – SAT
● A Boolean variable has two possible values – true

and false
● A literal a is a Boolean variable (positive literal x) or

its negation (negative literal -x)
● A clause is a disjunction (or) of literals
● A CNF formula is conjuction (and) of clauses
● A truth assignment T

– assigns a value T(x) to each Boolean variable x
– satisfies a positive literal x if T(x)=true and a negative literal -x

if T(x)=false
– satisfies a clause if it satisfies any of its literals
– satisfies a CNF formula if it satisfies all of its clauses

Definitions – SAT, MaxSAT
● A CNF formula is satisfiable if there is a truth

assignment that satisfies it
● The Satisfiability (SAT) problem is to determine

whether a given formula is satisfiable (and find a truth
assignmnet if yes)

● The Maximum Satisfiability (MaxSAT) problem is to
find a truth assignment that satisfies as many clauses
of a CNF formula as possible

● A Partial MaxSAT (PMaxSAT) formula consists of
hard and soft clauses. The PmaxSAT problem is to
find a truth assignment that satisfies all its hard
clauses and as many of its soft clauses as possible

Definitions – SAS+
● A SAS+ planning task consists of

● A finite set of multivalued state variables. Each
variable has a finite domain

● A finite set of actions with preconditions and
effects, which are of the form x=e, where x is a
state variable and e is a value from the domain of x

● Description of the initial state – the initial values of
all the state variables

● A set of goal conditions in the form of x=e, where
e is the goal value of the state variable x

Definitions – SAS+
● A state is a set of assignments, where each state

variable has exactly one value assigned
● An action is applicable to a given state if all of its

preconditions are compatible with the state.
● A new state S' is obtained by applying an action A to a

state S (denoted by S'=app(A,S)). The values of
state variables in S' are copied from S and then some
of them are changed according to the effects of A

● A plan P is sequence of actions (P=[A1,A2,...,An])
such that the state app(An,...app(A2,app(A1,
init))...) satisfies all the goal conditions

Redundant Plans
● Let P be a plan for a planning task T and let P'

be a proper subsequence of P. If P' is a plan for
T, then P' is called a plan reduction of P.

● A plan is redundant if it has a plan reduction
● A plan is called perfectly justified if it is not

redundant
● Determining whether a plan is redundant is an

NP complete problem (Fink, Yang 1992)

Removing Redundancy
● Prior to this work there were only incomplete

heuristic algorithms
● Removing pairs/groups of inverse actions (Chrpa,

McCluskey, Osborne 2012)
● Greedy justification (Fink, Yang 1992)
● Action elimination (Nakhost, Müller 2010)

● We will remove all redundant actions (NP hard)
● We will remove the maximum possible number

of redundant actions

Removing Redundancy

A

E

B

C
D

fly(A,E), fly(E,A), fly(A,B), fly(B,C), fly(C,D), fly(D,E)

Remove These to get
a non-optimal but
perferctly justified plan

Remove These to get
an optimal and
perferctly justified plan

● The order of removing redundant actions matters

Encoding Plan Reduction
● For a given planning task and its plan P we

construct a CNF formula F such that
● Each satisfying assignment of F represents a plan

reduction of P or P itself
● F contains a Boolean variable for each action in P

which indicates, whether the action is present in the
plan reduction

● By adding the clause to F
we obtain a formula that is satisfiable if and only
if P is a redundant plan

(¬a1∨¬a2∨...∨¬an)

SAT-based Redundancy Elimination

SAT-based Redundancy Elimination
Incremental Version

Removing The Maximum Number of
Redundant Actions

● We will use Partial MaxSAT solving
● The hard clauses are the plan reducion encoding
● The soft clauses are unit clauses

● The PmaxSAT solver will satisfy all the hard
clauses and as many soft clauses as possible,
i.e., remove as many actions as possible

(¬a1) ,(¬a2) ,...(¬an)

Experiments
● We used 3 satisficing planners

● Metric FF
● Fast Downward
● Madagascar

● 10 minute time limit to find plans for each
problem of the 2011 IPC

● Plan reduction methods
● Action elimination
● SAT-based reduction
● PmaxSAT-based reduction

Conclusion
● Plans obtained by satisficing planners on IPC domains

often contain a lot of redundant actions
● Our new methods can remove more redundant actions

than the previous approaches
● Despite the NP – completeness of the problem of

removing all redundant actions, all the redundant
actions (even the maximum sets of redundant actions)
can be eliminated very quickly.

● Thanks to the excellent performance of state-of-the-art
SAT and MaxSAT solvers our SAT encoding based
algorithms have very low runtimes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

