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Chapter 1

Introduction

Boolean satis�ability (SAT) is one of the most important problems of com-
puter science. It was the �rst problem proven to be NP-complete[7]. The
complexity class NP-complete (NPC) is a class of problems having two prop-
erties:

• A solution to the problem can be veri�ed in polynomial time (Problems
with this property are called NP problems)

• Each NP problem can be converted to the problem in polynomial time.

If any NPC problem can be solved in polynomial time then P=NP, where P is
the complexity class of problems solvable in polynomial time. It is unknown
whether P=NP, but many believe the answer is negative[11]. In that case
it is impossible to construct a polynomial algorithm for SAT solving in the
current computational model1. This would be most unfortunate, since we
need to solve SAT problems in many practical applications. Some examples
of these applications are hardware and software veri�cation[28], planning[17]
and automated reasoning[20].

Even if we settle with the idea that SAT can not be solved in polynomial
time, it is not enough reason to give up. First, we must remember that
the complexity estimation is for the worst case scenario. By worst case we
mean, that any formula of a given size can be solved in that time. Many are
possibly easier. Second, even exponential functions do not grow so rapidly
if multiplied by a small constant (less than 1) or having a small exponent.
Current modern SAT solvers use techniques to avoid searching unpromising

1Touring machine and equivalent models.
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CHAPTER 1. INTRODUCTION 7

regions of the search space. This way problems of great size can be solved
in reasonable time. Also they are implemented in a most e�ective way, so
the exponential growth is as slow as possible.

In this thesis, we will focus on the �rst of these issues - search space
pruning. The search space can be reduced by solving connected compo-
nents of a formula separately. By connected components of a formula we
mean subformulae corresponding to connected components of the formula's
interaction graph. Solving components separately can speed up the solver
exponentially. For example if a formula of n variables has two connected
components of equal size, then it can be solved in 2n/2 + 2n/2 = 21+n/2 time
instead of 2n. This approach was already used to design SAT solver decision
heuristics[2, 19] or special SAT solver algorithms[4]. We will further inves-
tigate and precisely de�ne the problem of connected components in SAT.
It will be shown how this concept can be generalized to many other NPC
problems.

The text will be partitioned the following way. Chapter 2 explains the
problem we are solving and some of the procedures used to solve it. The
third chapter deals with graphs and their connected components. Compo-
nent trees are introduced here. The fourth chapter is dedicated to decision
heuristics. We describe some heuristics used by state-of-the-art SAT solvers
and suggest new ones. In Chapter 5 we describe the experiments we have
done to measure the performance of the suggested decision heuristics.



Chapter 2

The Boolean Satis�ability

Problem

2.1 De�nition

In this section, we will provide the exact de�nitions of concepts necessary
to understand the satis�ability problem.

De�nition 2.1. The language of Boolean formulae consists of Boolean vari-
ables, whose values are True or False; Boolean connectives such as negation
(¬), conjunction (∧), disjunction (∨), implication (⇒), equivalence (⇔);
and parentheses.

A Boolean formula is a �nite sequence of symbols from de�nition 2.1.
The formulae are de�ned inductively.

De�nition 2.2. Each Boolean variable is a formula. If A and B are formulae
then ¬A, (A⇒ B), (A∧B), (A∨B), (A⇔ B) are formulae as well. Formulae
are formed by a �nite number of applications of these rules.

This de�nition enforces that every sentence constructed by Boolean con-
nectives must be enclosed in parentheses. To improve readability, we can
omit most of the parentheses, if we employ an order of precedence. The order
of precedence in propositional logic is (from highest to lowest): ¬,∧,∨,⇒
,⇔.

De�nition 2.3. A partial truth assignment for formula F assigns a truth
value (True or False) to some variables of F. A truth assignment for formula

8



CHAPTER 2. THE BOOLEAN SATISFIABILITY PROBLEM 9

F assigns a truth value to every variable of F. Both are functions from
variables to truth values : V : var(F )→ {True, False}

Example 2.4. F = x∨ (y ⇒ z)⇔ (¬x∧¬y) is a Boolean formula. {v(x) =
True, v(y) = False, v(z) = True} is a truth assignment for F. {v′(z) =
False} is a partial truth assignment for F.

Given a truth assignment for a formula, which assigns truth values to its
variables, we can consistently extend it to assign truth values to formulae
with those variables. Such an extension of an assignment v will be denoted
as v∗.

De�nition 2.5. Let F be a formula and v a truth assignment.
if F ≡ x (F is a variable) then v∗(F ) = v(x)

if F ≡ A ∧B then v∗(F ) =

{
True v∗(A) = True and v∗(B) = True

False otherwise

if F ≡ A ∨B then v∗(F ) =

{
True v∗(A) = True or v∗(B) = True

False otherwise

if F ≡ A⇒ B then v∗(F ) =

{
False v∗(A) = True and v∗(B) = False

True otherwise

if F ≡ A⇔ B then v∗(F ) =

{
True v∗(A) = v∗(B)

False otherwise

Example 2.6. If F = (x ∧ y) ⇒ ¬x, {a(x) = False, a(y) = True} and
{b(x) = True, b(y) = True} then it is easy to verify, that a∗(F ) = True and
b∗(F ) = False.

De�nition 2.7. A truth assignment v for F is called satisfying if v∗(F ) =
True. A Boolean formula F is called satis�able if there exists a satisfying
assignment for F. If F is satis�able we write SAT (F ) = True.

Example 2.8. In example 2.6 a is a satisfying assignment for F, b is not.
F is satis�able since a is the satisfying assignment.

De�nition 2.9. A decision problem is a question with a yes-or-no answer.
The Boolean satis�ability problem (SAT) is a decision problem of determin-
ing whether the given Boolean formula is satis�able.

Before describing how SAT is solved, we need to de�ne a special form of
Boolean formulae - the conjunctive normal form[21].
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De�nition 2.10. A literal is a Boolean variable or its negation. A clause
is a disjunction (or) of literals. A formula is in the conjunctive normal form
(CNF) if it is a conjunction (and) of clauses.

Example 2.11. F = (x1 ∨ x2 ∨¬x4)∧ (x3 ∨¬x1)∧ (¬x1 ∨¬x2) is in CNF.
(x1 ∨ x2 ∨¬x4), (x3 ∨¬x1), (¬x1 ∨¬x2) are clauses. x1, x2,¬x4, x3,¬x1,¬x2

are literals.

Formulae F and F' are called equisatis�able if SAT (F ) ⇔ SAT (F ′).
Thanks to the Tseitin transformation[25], we can construct an equisatis�able
CNF formula for any formula in linear time. From now on we will work only
with CNF formulae. It is the basis of the standard DIMACS format[27] for
SAT solvers. CNF is widely used, because it is simple, easy to parse and
represent in a computer's memory. A CNF formula is satis�ed if all clauses
are satis�ed. A clause is satis�ed if at least one of its literals is true. Hence
the goal is to �nd such a truth assignment, that in each clause there is a
literal, which is true.

2.2 Basic SAT Solving Procedure

Most of the current state-of-the-art SAT solvers are based on the Davis
Putnam Logemann Loveland (DPLL) algorithm[21]. The DPLL algorithm
is basically a depth-�rst-search of partial truth assignments with three ad-
ditional enhancements. The explanation of these enhancements for CNF
formulae follows.

• Early termination. If all literals are false in some clause, we can back-
track since it is obvious that the current partial truth assignment can
not be extended to a satisfying assignment. If all clauses are satis�ed,
we can stop the search - we are �nished. The remaining unassigned
Boolean variables can be assigned arbitrarily.

• Pure literal elimination. A pure literal is a literal, the negation of
which does not occur in any unsatis�ed clauses. Unsatis�ed clauses
are the clauses not satis�ed by the current partial assignment - none
of their literals is true. Pure literals can be assigned to make them
true. This causes that some clauses become satis�ed and that might
result in appearance of new pure literals.
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• Unit propagation. A clause is called unit if all but one of its literals are
false and the remaining literal is unassigned. The unassigned literal of
a unit clause must be assigned to be true. This can make other clauses
unit and thus force new assignments. The cascade of such assignments
is called unit propagation.

In the DPLL procedure the enhancements are used after each decision as-
signment of the depth-�rst-search. First, we check the termination condi-
tion. If the formula is neither satis�ed nor unsatis�ed by the current partial
assignment, we continue by unit propagation. Finally we apply the pure lit-
eral elimination. Unit propagation is called before pure literal elimination,
because it can cause the appearance of new pure literals. The other way
around, pure literal elimination will never produce a new unit clause, since
it does not make any literals false. A pseudocode of DPLL is presented as
algorithm 2.1.

Algorithm 2.1 DPLL
function DPLL-SAT(F): Boolean

clauses = clausesOf(F)

vars = variablesOf(F)

e = ∅ //partial truth assignment

return DPLL (clauses, vars, e)

function DPLL(clauses, vars, e): Boolean

if ∀c ∈ clauses, e∗(c) = true then return true

if ∃c ∈ clauses, e∗(c) = false then return false

e = e∪ unitPropagation(clauses, e)
e = e∪ pureLiteralElimination(clauses, e)
x ∈ vars ∧ x /∈ e //x is an unassigned variable

return DPLL(clauses, vars, e ∪ {e(x) = true}) or

DPLL(clauses, vars, e ∪ {e(x) = false})

Theorem 2.12. DPLL is sound and complete (always terminates and an-
swers correctly).

Proof. DPLL is a systematic depth-�rst-search of partial truth assignments.
The enhancements only �lter out some branches, which represent not satis-
fying assignments. The theorem easily follows from these properties.
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It is easy to see, that the time complexity of this procedure is exponential
in the number of variables. That corresponds to the number of vertices of
a binary search tree with depth n, where n is the number of variables.
In practice, thanks to unit propagation and early termination, the DPLL
procedure never goes as deep as n in the search tree. The maximal depth
reached during search is often a fraction of n. This makes DPLL run much
faster on instances of a given size, than one would expect from the formula
2n.

2.3 Resolution Refutation

Resolution is a rule of inference, which produces a new clause from clauses
containing complementary literals. Two clauses C and D are said to contain
complementary literals if there is a Boolean variable x such that x ∈ C∧¬x ∈
D. The produced clause is called the resolvent. Formally:

De�nition 2.13. Resolution rule

a1 ∨ a2 ∨ . . . ∨ an−1 ∨ an, b1 ∨ b2 ∨ . . . ∨ bm−1 ∨ ¬an
a1 ∨ . . . ∨ an−1 ∨ b1 ∨ . . . ∨ bm−1

where a1, . . . , an, b1 . . . bm are literals.

Resolution is a valid inference rule. The resolvent is implied by the two
clauses used to produce it. If the resolution rule is applied to clauses with
two pairs of complementary literals, then the resolvent is a tautology, since
it contains a pair of complementary literals.

Resolution is the base of another sound and complete algorithm for SAT
solving - resolution refutation. The algorithm takes input in form of a CNF
formula. The formula is turned into a set clauses in an obvious way. This
concludes the initialization phase. After that, the resolution rule is applied
to each pair of clauses (with complementary literals) in our set. Resolvents,
which are not tautologous are simpli�ed (by removing repeated literals) and
added to the set of clauses. This is repeated until an empty clause is de-
rived or no new clause can be derived. If the algorithm stopped due to an
empty clause then the formula is unsatis�able, otherwise it is satis�able. A
pseudocode for this procedure is algorithm 2.2.

The resolution refutation algorithm always terminates, because there is
only a �nite number of clauses on a �nite number of variables. The proof of
its soundness and completeness is to be found in [21].
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Algorithm 2.2 Resolution refutation
function resolution-SAT(F): Boolean

clauses =clausesOf(F)

do

new = ∅
foreach C,D ∈ clauses, Ci = ¬Dj do

R =resolve(C,D)

if R is an empty clause then

return false

simplify(R) //remove repeated literals

if R not tautology ∧ R /∈ clauses then

new = new ∪ {R}
endfor

clauses = clauses ∪ new
while new 6= ∅
return true

The complexity of this method is exponential in space and time. Practi-
cally it is unusable for SAT solving. For some formulae it can �nish quickly,
but there are families of formulae proven to have exponential lower bounds
on resolution refutation length[26].

The reason for including this section in the text is, that it might be useful
for a better understanding of the clause learning SAT solver concept.

2.4 Con�ict Driven Clause Learning

At the beginning of section 2.2 we stated, that state-of-the-art SAT solvers
are based on the DPLL algorithm. To be exact, they are actually based on
a special kind of it - the con�ict driven clause learning (CDCL) DPLL. It
combines ideas of DPLL search and resolution refutation. Each time the
DPLL encounters a con�icting clause (a clause that has all literals false)
new clauses are resolved from the current ones and added to the formula.
These new clauses are called learned clauses or con�ict clauses. The terms
con�ict clause and con�icting clause sound very similar, so the reader must
be cautious not to mix them up.

The solver GRASP in 1996[23] was among the �rst to implement clause
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learning. A simple and e�cient method for learning was introduced by
RelSat in 1997[16]. It was further improved by Cha� in 2001[18]. In this
thesis only the basic ideas of clause learning will be described. The reader
is referred to [3, 22, 30] for more information.

The recursive character of DPLL allows us to de�ne decision levels of
truth assignments. Decision level 0 is special. Assignments deduced from
the input formula without any decision have decision level 0. Decision level
n refers to the assignment implied by the decision in the n-th recursive
call of DPLL and all assignments deduced from this assignment by unit
propagation. When the solver backtracks to level l, all assignments with
decision levels higher than l must be removed.

When the unit propagation deduces an assignment, it is due to a clause,
which became unit. This clause is called the reason or antecedent of the
assignment. The antecedent for literal x will be denoted as ante(x). As-
signments, which are due to a decision, have no antecedent. The antecedent
relations between literals and clauses can be expressed in a form of an ori-
ented graph. Such a graph is called an implication graph. A formal de�nition
follows.

De�nition 2.14. An implication graph is a directed acyclic graph G(V,E)
where V represents the assignments and (x, y) ∈ E ⇔ x ∈ ante(y).

Figure 2.1: Implication graph
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Example 2.15. Figure 2.1 is an example of a subgraph of an implication
graph. Empty vertices represent decision assignments, �lled vertices rep-
resent deduced assignments. The numbers in brackets denote the decision
levels. The unit propagation is initiated by the assignment x2 = True on
level 5. Edges are marked by reason clauses. The clauses used in this exam-
ple are the following:

c1 = (¬x1 ∨ ¬x2 ∨ x8)

c2 = (x5 ∨ ¬x8 ∨ ¬x9)

c3 = (¬x8 ∨ ¬x3 ∨ x10)

c4 = (¬x10 ∨ x9 ∨ ¬x11)

c5 = (x11 ∨ ¬x6 ∨ ¬x7)

c6 = (x4 ∨ x11 ∨ x7)

A subgraph of an implication graph containing a con�ict is called a con�ict
graph. The subgraph on �gure 2.1 is a con�ict graph. The con�ict graph
describes why the con�ict happened. We will use this graph to derive the
clause to learn - the con�ict clause.

The con�ict clause is generated by partitioning the con�ict graph into
two parts. The partition has all the decision assignments on one side (reason
side) and the con�icting assignments on the other side (con�ict side). The
described partitioning is called a cut. Vertices on the reason side contribute
to the learned clause if they have at least one edge to the con�ict side. We
will refer to these vertices as vertices of the cut. The learned clause consists
of the negations of the vertices of the cut, more precisely of the literals they
represent. There are several ways to perform a cut of the con�ict graph.
Di�erent cuts produce di�erent con�ict clauses.

Example 2.16. On �gure 2.2 three di�erent cuts of the con�ict graph are
displayed. The corresponding clauses are these:

Cut 1: (x4 ∨ x11 ∨ ¬x6)
Cut 2: (x4 ∨ ¬x10 ∨ x9 ∨ ¬x6)
Cut 3: (x4 ∨ ¬x3 ∨ ¬x1 ∨ ¬x2 ∨ x5 ∨ ¬x6)
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Figure 2.2: Con�ict graph cuts
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The clause constructed from a cut can also be constructed by resolving
the clauses represented by the edges going to or inside the con�ict side. The
resolution of these clauses must be done in a proper order. Its description
follows. First we resolve the clauses closest to the con�ict (edges into the
con�ict literals). Then the resolvent is resolved with a clause that is rep-
resented by an edge into a vertex, whose negation is in the resolvent. We
repeat this until all clauses from the cut have been used. See example 2.17
for a demonstration.

Example 2.17. As we can see on �gure 2.2, cut 1 intersects 4 edges, which
represent 2 clauses c5 and c6. Resolving these clauses gives us (x4∨x11∨¬x6)
which is the learned clause of cut 1.

The clause of cut 2 can be derived by resolving c5 and c6 , then resolving
their resolvent (x4 ∨ x11 ∨ ¬x6) with c4 and getting (x4 ∨ ¬x10 ∨ x9 ∨ ¬x6).

The clause of cut 3 is formed the following way. We start the same way
as cut 1, by resolving c5 and c6 into (x4 ∨ x11 ∨ ¬x6). We continue like for
cut 2 by resolving with c4 and deriving (x4 ∨ ¬x10 ∨ x9 ∨ ¬x6). The next
clause to resolve with is c2 or c3. We can use them in arbitrary order. Let
us, for example, select c2 �rst and get (x4 ∨¬x10 ∨¬x6 ∨ x5 ∨¬x8). Now we
resolve with c3 and get (x4 ∨¬x6 ∨ x5 ∨¬x8 ∨¬x3). Finally we resolve with
c1 and get the clause of cut 3 which is (x4 ∨ ¬x3 ∨ ¬x1 ∨ ¬x2 ∨ x5 ∨ ¬x6).
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If any clause derived from a cut of the con�ict graph is also derivable by
resolution, then adding these clauses to the original formula does not change
the set of satisfying truth assignments. It remains to prove, the following
theorem.

Theorem 2.18. The extension of a CNF formula by a clause, which can be
deduced by resolution from the original set of clauses, does not change the
set of satisfying truth assignments of F.

Proof. Let (x1 ∨ x2 ∨ . . . ∨ xn−1 ∨ y1 ∨ y2 ∨ . . . ∨ ym−1) be a new clause
resolved from original clauses (x1 ∨ . . . ∨ xn) and (y1 ∨ . . . ∨ ym−1 ∨ ¬xn).
If a truth assignment v satis�ed the original formula, then it also satis�ed
clauses (x1∨ . . .∨xn) and (y1∨ . . .∨¬xn). We will show that v must satisfy
the resolvent as well. v(xn) is either True or False.

If v(xn) = True then at least one of y1 . . . ym−1 must be True in v,
because (y1 ∨ . . .∨¬xn) is satis�ed. The literal which is True is also present
in the resolvent and so makes it satis�ed in v.

If v(xn) = False then similarly at least one of x1 . . . xn−1 is True in v
and that literal makes the resolvent satis�ed.

We have showed that extending the set of clauses by a resolvent can not
decrease the number of satisfying assignments. It also can not increase it,
since adding any clause to a CNF formula can not.

When learning clauses, we will prefer a special kind clauses - asserting
clauses. An asserting clause is a clause with only one literal from the current
decision level. The Clauses of cut 1 and cut 3 from example 2.16 are as-
serting, while the clause of cut 2 is not. Why are asserting clauses desirable
will be explained later when discussing backtracking.

To �nd cuts, which lead to asserting clauses, we need to locate unique
implication points. A unique implication point (UIP) is a vertex in the
con�ict graph, that all oriented paths from the decision vertex to the vertices
in con�ict go through the vertex (these paths are highlighted by using thicker
lines on �gure 2.2). The decision vertex itself is always a UIP. Other UIPs in
our example are x8 and ¬x11 (see �gure 2.2). For each UIP we can perform
such a cut of the con�ict graph, that the vertices of the cut will contain
the UIP as the only vertex from the current decision level. That cut will
surely correspond to an asserting clause, since only the literal added due to
the UIP will have the current decision level. The described cut is done by
putting all the vertices, to which there is an oriented path from the UIP,
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into the con�ict side. Such a partitioning is a valid cut and has the desired
property.

One of the learning strategies is to make the cut at the �rst UIP. By
�rst we mean the closest to the con�ict. In our example it is ¬x11 and
so the �rst UIP cut is cut 1. Another strategy is to �nd the cut in such
a way, that the learned clause will be asserting and of minimal length. A
very simple strategy is a so called RelSat scheme[16]. In this strategy we
resolve the clause in con�ict with the antecedents of its literals until the
resolvent contains only one literal from the current decision level. The �rst
UIP scheme is often considered to be the best[30].

2.5 Con�ict Driven DPLL

The con�ict driven DPLL is a DPLL with CDCL and non-chronological
backtracking. We already described what is CDCL. Non-chronological back-
tracking simply means, that we do not necessarily backtrack only level at a
time. These two features are tightly connected. When a con�ict is encoun-
tered, the level for backtracking is determined from the learned clause. It is
reasonable, since the learned clause contains information about the con�ict.
The level of backtrack from a clause is determined the following way. We
select a literal with the second highest decision level from the clause. The
decision level of this literal is the proper level to backtrack to. A special case
is when the learned clause has only one literal. When this happens, we back-
track to level zero. If the learned clause is asserting, then after backtracking
it becomes unit and thus forces a new assignment.

The pseudocode of the CDCL DPLL is algorithm 2.3. First we initialize
the partial truth assignment to be empty and the decision level to 0. Then
we check if the unit propagation (Boolean constraint propagation - BCP)
itself (without decisions) can prove the formula to be unsatis�able. Any
assignments made by the BCP at this point have decision level 0. These
assignment will never be removed. After the initialization stage we enter
an in�nite cycle. In the cycle we make a decision to select the branching
literal. If no branching variable can be selected, then all must be assigned.
In this case we have a satisfying assignment and we are �nished. If a literal
is selected, then we enter the next decision level and extend the partial truth
assignment by making it true. BCP follows. If no con�ict is encountered,
we continue by the next decision. However if a con�ict appears, we must
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Algorithm 2.3 CDCL DPLL
function CDCL-DPLL(F): Boolean

clauses =clausesOf(F)

e = ∅ //partial truth assignment

level = 0 //decision level

if BCP(clauses,e)= false then return false

while true do

lit =decide(F,e) //an unassigned variable

if lit = null then return true

level = level + 1
e = e ∪ {e(lit) = true}
while BCP(clauses,e)= false do

if level = 0 return false

learned =analyzeConflict(clauses,e)
clauses = clauses ∪ {learned}
btLevel =computeBTLevel(learned)
e =removeLaterAssignments(e,btLevel)
level = btLevel

endwhile

endwhile

process it. First, we check whether the decision level is 0, if this is the case,
we can return the answer unsatis�able. A con�ict at level 0 means, that
there is a variable, which must be true and false at the same time. It is
like having two unary clauses, which contain complementary literals. If we
resolve them, we get the empty clause. Some unary clauses can be in the
input formula, some are derived through clause learning. The rest of con�ict
processing is straightforward. We compute the learned clause by analyzing
the con�ict. We add it to our set of clauses and compute the backtrack level
from it. Last, we perform the backtracking by removing assignments after
the backtrack level and updating the current level indicator. Note, that
immediately after the backtracking BCP is called. This BCP will derive at
least one new assignment thanks to the clause we learned being asserting.

Seeing the soundness and completeness of CDCL DPLL is not as trivial
as it was for DPLL. It is not too di�cult either. First, we show that the
algorithm always terminates.
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Lemma 2.19. The CDCL DPLL algorithm terminates for every input for-
mula F.

Proof. If F has n variables, then the maximum decision level of any assign-
ment will be n+1. A decision level population vector (DPV) is a sequence
c0, c1, . . . , cn+1 where ci is the number of assignments with decision level i.
If P and Q are DPVs, then we write P > Q if P is lexicographically big-
ger than Q. (0, . . . , 0) is the smallest possible DPV and (n, 0, . . . , 0) is the
largest. The last corresponds to the state when all variables have a value
assigned at level 0. We will show the invariant, that if the DPV changes
from P to Q then Q > P. The lemma is a consequence of the invariant, since
for a �nite n there is a �nite number of di�erent DPVs.

Now we prove the invariant. First, elements of the DPV are increased
and never decreased by new assignments. Second, when we backtrack from
level l to level l', elements l'+1 ... l are zeroed. Elements 0 ... l'-1 are
unchanged and element l' is increased. Element l' is increased due to the
asserting clause we learn before backtracking. That clause becomes unit at
level l' and forces a new assignment. Thus the DPV is greater than it was
before.

Theorem 2.20. The CDCL DPLL algorithm always terminates and returns
a correct answer.

Proof. We have already proven termination (lemma 2.19). If the algorithm
returns the answer satis�able, then all variables are assigned and no con�ict
exists in the formula. If it returns unsatis�able, then the empty clause can be
derived by resolution, which implies the formula is indeed unsatis�able.

When implementing CDCL DPLL we must be cautious about the learned
clauses. They can be numerous and can cause, that we run out of mem-
ory. For this reason, some learned clauses are deleted during the algorithm.
Clauses to be deleted are often determined by the their length, activity or
some other heuristic. Clauses, which are reasons for some assignments (they
appear in the implication graph), must not be deleted.

Another important feature, which is never missing in the implementa-
tions of CDCL DPLL, is restarting. Restarting means to revert to decision
level 0. We erase all assignments made at decision level 1 and higher. The
learned clauses are not deleted, so we are not throwing away the work we
have done. Restarting is done for the sake of diversi�cation. Diversi�cation
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is very important when solving SAT. It can correct the mistakes of the deci-
sion heuristics. Restarting greatly increases the set of problems a solver can
solve and decreases the time to solve them.



Chapter 3

The Component Tree Problem

In this part we will investigate the structural properties of Boolean formulae.
We will try to exploit these properties to solve formulae more e�ciently.

3.1 Interaction Graph

De�nition 3.1. Let F be a Boolean formula in CNF. The interaction graph
for F is the graph G(V,E) where V represents the variables of F and (x, y) ∈
E ⇔ ∃c ∈ clauses(F ) : (x ∈ c ∨ ¬x ∈ c) ∧ (y ∈ c ∨ ¬y ∈ c).

In other words, the interaction graph of a formula has vertices, which
represent the variables (not literals) of the formula and the vertices are
connected by an edge, if they appear in a clause together. An example is
given on �gure 3.1. As apparent from the example, two di�erent formulae
can have identical interaction graphs.

If the interaction graph of a formula consists of more than one connected
component, then the formula can be separated into subformulae correspond-
ing to the connected components. These subformulae will have no common
variable and thus they can be solved independently. The described subfor-
mulae of a formula will be called components of the formula. The original
formula is satis�able if all its components are satis�able. Solving the com-
ponents separately results in a signi�cant speedup. For example if a formula
of n variables has k components each with n/k variables, then the solving
of the components separately will take k · 2n/k time instead of 2n.

Unfortunately, most of the formulae have only one component. For ex-
ample formulae on �gure 3.1 have only one component. If we solve a formula

22
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Figure 3.1: Interaction graph example

x2 x4

x6

x1 x3

x5

F1 = (x1 ∨ x5 ∨ ¬x3) ∧ (¬x2 ∨ ¬x4 ∨ ¬x6) ∧ (x1 ∨ x2) ∧ (x4 ∨ ¬x3)
F2 = (x1∨x3)∧(¬x5∨¬x3)∧(x5∨¬x1)∧(¬x2∨¬x4∨¬x6)∧(x1∨x2)∧(x4∨¬x3)

using DPLL (or CDCL DPLL), we work with partial truth assignments. We
can construct the interaction graph in regard of the partial truth assign-
ment. In that case we ignore variables which have a value assigned and
clauses which are satis�ed. Formal de�nition follows.

De�nition 3.2. Let F be a CNF formula and e a partial truth assignment
for F. The interaction graph for F and e is the graph G(V,E) where V
represents the variables of F with no value de�ned by e and (x, y) ∈ E ⇔
∃c ∈ clauses(F ) : (c not satisfied by e)∧(x ∈ c∨¬x ∈ c)∧(y ∈ c∨¬y ∈ c).

An example of an interaction graph for a formula and its partial truth
assignment is on �gure 3.2. We can see, that after we assign a value to x4 the
formula falls apart into two components. Now we can solve these components
independently. So the plan seems to be, that we proceed as DPLL and after
the unit propagation we check if the formula is still in one component. If
it has been disconnected, we continue separately for the components. The
problem with this plan is, that precise component detection is prohibitively
expensive[19]. What we can do is some static component analysis in the
phase of preprocessing or use special heuristics which do some inexpensive
approximate component detection. We will discuss some heuristics of this
kind in the next chapter. But �rst we show a method of static component
analysis.



CHAPTER 3. THE COMPONENT TREE PROBLEM 24

Figure 3.2: Implication graph for partial truth assignments
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F = (x2 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x6 ∨ x5) ∧ (x2 ∨ ¬x1) ∧ (x4 ∨ ¬x5)
The �rst graph is for the empty partial truth assignment. The second is for
{e(x4) = false}.

3.2 Component Tree

What we intend to do, is analyzing the interaction graph of a formula to
determine which variables should be assigned values �rst to disconnect the
formula in a good fashion. What we mean by good disconnection will be
described soon. To explain precisely what we want, we de�ne the component
tree.

De�nition 3.3. Let T (V,E) be a tree and v ∈ V be a vertex. The root path
for v is the set of vertices on the path from the root of T to v including v.

Let G(V,E) be a connected graph. The tree T (V,E ′) is called a compo-
nent tree for G if ∀v ∈ V removing the root path of v from G causes, that
the sets of vertices corresponding to the subtrees of v's sons in T become
connected components in G.

The component tree shows us how the graph disconnects after removing
some of its vertices. An example can be seen on �gure 3.3. The �rst tree
can be interpreted the following way. If vertices 2 and 3 are removed from
the graph, then sons of 3 in the tree: {1} and {4,5} become connected
components in the graph.



CHAPTER 3. THE COMPONENT TREE PROBLEM 25

Figure 3.3: A graph and two of its component trees
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Apparently there are several di�erent component trees for a given graph.
In the example on �gure 3.3 we have two component trees. Which one is
better? Component tree value will be de�ned. We will consider the tree
with a lower value better.

De�nition 3.4. Let T (V,E) be a tree. The component value of a vertex

v ∈ V is de�ned as val(v) =

{
1 v is a leaf

2 ∗
∑

s∈sons(v) val(s) otherwise

The component value of a tree is the component value of its root.

The component values of component trees in the example on �gure 3.3
are 12 and 16 respectively. It means, that the left component tree is better,
because it has a lower component value. Our goal will be to �nd the best
possible component tree for a given graph. By best we mean such a com-
ponent tree, that there is no other component tree for the given graph with
a lower component value. A tree with the given properties will be called an
optimal component tree.

In the context of SAT, what we want is an optimal component tree for
the formula's interaction graph. We will then use the component tree in
our decision heuristic for the DPLL. The component value of a formula's
interaction graph is an upper bound on the number of decisions a solver re-
quires to solve the formula. The bound holds for a solver that somehow uses
the component tree when making decisions. The details will be explained
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later. Now we only focus on the construction of component trees for general
graphs.

For a better understanding of the concept of component trees we provide
the following example.

Example 3.5. Let G be a clique on n vertices. The following statements
hold:

1. Any component tree for G is a path of n vertices.

2. The order of the vertices in this path is arbitrary.

3. There are n! component trees for G.

4. The component value of each component tree for G is 2n−1.

5. Every possible component tree for G is optimal.

From the example we can see, that sometimes there are several optimal
component trees for a graph. Also we can see that the number of component
trees or even optimal component trees can be very large (n! for n vertices).

Component trees are usually made of long linear segments. By linear
segment we mean an oriented path, where the last vertex has zero or at least
two sons and all other vertices have exactly one son. For example component
trees for cliques have always only one linear segment. Component trees on
�gure 3.3 have both three linear segments. The linear segments of the �rst
tree are {(2,3),(1),(4,5)} and of the second tree are {(4,2,3),(1),(5)}. An
interesting property of the component trees is expressed by the following
lemma.

Lemma 3.6. For each component tree, the vertices in its linear segments
can be arbitrarily permuted, and the component tree remains valid and also
preserves its component value.

Proof. We will prove the lemma by induction on the height of the component
tree.

For component trees of height 1, the claim obviously holds. Let us have
a component tree of height h.

First, let us assume, that its root has at least two sons. The subtrees
of the sons have smaller heights, so the claim is true for them due to the
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induction hypothesis. The root is a one element linear segment and for those
there is nothing to prove.

The second and �nal case is, that the root has exactly one son. Then
it extends a linear segment S, where the son belongs. The de�nition of the
component tree dictates, that removing the root path of a vertex disconnects
the graph into connected components corresponding to the subtrees of the
sons of the vertex. For vertices in the component tree, which have only
one son, the de�nition requires nothing. Disconnection of a graph into 1
component is not a disconnection. Thus the only important vertex of each
linear segment is the last vertex. In our case, the root path of the last vertex
of linear segment S is equal to the set of the elements of S. Since removing
a set of vertices from a graph results in the same graph, regardless of the
ordering of those vertices, the order of vertices in a linear segment is not
important. Thus the vertices can be permuted arbitrarily. The subtrees of
our linear segment's sons are smaller component trees and the lemma holds
for them by the induction hypothesis.

The preservation of the component value is obvious, since the shape of
the tree does not change at all. Only some of the vertices are �renamed�.

The lemma says, that the component trees on �gure 3.4 are equivalent.
If one of them is a valid component tree for a graph, then the other two are
also valid for that graph. This property is very useful. We will use it when
designing decision heuristics for a SAT solver.

The problem of �nding an optimal component tree for a given graph will
be called the component tree problem (CTP). The decision version of the
component tree problem is the yes-or-no question: Is there a component tree
for a graph G with a component value less than or equal to v? We will
show, that the decision version of CTP is in NP. It remains open, whether
it is NPC.

Lemma 3.7. The decision version of CTP is in NP.

Proof. The certi�cate is the component tree itself. First, its size is clearly
polynomial. Second, we can surely verify the validity of a component tree for
a given graph in polynomial time. It can be done, for example, by verifying
the requirement from the component tree de�nition for every vertex. Third,
we can also verify, that the component tree has the required component
value. This value can be exponential in the number of vertices, but if we
use binary encoding, it can be done in polynomial time.
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Figure 3.4: Permuted linear segments
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Theorem 3.8. The CTP can be solved in polynomial time on a non-deterministic
Touring machine.

Proof. The component tree value for a tree with n vertices is a positive
number less than 2n. We can use binary search to �nd the best (lowest)
component value component tree for a given graph. We use the decision
version of CTP to check if a solution of a given quality exists. Binary search
on 2n possible values takes log2(2

n) = n time. The described algorithm
calls n times the decision version of CTP, which takes polynomial time on
a non-deterministic Touring machine (lemma 3.7).

3.3 Component Tree Construction

Now we will present two algorithms for component tree construction. The
�rst one is a depth-�rst-search with a few additional instructions. We will
call it DFS Find. This algorithm is very fast, but it often yields a solution
very distant from being optimal. Its Pseudocode is presented as algorithm
3.1.
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Algorithm 3.1 DFS Find component tree construction
find(v,G, T (V,E))

V = V ∪ {v}
for u ∈ Neighbours(G, v) do

if u /∈ V then

find(u,G, T (V,E))
E = E ∪ {(v → u)}

endif

endfor

This algorithm creates a special kind of component trees. If two vertices
x and y are connected in the component tree then they are also connected in
the graph. This kind of a tree is called a depth-�rst-search tree (DFS Tree).
A component tree for a graph is not necessarily a DFS tree. On �gure 3.5
we see a graph and its optimal non DFS component tree. If there is no
optimal component tree for a graph which is DFS, then this algorithm can
not �nd an optimal solution. Such graphs exist, an example is on �gure 3.5.
DFS Find would create only a path. Starting from any vertex and taking
the neighbors in any order always results in a path. The reason is, that DFS
Find must always proceed to a neighbor.

Now we will describe a better algorithm. DFS Find built the component
tree from its root to the leaves. The second algorithm does it the opposite
way. Starting from the leaves and connecting them into small trees. Con-
necting small trees into bigger ones and �nally to one component tree. This
algorithm will be called the component tree builder (CTB) algorithm. Its
pseudocode is algorithm 3.2.

The algorithm works with a forest of component trees. When processing
a new vertex it checks its neighbors for vertices which are already in the
forest. The algorithm saves the roots of the trees where those neighboring
vertices belong. The new vertex then becomes the parent of these roots.
This way the new vertex either enlarges one of the trees in the forest (by
becoming its new root) or connects two or more trees into one (by becoming
a common root).

The main for cycle enumerates through the edges of the input graph. The
order of the vertices is signi�cant for the component value of the resulting
component tree. Any permutation of vertices is good, the component tree
built using that ordering will be a valid component tree. This statement
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Figure 3.5: No DFS optimal tree.
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also holds the other way around.

Lemma 3.9. Any valid component tree of a graph can be constructed by the
CTB algorithm given the proper ordering of vertices.

Proof. Let T be a valid component tree. The proper ordering of vertices
for constructing T can be acquired the following way. Run DFS on T and
output the vertex when you visit it the last time (when you are returning to
its parent). In other words, the proper order is gained by DFS postordering.

Lemma 3.9 implies, that the CTB algorithm has the potential of �nding
an optimal component tree, since it can �nd any valid component tree. The
only problem is to guess a good ordering. This gives us a trivial algorithm
for �nding an optimal component tree: run the CTB algorithm for each
permutation of vertices and return the best result. The complexity is n!,
since we must test each possible permutation. This makes it impossible to
use in practice. Instead of trying out all possible orderings, we will guess a
good one and build the tree according to it. To guess a good ordering we
will use the following heuristic.
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Algorithm 3.2 Component tree builder
ComponentTreeBuild(G(V,E))

V ′ = ∅, E ′ = ∅
for v ∈ V do

R = ∅
for s ∈ Neighbours(G, v) do

if s ∈ V ′ then R = R ∪ {rootOf(s)}
endfor

V ′ = V ′ ∪ {v}
for r ∈ R do

rep(r) = v
E ′ = E ′ ∪ (v → r)

endfor

endfor

return T (V ′, E ′)

rootOf(v)
while rep(v) defined do v = rep(v) endwhile

return v

De�nition 3.10. Greedy heuristic: Compute the score of the vertices, which
have not yet been used. The score of a vertex is a sum of the number of
its neighbors and its potential component value. The potential component
value is the value of the component tree, that would be formed, if this vertex
was used in the current step. Select a vertex with the lowest score.

Experiments have showed, that the CTB algorithm with the greedy
heuristic (Greedy CTB) produces much better component trees than the
DFS Find algorithm or the CTB algorithm with a random heuristic (random
order of vertices). But still, Greedy CTB is not optimal. A counter-example
for optimality is displayed on �gure 3.6.

3.4 Compressed Component Tree

According to lemma 3.6 the order of vertices in the linear segments of com-
ponent trees is unimportant. This allows us to look at those linear segments
as sets of vertices instead of sequences. To emphasize this, we will contract
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Figure 3.6: Counter-example of Greedy CTB optimality
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The �rst component tree is optimal for the graph with the value 8. Greedy
CTB would never produce it, since after selecting vertices 1 and 5 �rst (their
score is 1), it would select 3 (with score 2). Greedy CTB would produce the
second or the third tree, both non-optimal with value 10.

the linear segments into single vertices. A tree with contracted linear seg-
ments will be referred to as a compressed component tree. An example of a
tree and its compressed equivalent is on �gure 3.7.

The component value of a compressed tree is the component value of
the component tree, that was compressed to obtain it. If we need a com-
pressed component tree for a graph, we can make it by constructing a regular
component tree and the contracting its linear segments. Also the algorithms
described in section 3.3 can be easily modi�ed to construct compressed com-
ponent trees directly.

3.5 Applications

The concept of component trees was created for the purpose of SAT solving.
It was designed for analyzing interaction graphs of Boolean formulae. How-
ever, it can be used for many other NP problems. All problems, which are
solved by searching the universe of possible values for some variables, could
potentially bene�t from this idea.

The most straightforward application could be the coloring of a graph
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Figure 3.7: Compressed component trees
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by 3 colors. In this case we would create a component tree for the input
graph itself. If we disconnect the graph by coloring some of its vertices,
the components can be colored independently. If we used the number 3 in
the de�nition of the component tree value (instead of 2), it would represent
the maximum number of trials for solving the 3-coloring of a given graph.
The situation is, of course, analogous for coloring by any number of colors
(higher than 2).

An application for solving constraint satisfaction problems (CSP)[21] is
also possible. We can create a graph similar to the interaction graph. The
vertices represent the variables. Two vertices are connected by an edge,
if there is a constraint, that contains both the variables assigned to those
vertices. The component value can be de�ned the following way. The value
of a vertex is the sum of the values of its sons multiplied by the size of its
variable's domain. If a vertex has no sons, we can de�ne its value as the
domain size of its variable.

In this thesis, we will experimentally investigate the usefulness of compo-
nent trees for SAT solving. It would be interesting to do a similar research
for CSP. That might be a promising subject for future work.



Chapter 4

Decision Heuristics

In this chapter we return to SAT solving. We stated, that the way of solving
SAT is CDCL DPLL. If we take a look at its pseudocode (algorithm 2.3),
there is a function DECIDE. This function is expected to return an unas-
signed variable or its negation - an unassigned literal. If there are many
unassigned variables, the function has many possibilities for literal selec-
tion. Selecting a good literal, a literal that will cause the algorithm to �nish
quickly, is a hard task. For satis�able formulae an ideal variable selection
procedure would render the DPLL a linear time algorithm. Unfortunately
we do not have such a procedure yet. Solvers are using heuristics instead.
These heuristics are called decision heuristics.

In this chapter we will describe some of the well known decision heuris-
tics. Then we introduce a new heuristic based on the component tree con-
cept. We will show, how it can be combined with other heuristics.

4.1 Jeroslow-Wang

The Jeroslow-Wang (JW)[15] is a score based decision heuristic. Score based
means, that we compute a numeral score for each literal and we select a literal
with the highest or lowest score. In the case of JW we select an unassigned
literal with the highest score. The score for a formula F is de�ned by the
following equation.

s(lit) =
∑

lit∈c,c∈F

2−|c|

In the equation above c represents a clause and |c| represents its size

34
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(number of literals). The preferred literals are those, which appear in many
short clauses. The scores of the literals are computed once at the beginning
of the solving. This makes JW a static heuristic. It means, that the process
of solving does not in�uence the decision making.

When learning clauses, we can update the scores of their literals by
adding 2−|c| , where c is the learned clause. This is in accordance with
the de�nition. Updating scores using learned clauses makes JW a dynamic
heuristic. In opposition to static heuristics, the literal selection of dynamic
heuristics is in�uenced by the going of the solving algorithm. We will use
this dynamic version of JW for our experiments.

4.2 Dynamic Largest Individual Sum

The dynamic largest individual sum (DLIS)[23] heuristic is also score based
like JW. The score of a literal in this case is the number of clauses containing
it. Only clauses, which are not satis�ed at the current decision point are con-
sidered. This heuristic is dynamic because of this property. An unassigned
literal with the highest score is selected as a decision literal.

The aim of this heuristic apparently is to satisfy as many clauses as
possible. DLIS has a signi�cant disadvantage, its computation is very time
consuming. The reason is, that only the unsatis�ed clauses are counted.
We can implement it by recomputing the scores of literals at each decision,
which is obviously very slow. Another way is to keep updating the scores
when clauses are becoming satis�ed or not satis�ed (when backtracking).
The second way appears to be more e�cient, but the updating slows down
the solver too much.

We would forgive the slowness of DLIS, if it yielded good decision literals.
It, unfortunately, does not. The are many other heuristics, which are fast
to compute and solve most of the formulae using fewer decisions.

4.3 Last Encountered Free Variable

The last encountered free variable (LEFV)[2] is di�erent from the majority
of heuristics, since it is not score based. LEFV uses the propagation of the
DPLL procedure to �nd a literal for the decision. The propagation always
starts with a literal. We check the clauses, where the negation of this literal
appears. Those clauses are candidates for unit clauses. Some of them are
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indeed unit, but many are not. We keep a pointer to the last not unit and
not satis�ed candidate clause we encounter during the propagation. When
a decision is required, we select an unassigned literal from this clause.

This heuristic is very easy to implement and its time and memory com-
plexity are minimal. It has a special property, which could be called com-
ponent friendliness. This heuristic tends to solve the components indepen-
dently. Since the propagation for a literal does not leave the component of
the formula where the literal is, the next decision variable is surely selected
from this component again. A more precise formulation and proof of this
property is to be found in [2].

4.4 Variable State Independent Decaying Sum

One of the most important solvers in the history of SAT solving was Cha�[18].
One of its many contributions is the variable state independent decaying sum
(VSIDS) heuristic. VSIDS is again score based. The literal with the high-
est score is selected as the decision literal. The scoring system description
follows.

Each literal l has a score s(l) and an occurrence count r(l). Before the
search begins s(l) is initialized as the number of clauses, where l appears.
When a clause is learned, we increment the occurrence count r(l) for each
literal it contains. Every 255 decisions the score of each literal is updated,
s(l) becomes s(l)/2 + r(l) and r(l) is zeroed.

The score is similar to the score of DLIS, but here we do not care if the
clause is satis�ed or not. Another di�erence is, that we periodically half the
scores to increase the impact of recently learned clauses and the literals they
contain.

A little disadvantage is, that the reaction of this heuristic to the most
recent solution state is delayed. It is because of the scores are updated only
every 255 decisions. Nevertheless, this heuristic performs very well and is
also fast to compute.

4.5 BerkMin

The BerkMin heuristic[12] is a heuristic, which also uses scores of literals.
However it does not select the highest scoring literal for the decision as the
other score based heuristics. The decision literal is selected from the most
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recent not satis�ed learned clause. The literal with the highest score from
the literals in the clause is selected. Now we describe, how the score of the
literals is computed.

Similarly to VSIDS or DLIS the score of a literal is initialized as the
number of clauses containing the literal. When a con�ict happens, all the
clauses participating in it are registered in the scoring system. By registering
a clause in the scoring system we mean, that we increase by one the score
of the literals in it. Clauses participating in the con�ict are all clauses, that
are used to produce the learned clause. In example 2.17 we resolved clauses
from the implication graph to create the con�ict clause. All these clauses
used in the resolution are participating in the con�ict. To be concrete, using
example 2.17, if we learned the clause of cut 2, the con�ict participants
would be clauses c5, c6 and c4. We would increase the scores of literals
¬x10, x9,¬x11,¬x6,¬x7, x4, x7 by one and the score of literal x11 by two.

Unlike VSIDS the scores are not decaying. Another di�erence is, that
the scores are increased immediately, not only every 255 decisions. This
addresses the issue of delayed reaction. By registering all the clauses partic-
ipating in the con�ict, we extract more information from the con�ict. The
VSIDS registered the learned clause only. There could be an important lit-
eral, which played a signi�cant part in the con�ict, but did not get into the
learned clause. VSIDS would not credit it, but BerkMin does according to
its frequency in the participating clauses. These di�erences are probably
the reasons for BerkMin being a better heuristic than VSIDS. BerkMin's
computational complexity is low and its performance is spectacular. Almost
all of the best current SAT solvers use this decision heuristic.

4.6 Component Tree Heuristic

In this section, we introduce the component tree heuristic (CTH). The idea is
very straightforward and foreseeable. Let us have a compressed component
tree for the formula we are solving. We start with the root node. We keep
selecting a free variable from the current node until possible. If there are no
free variables, we continue to the next node like in a regular DFS of a tree.
We present an example on �gure 4.1.

The idea is to select the variables which disconnect the formula �rst.
When moving to the next node in the compressed component tree, there
can be several possibilities to continue. Concretely when moving to one
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Figure 4.1: Component tree heuristic
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The order of nodes is {1,2}, {3}, {4,5}, {6}, {7,8,9} or {1,2}, {7,8,9}, {3},
{4,5}, {6}. Another two possibilities are the described ones with {4,5} and
{6} swapped.

of the sons, we can choose which son will be visited �rst. Three simple
strategies for son selection are:

• Random son selection.

• BigFirst son selection. We select the son with the highest component
value �rst.

• SmallFirst son selection. The lowest component value son is selected.

We will investigate experimentally, in the next chapter, which is the best.
But without experiment, one could expect the SmallFirst strategy to be
the best. Since this represents the fail-�rst idea. The small component can
be proved to be unsatis�able faster, so the solver can backtrack sooner to
correct its previous wrong decisions. On the other hand, Random represents
diversi�cation. The other two strategies select the same ordering of sons each
time the search goes around.

This heuristic has an interesting property, which is formulated in the
next theorem. To prove it, we will need the following lemma.

Lemma 4.1. A CDCL DPLL solver using the CTH always backtracks to a
decision level corresponding to a variable from a compressed component tree
node, which is a predecessor of the current node.
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Proof. We backtrack to the second highest level among the levels of literals
in the learned clause. We will do the proof by contradiction. Let us assume,
that the level we should backtrack to corresponds to a decision variable v
located in the node B which is not a predecessor of the current node C.
When v was selected as the decision variable, all the variables in the nodes,
which are common predecessors of B and C had already been assigned. This
means, that the variables of B and C were in separate components. Thus
the variable v can not be in any connection with the current con�ict and is
not present in the learned clause.

What the lemma says is, that we will never backtrack to a node of the
compressed component tree, from which there is no path to the node, where
the con�ict appeared. We will not backtrack for example to our brother
node or any of his successors. Now we are ready to prove the property of
the CTH, which we advertised before the lemma.

Theorem 4.2. Let us have a CDCL DPLL solver with the CTH. Let us
have a Boolean formula and a component tree with value V for its interaction
graph. Then the solver solves the formula using at most V decisions.

Proof. We do the proof by induction on the size of the component tree. If
the tree has one node, then the formula has one variable. Such a formula is
surely solvable using 1 decision.

Let us have a tree of size n and let its root have one son. The subtree
de�ned by the son is of size n-1 and the induction hypothesis says, that
the formula represented by the subtree can be solved using at most Vson

decisions. Vson is the component value of the son. Now we add a new variable
to the formula and since variables in a Boolean formula have 2 possible
values, the new formula can be solved using at most 2 ∗ Vson decisions.

Now let the root of the component tree have at least two sons. Each
of the sons are roots of smaller component trees, so the theorem holds for
them. These smaller component trees represent components of a formula
and can be solved independently. The CDCL DPLL will indeed solve them
separately. Thanks to lemma 4.1, we never return to a brotherly component,
but we proceed to the next (if this component was satis�ed) or go back to
a predecessor (if this component is unsatis�able). Thus we can sum the
component values of the sons. We multiply it by two for the same reason as
in the previous case.
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We have proved, that the component value, as we have de�ned it, cor-
responds to the maximum number of decisions required to solve the for-
mula.

Thanks to this theorem we are able to estimate the time needed to solve
a formula. A question is, how useful it is. Is it not a very rough estimation?
Probably it is, since the component tree concept does not take account of the
propagation. We will answer this question to some extent using experiments
in the next chapter.

4.7 Combining CTH with Other Heuristics

The CTH instructs us a to select a free variable form the current compressed
tree node. These nodes can contain numerous variables, which of them
should we select �rst? We can select randomly, but this would produce a
very poor heuristic. According to experiments, such a heuristic is similar to
a full random decision heuristic (without a component tree). For this reason
we will not consider this option. A better option is to combine CTH with
some good heuristics. For example the heuristics we described in the �rst 5
sections of this chapter. We will now describe how exactly do we combine
these heuristics with CTH.

The combination is simple. We use the original heuristic to select a free
variable, but we restrict it to select from among the variables in the current
node. When we combine JW with CTH, we select the variable from the
current node with the highest JW score. Analogously for DLIS and VSIDS,
but we use their score de�nition.

BerkMin and LEFV are combined a little bit di�erently. For LEFV we
select such a variable from the last encountered clause, which is from the
current node. If this can not be done, we select a random variable from the
current node. For BerkMin we take the learned clauses in order from the
most recent to the oldest, until we �nd a clause, which is not satis�ed and
also contains a variable from the current node. If there are more literals in
that clause from the current node, we select one according to the BerkMin
scoring system. Again, if we can not �nd such a clause, we select a random
free variable from the current node.

Let us note, that all these combined heuristics are instances of the CTH.
Thus lemma 4.1 and theorem 4.2 holds for them. The combined heuristics
perform well. The better heuristic we use in the combination, the better the
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combined heuristic is. This property was observed from the experiments we
made.

4.8 Phase Saving

There is a special kind of heuristics, called phase heuristics. These heuristics
do not select a free variable, they only select the phase for a variable selected
by someone else. In other words a phase heuristic decides, if a variable
should be used as a positive or negative literal. It takes a variable or literal
as input and returns a literal. A phase heuristic is called immediately after
the decision heuristic in the solving algorithm.

Now we describe a concrete phase heuristic called phase saving [19]. For
this heuristic we must keep record of all the assignments to variables, even
those, which are now removed due to backtracking or restarts. From the
input literal we extract the variable. If this variable already had a value
assigned to it, then we assign the same value again. So if the last assigned
value was false, we return a negative literal of the variable. If it was true,
we return a positive literal. If the variable has never had any value assigned
yet, we return the literal from the input. We do not change its phase.

This heuristic can be computed in constant time. We need some memory
to store the assigned values of variables, but it is not much. The motivation
of this heuristic is also component related. The idea is, that when we solve a
component and then backtrack or restart, its variables are unassigned. Then
we get to the component again. Now the phase log contains a solution for
this component, so we just assign its variables the same way as they were
before. This way we do not have to solve the same component again and
again.



Chapter 5

Experiments

To measure the performance of the heuristics described in the previous chap-
ter, we conducted experiments. We implemented two CDCL DPLL solvers
using the usual state-of-the-art techniques. The �rst was implemented in
Java and it could be better called a heuristic investigation tool. It allows
testing of all the described heuristics and also can perform formula analysis
and output the interaction graph or the component tree. The second solver
is implemented in C++. Its aim is to implement the best combination of
the parameters and properties we discovered using the Java solver. These
are implemented in an e�cient manner. The Java solver will be referred to
as SatCraftJava and the C++ version as SatCraft. More information on the
implementation of the solvers is presented in appendix A.

5.1 Benchmark Formulae

We used two sets of benchmark formulae. The �rst is a set of uniform
random 3-SAT formulae from the phase transition area. These formulae are
generated the following way. Let us assume, that we want a formula with
n variables and k clauses (each contains 3 literals, hence the name 3-SAT).
Each of the k clauses is generated the same way. We draw 3 literals from
the 2n possible literals randomly, each literal has the same probability to
be selected. Clauses which contain two copies of the same literal or are
tautologous (contain a literal and its negation) are not accepted for the
construction. We continue until we have k valid clauses.

The phase transition area[5] is a ratio of the number of variables and
clauses, where a rapid change of solubility for random 3-SAT formulae can

42



CHAPTER 5. EXPERIMENTS 43

be observed. What we mean is, that when the number of variables is �xed
and we increase the number of clauses systematically, then there is a number
k that almost all formulae with less than k clauses are satis�able and almost
all formulae with more than k clauses are unsatis�able. For random 3-SAT
the phase transition occurs approximately at k = 4.26 ∗ n. We can also
say, that random 3-SAT formulae with this ratio of variables and clauses are
satis�able with the probability of 50%. Phase transition random formulae
are considered to be the hardest. We selected 800 formulae of this kind. See
table 5.1 for their description. The formulae were acquired from [13].

Table 5.1: Phase transition random 3-SAT formulae
�lename #vars #clauses #instances SAT
uf125* 125 538 100 yes
uf150* 150 645 100 yes
uf175* 175 753 100 yes
uf200* 200 860 100 yes
uuf125* 125 538 100 no
uuf150* 150 645 100 no
uuf175* 175 753 100 no
uuf200* 200 860 100 no

The second set is a compilation of structured formulae. These are various
problems encoded to the language of Boolean satis�ability. Our goal was to
select benchmark problems of as many kinds as possible. In fact there are
not as many publicly available formulae as one would expect. The formulae
we used are listed in table 5.2. With this kind of formulae, one can not
estimate their di�culty by their size. For example the bmc formulae have
tens of thousands of variables, but good solvers solve them in a matter of
seconds. On the other hand problems like hole or urq are very di�cult while
having only a few hundred variables.

In the following sections we will present the results of our experiments
with these formulae. We will present them visually using plots. If the reader
is interested in more detailed results, they are to be found on the enclosed
CD.
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Table 5.2: Structured benchmark problems

name description vars clauses inst. SAT src

�at �at graph coloring 600 2237 100 yes [13]

parity parity games 27 - 14896
53 -

153982
25 mixed [10]

frb
forced satis�able RM

model
450 - 595

19084 -

29707
10 yes [29]

qg quasigroup (Latin square) 343 - 2197
9685 -

125464
22 mixed [13]

jarvisalo multiplicator equivalence 684 - 2010
2300 -

6802
6 no [14]

hanoi towers of Hanoi 718 - 1931
4934 -

14468
2 yes [13]

bmc bounded model checking
3628 -

63624

6572 -

368367
18 yes [13]

logistics logistics planning 828 - 4713
6718 -

21991
4 yes [13]

bw blocksworld planning 48 - 6325
261 -

131973
7 yes [13]

difp_w
factorization (Wallace

tree)

1755 -

2125

10446 -

12677
15 yes [1]

difp_a
factorization (array

multiplier)

1201 -

1453

6563 -

7967
14 yes [1]

beijing
Beijing SAT competition

benchmarks
125 - 8704

310 -

47820
10 mixed [13]

urq randomized Urquhart 46 - 327 470 - 3252 6 no [1]

chnl fpga FPGA switchbox 120 - 440 448 - 4220 15 mixed [1]

hole pigeon hole 56 - 156 204 - 949 6 no [1]

s3 global routing 864 - 1056
7592 -

10862
5 yes [1]

5.2 Component Values

In this section we compare the algorithms for obtaining component trees.
We measured the component values of the trees produced by the DFS Find
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Figure 5.1: Component values on random 3-SAT
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algorithm and the Greedy CTB algorithm.
On �gure 5.1 we displayed the results on the random set of formulae.

On the left side are the satis�able instances, on the right the unsatis�able.
Instead of plotting the actual component values, we used their base 2 loga-
rithms. We also plotted the number of variables for comparison. So we are
actually comparing the trivial upper bound (2vars) versus our upper bound
(2log(v), where v is the component value) in a logarithmic scale. As we can
see from the plot, the Greedy CTB algorithm is consistently better than
DFS Find, which was expected. The logarithm of Greedy CTB's value is
about 75% of the number of variables. Thus our upper bound is a bit better
than the trivial one, but not too much.

We performed the same experiment for our second set of problems. We
omitted the bmc problems, because of their large size. The results are pre-
sented on �gure 5.2. Again we used the logarithms of component values.
The problems are sorted according to the number of variables. The y axis
of the plot is cut at 3000 variables. Thus problems with more than 3000
variables are not displayed. The component value for them exceeded the
range of the type double, so we would not see the results for those prob-
lems anyway. The mid section with 600 variables represents the �at graph
coloring formulae.

The �rst thing to notice, is that the logarithms of component values
are in many cases much lower than the number of variables. Especially the
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Figure 5.2: Component values on structured problems
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results of the Greedy CTB are very good. There are numerous examples,
when the exponent of our bound is about 10 times smaller. This is a success
compared to the results on random 3-SAT formulae. The classes of formulae,
where our estimation is much smaller are difp_w (Factorization), difp_a
(Factorization) and parity (Parity games). Formulae with small di�erences
are qg (Quasigroup) and hole (Pidgeon hole).

The DFS Find algorithm is again worse than the Greedy CTB.

5.3 Heuristics on Random Formulae

In the previous section we computed component values of formulae, now we
are going to solve them. We will measure the number of decisions required
to solve a formula. It is more convenient than measuring time, since it does
not depend on the properties of the computer, the qualities of the compiler
or the programming language. If we run the same solver on a formula two
times, the number of decisions is equal, while the measured time is very
often di�erent. On the other hand, the number of decisions tells us nothing
about the e�ectiveness of the implementation. For example, when comparing
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heuristics, the measurement of decisions does not reveal the slowness of the
heuristic computation.

The described experiments were conducted on a computer with an Intel
Core 2 Quad (Q9550 @ 2.83GHz, 6144KB cache) processor and 3GB main
memory. We used the Java solver for these experiments. The limit was set
to 5 minutes, if the solver with the speci�ed heuristic did not manage to
solve the formula in that time, its number of decision for that formula was
set to 50 000 000.

Figure 5.3: Heuristics on random formulae
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We compared the 5 described heuristics and their combinations with
the CTH - ten heuristics altogether. The phase saving heuristic for phase
selection was used in each case. The results were sorted by the number of
decisions for each heuristic and displayed on �gure 5.3. We can see, that
among the base heuristics LEFV is the weakest and BerkMin is the best. The
other 3 heuristics perform equally well. The results for combined heuristics
are analogous. The order of performance is the same. This shows, that the
stronger base heuristic we use, the stronger is the combined heuristic.

To compare the performance of basic heuristics with their combined ver-
sions, we plotted the ratio of decisions made by the combined and the basic
versions. The results are presented on �gure 5.4. The problems are in their
original order (see table 5.1). Problems 0-399 are satis�able, problems 400-
800 are unsatis�able.
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Figure 5.4: Basic vs combined heuristics on random formulae
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From the plots we can see, that LEFV bene�ted from the combination the
most. Especially on the unsatis�able formulae with 175 variables (problems
600 - 700). Unsatis�able problems with 200 variables were not solved by
either LEFV or CTH_LEFV, that is why the ratio is 1 in that region. Also
the performance of VSIDS was improved for the unsatis�able formulae, but
degraded for satis�able. JW and DLIS had similar results, so we plotted only
JW. The ratio is around 1 for the unsatis�able formulae. For the satis�able,
the majority of the problems was solved faster by the basic version. Finally,
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BerkMin was clearly better on all formulae in its basic version. So the
combination of BerkMin with CTH is apparently a weaker heuristic for these
formulae.

Overall, the combined heuristics were often worse than the original ones.
Only LEFV and VSIDS were improved on the unsatis�able instances.

5.4 Heuristics on Structured Formulae

We performed a similar experiment as described in the previous section, but
instead of the random formulae we used our structured set of problems. We
compared the same heuristics on the same computers. We used phase saving
and counted the number of decisions. The Java solver was used and the time
limit was set to 5 minutes.

Figure 5.5: Heuristics on structured formulae
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Figure 5.5 shows, that the order of the performance of heuristics is again
preserved after the combination with CTH. The DLIS heuristic is the weak-
est on this set of problems. JW and LEFV are the second weakest. An im-
provement in the number of solved formulae is produced by VSIDS. BerkMin
is again the best. DLIS is left behind especially after the combination with
CTH. Considering its high computation cost and poor performance, DLIS
is clearly the worst heuristic among the presented ones. The best heuristic
is BerkMin. It was the best on both our benchmark sets.
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Figure 5.6: Basic vs combined heuristics on structured formulae

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  50  100  150  200  250  300

D
ec

is
io

ns

Problems

CTH_LEFV
LEFV

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  50  100  150  200  250  300

D
ec

is
io

ns
Problems

CTH_BerkMin
BerkMin

Now, let us compare the basic heuristics with their combined versions.
On �gure 5.6 we plotted a comparison for LEFV and BerkMin. In both
cases the combined version is worse. The di�erence is greater for BerkMin.
Also for the other 3 heuristics, the combined versions are worse with various
di�erences. Although the combination weakens the heuristic, it does not
make it that much worse. For example, as �gure 5.7 shows, CTH BerkMin
is still better than basic DLIS or LEFV.

Figure 5.7: CTH BerkMin vs some basic heuristics
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Up to this point, we compared the performance of the heuristics in a
global sense. We sorted the results by the number of decisions on the entire
set of problems and plotted them. If we compare the performance on the
individual formulae, the results show, that there is a large number of formu-
lae, where the combined heuristic is better. To visualize these comparisons,
we sort the results of one heuristic and plot it as a line. The other heuristic's
results are plotted as points in a way, that the number of decisions for the
same formulae have the same y coordinates. We compared our best heuris-
tics, VSIDS and BerkMin, with their combined versions. See �gure 5.8 for
the results. When a point is below the line, then the combined heuristic
was better on that formula. Unfortunately, there are no concrete classes
of formulae in our benchmark set, where the combined heuristic is always
better. It seems to be a random sample of problems where CTH wins.

Figure 5.8: VSIDS and BerkMin basic vs combined
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5.5 CTH Strategies Comparison

In the previous chapter, when describing the CTH, we mentioned 3 strategies
for the ordering of sons in the DFS of the component tree. The strategies
were BigFirst, SmallFirst and Random. We theorized, that SmallFirst or
Random should be the best.

We conducted experiments to compare the 3 strategies, but the results
were very ambiguous. None of the strategies was better than the other. We



CHAPTER 5. EXPERIMENTS 52

measured the total number of decisions for the formulae and also counted
the number of wins and loses for each possible pair of strategies. The sums
were almost equal as well as the number of wins and loses for each strategy.
The strategy we selected for the �nal solver is the random son selection.
We did so for the sake of diversi�cation. All the experiments described in
the previous and following sections were done with the random son selection
strategy.

5.6 The C++ Solver Evaluation

As mentioned before, we also created a C++ implementation of the solver.
This solver uses the BerkMin heuristic and phase saving. When compared
with the Java implementation, the di�erence in running speed was not that
signi�cant. On small or easy problems, the C++ solver is several times
faster than the Java implementation. This can be explained by the startup
overhead, which is required for the Java virtual machine initialization. For
di�cult formulae, which are being solved longer than 1 minute, the di�erence
is minimal.

Figure 5.9: MiniSat vs SatCraft global comparison
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We compared our solver with one of the most famous state-of-the-art
SAT solvers - MiniSat[9]. We measured their time and number of decisions
on our structured benchmark set. The time limit was set to 10 minutes. If
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a solver did not manage to solve a formula in that time, then the number of
decisions was set to 50 000 000.

On �gure 5.9 we did a global comparison for time and number of deci-
sions. MiniSat is apparently better in both categories. The di�erence is more
signi�cant for time. This shows, that MiniSat is implemented much more
e�ciently. Indeed, MiniSat uses a lot of low level so-called speed hacks.
All data structures and procedures are highly optimized. But MiniSat is
also better in the number of decisions. This is due to additional techniques
employed by MiniSat, which our solver does not implement. These are for
example con�ict clause minimization[24] and e�ective preprocessing through
variable and clause elimination[8].

Figure 5.10: MiniSat vs SatCraft individual comparison
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We also compared the solvers on the individual formulae. Figure 5.10
shows, that there are 3 formulae, where SatCraft outperformed MiniSat in
speed. This is very weak, but if we compare the number of decisions, the
results are much better.

The reason, why we included this comparison with MiniSat is the fol-
lowing. Although our solver is not a competition for the top solvers, the
di�erence is not unconquerable. With a more e�cient implementation and
a better setting of the solver's constants, we could probably reach the level of
the best current SAT solvers. To set the solver's constants properly, exten-
sive experiments are required. These constants are for example the restart
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interval, learned clauses limit and the growth rate of these values. More
about the constants and solver implementation is written in appendix A.



Chapter 6

Conclusion

Solving hard problems by decomposing them into smaller ones and dealing
with them separately is not a new idea. It is called the divide and conquer
strategy. For some problems, like sorting, the decomposition is trivial. For
others, like SAT, it is not. It this thesis, an attempt was made to formalize,
what does it mean to decompose SAT in a good way. We de�ned a new
term - component trees. We described some of its properties and proposed
algorithms for its construction.

We showed, how the quality of the component tree can give us an upper
bound for the number of decisions required to solve a formula. Also some
other possible applications of component trees were suggested.

We implemented a SAT solver using the state-of-the-art algorithms and
did extensive experiments to compare various decision heuristics. Some of
these were well known existing heuristics, but we also introduced and tested
new ones. The new heuristics were based on component trees. They did not
manage to outperform the best known heuristics in a global sense, but there
were several examples of formulae, where they succeeded.

6.1 Future Work

There are still many concepts, that would probably improve our solver, which
we did not implement. Also the component tree idea could be furthered in
several ways. One is to �nd algorithms, which can construct better compo-
nent trees faster. Another is to somehow rede�ne the component tree, so it
would consider unit propagation.
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A very actual issue is parallelization. It is nowadays common to have
multicore processors, but current SAT solvers still does not take advantage
of them properly. �Multithreading is everywhere except in our solvers� is
readable on the website of 2009 SAT Competition[6]. Component trees
could be useful in this area of research.
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Appendix A

Solver Implementation Details

Now we brie�y describe some implementation details of our solvers. The full
source code is available on the enclosed CD. Basically, we implemented the
CDCL DPLL algorithm as it was described in section 2.4. How some of the
key procedures are implemented is described below.

Unit propagation was implemented using the 2 watched literals scheme[18],
which works the following way. In each clause we watch 2 unassigned literals.
This is possible until a clause is neither unit nor satis�ed. When we perform
unit propagation for a new assignment, normally we visit each clause, where
the negation of the assignment literal occurs to test, if it has become unit.
Thanks to 2 watched literals, we only need to visit clauses, in which our
literal is watched. If our literal is in a clause but is not watched, then that
clause contains at least 2 other unassigned literals (watched literals), so it is
surely not unit. If the assigned literal is watched in a clause, and that clause
is still not unit, we select an other literal to be watched. The 2 watched
literals scheme brings a great improvement of propagation speed. We use it
for clauses longer than 2. Binary clauses are treated specially, which brings
further speedup and some memory conservation.

We used restarting in our solvers. The restart interval is initially set to
1000. This means, that after the �rst 1000 decisions, the solver is restarted.
The learned clauses are preserved, but all assignments with decision levels
higher than 0 are removed. After each restart, the restart interval is in-
creased by 20%. So the second restart happens 1200 decisions later, the
third 1440 decision after the second restart and so on.

For clause learning we used the �rst UIP scheme[30]. Now we describe our
clause deletion strategy. The initial limit for the number of learned clauses
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is set to twice the number of original clauses. When the limit is reached,
some of the learned clauses are removed and also the limit is increased by
50%. Now we describe which learned clauses are removed when the limit is
reached. For each learned clause we count how many times they were used
to deduce an assignment. This values are called hits. When clause deletion
is required, we take the learned clauses in the order of their age. We start
with the oldest. If a clause is longer than 3 literals and has less than 3 hits,
it is removed. Otherwise its number of hits is halved. We keep deleting
clauses until one half of the learned clauses is deleted. This strategy prefers
young short clauses with many recent hits.

The reader surely noticed, how many constants are involved in a SAT
solving algorithm. Their values are very signi�cant for the performance of
the solver and their proper setting is a hard task. Our constants were set
more or less randomly. Some short experiments were done on randomly
generated problems to test di�erent values, but by far not enough to set the
constants properly.


