Eliminating All Redundant Actions
from Plans Using SAT and MaxSAT

Tomas Balyo
Lukas Chrpa

H

University of
HUDDERSFIELD

Charles University in Prague

Outline

Problem description

Definitions — SAT, MaxSAT, SAS+
Redundant plans

SAT encoding of plan reduction
Removing all redundant actions

Removing the maximum number of redundant
actions

Experimental results on IPC 2011 domains

Problem Description

Initial State
* A package in Atlanta and Boston

» A truck in Atlanta

Atlanta Boston Cleveland

Optimal plan:Load (P1,2), Move (A,B), Load(P2,B),
Move (B,C), Unload(P1l,C), Unload (P2, C)

Shortest possible plan
with 6 actions

Goal State

» Both packages in Cleveland
Atlanta Boston Cleveland

Problem Description

Initial State
* A package in Atlanta and Boston

» A truck in Atlanta

Atlanta Boston Cleveland

Optimal plan:Load (P1,2), Move (A,B), Load(P2,B),
Move (B,C), Unload(P1l,C), Unload(P2,C),

Move (C, A)

Goal State

» Both packages in Cleveland
Atlanta Boston Cleveland

Proble

Initial State
* A package in Atlanta and Boj

» A truck in Atlanta

Redundant
Optimal plan:Load (P1,2), Move (A,B), Load(P2,B),
Move (B,C), Unload(P1l,C), Unload(P2,C),

Move (C, A)

Goal State

» Both packages in Cleveland
Atlanta Boston Cleveland

Problem Description

Initial State
* A package in Atlanta and Boston
e Atruck in Atlanta

Atlanta Boston Cleveland

Redundant plan:Move (A,C), Move (C,2), Load(P1l,R2),
Move (A,B), Load(P2,B), Move (B,C),
Unload(P1,C), Unload(P2,C)

Goal State
» Both packages in Cleveland

Atlanta Boston Cleveland

Problem Description

Initial State
* A package in Atlanta and Boston
e Atruck in Atlanta

Atlanta Boston Cleveland
Redundant plan:Move (A,C), Move (C,B), Load(P2,B),
Move (B,A), Move(A,C), Unload(P2,C),
Move (C,B), Move (B,A), Load(Pl,A7),
Move (A,B), Move (B,C), Unload(P2,C)

12 actions, none

Goal State can be removed
« Both packages in Cleveland

Atlanta Boston Cleveland

Problem Description

e Our goal is to remove all redundant actions
from plans in order to improve them

» After removing all redundant action, plans can
be often further improved by replacing actions

« But we will not deal with such optimization

- There are other algorithms for that

* Plans obtained by satisficing planners often
contain many redundant actions

Definitions — SAT

A Boolean variable has two possible values — true
and false

A literal a is a Boolean variable (positive literal x) or
its negation (negative literal -x)

A clause is a disjunction (or) of literals

A CNF formula is conjuction (and) of clauses

A truth assignment T

assigns a value T(x) to each Boolean variable x

satisfies a positive literal x if T(x)=true and a negative literal -x
if T(x)=false

satisfies a clause if it satisfies any of its literals
satisfies a CNF formula if it satisfies all of its clauses

Definitions — SAT, MaxSAT

A CNF formula is satisfiable if there is a truth
assignment that satisfies it

The Satisfiability (SAT) problem is to determine
whether a given formula is satisfiable (and find a truth
assignmnet if yes)

The Maximum Satisfiability (MaxSAT) problem is to
find a truth assignment that satisfies as many clauses
of a CNF formula as possible

A Partial MaxSAT (PMaxSAT) formula consists of
hard and soft clauses. The PmaxSAT problem is to
find a truth assignment that satisfies all its hard

clauses and as many of its soft clauses as possible

Definitions — SAS+

A SAS+ planning task consists of

A finite set of multivalued state variables. Each
variable has a finite domain

A finite set of actions with preconditions and
effects, which are of the form x=e, where x is a
state variable and e is a value from the domain of x

Description of the initial state — the initial values of
all the state variables

A set of goal conditions in the form of x=e, where
e is the goal value of the state variable x

Definitions — SAS+

A state is a set of assignments, where each state
variable has exactly one value assigned

An action is applicable to a given state if all of its
preconditions are compatible with the state.

A new state S' is obtained by applying an action Ato a
state S (denoted by S'=app (A, S)). The values of

state variables in S' are copied from S and then some
of them are changed according to the effects of A

A plan P is sequence of actions (P=[A1,A2,...,An])
such that the state app (An, .. .app (A2, app (A1,

init)) ...) satisfies all the goal conditions

Redundant Plans

* Let P be a plan for a planning task T and let P'
be a proper subsequence of P. If P' is a plan for
T, then P' is called a plan reduction of P.

 Aplan is redundant if it has a plan reduction

 Aplan is called perfectly justified if it is not
redundant

« Determining whether a plan is redundant is an
NP complete problem (Fink, Yang 1992)

Removing Redundancy

* Prior to this work there were only incomplete
heuristic algorithms

 Removing pairs/groups of inverse actions (Chrpa,
McCluskey, Osborne 2012)

» Greedy justification (Fink, Yang 1992)
« Action elimination (Nakhost, Muller 2010)

* We will remove all redundant actions (NP hard)

* We will remove the maximum possible number
of redundant actions

Removing Redundancy

S
- $4_ @

fly(A,E), fly(E,A), fly(A,B), fly(B,C), fly(C,D), fly(D,E)
N — —
Y ey
Remove These to get Remot_/e Tlhesde to get
ot an optimal an
a non-optimal but perferctly justified plan

perferctly justified plan

 The order of removing redundant actions matters

Encoding Plan Reduction

* For a given planning task and its plan P we
construct a CNF formula F such that

» Each satisfying assignment of F represents a plan
reduction of P or P itself

* F contains a Boolean variable for each action in P
which indicates, whether the action is present in the
plan reduction

« By adding the clause (ma,V-a,V..V-a,)to F
we obtain a formula that is satisfiable if and only
If P is a redundant plan

SAT-based Redundancy Elimination

RedundancyElimination (11, P)
I1 Fr1 p := encodeRedundancy(II, P)
12 while isSatisfiable(F1; p) do

I3 ¢ := getSatAssignment(Fi p)
14 P :=Fy
IS F11 p := encodeRedundancy(II, P)

return P

(o)

I

SAT-based Redundancy Elimination

Incremental Version

IncrementalRedundancyElimination (11, P)
1101 solver = new SatSolver
T102 solver.addClauses(encodeRedundancy(II, P))
T703 while solver.isSatisfiable() do

1104 ¢ := solver.getSatAssignment()

1106 C:= \/{—lai|ai c PCb}

1107 solver.addClause(C)

1108 foreach a; € P do if ¢(a;) = False then
I109 solver.addClause({—a; })

II10 P := Py

111 return P

Removing The Maximum Number of
Redundant Actions

* We will use Partial MaxSAT solving

 The hard clauses are the plan reducion encoding
» The soft clauses are unit clauses

(ﬁal)’ (_'az)’ "'(_Ian)
 The PmaxSAT solver will satisfy all the hard
clauses and as many soft clauses as possible,
l.e., remove as many actions as possible

MaximumRedundancyEliminaion (11, P)
MR1 F := encodeMaximumRedundancy(II, P)
MR2 ¢ := partialMaxSatSolver(F)
MR3 return PQJ)

Experiments

* \We used 3 satisficing planners

 Metric FF
 Fast Downward
 Madagascar

e 10 minute time limit to find plans for each
problem of the 2011 IPC

 Plan reduction methods

e Action elimination
« SAT-based reduction
e PmaxSAT-based reduction

Domain #Plans Length | Aup Tap | Aapts Tapss | Asar Tsar | Avax Thax
barman 20 3749 | 528 0,52 582 344 596 7,18 629 0,44
elevators 20 4625 94 (0,84 94 241 94 345 94 0,19
floortile 5 234 220,06 22 0,20 22 0,27 22 0,00
- nomystery 13 451 0 0,05 0 0,47 0 048 0 0,00
§ parking 20 1494 4 0,17 4 1,21 4 1,26 4 0,03
g pegsol 20 644 0 0,11 0 1,11 0 LIS 0 0,02
Qo scanalyzer 20 823 26 0,10 26 1,16 26 1,33 26 0,03
E sokoban 17 5094 | 244 0,62 458 5,25 458 8,39 460 1,84
tidybot 16 1046 64 0,14 64 0,91 64 1,28 04 0,03
transport 17 4059 | 289 0,65 289 1,64 280 293 290 0,20
visitall 20 28776 122 3,66 122 9,47 122 12,89 122 1,77
woodworking 20 1605 27 041 27 1,16 27 1,33 30 0,03
barman 8 1785 | 303 0,25 303 1,59 303 353 318 0,30
elevators 20 11122 | 2848 1,46 3017 4,13 | 3021 17,62 3138 2,03
floortile 20 1722 30 0,39 30 1,05 30 1,32 30 0,03
_ homystery 15 480 0 0,06 0 0,51 0 053 0 0,01
§ parking 18 1663 152 0,20 152 1,17 152 1,78 152 0,03
gﬂ pegsol 19 603 0 0,09 0 1,06 0 LIO 0 0,01
E scanalyzer 18 1417 | 232 0,24 232 0,88 232 1,61 236 0,05
sokoban 1 121 22 0,02 22 0,13 22 0,29 22 0,01
tidybot 16 1224 | 348 0,16 348 0,84 348 2,13 350 0,08
transport 4 1446 | 508 0,20 539 0,40 532 1,65 553 0,16
woodworking 20 1325 0 031 0 1,11 0 121 0 0,01

Conclusion

Plans obtained by satisficing planners on IPC domains
often contain a lot of redundant actions

Our new methods can remove more redundant actions
than the previous approaches

Despite the NP — completeness of the problem of
removing all redundant actions, all the redundant
actions (even the maximum sets of redundant actions)
can be eliminated very quickly.

Thanks to the excellent performance of state-of-the-art
SAT and MaxSAT solvers our SAT encoding based
algorithms have very low runtimes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

