# Reinforced Encoding for Planning as SAT

Tomáš Balyo Roman Barták Otakar Trunda

Charles University in Prague

## **Planning**

- Input:
  - Initial state, goal states, available actions
- Output:
  - A sequence of actions that transforms initial state to goal state
- Classical planning:
  - Deterministic, fully observable, static world
  - Actions are instantaneous
  - Domain-independent techniques

Initial state:

|   | 1  | 2 | 3 | 4 | 5 | 6 |
|---|----|---|---|---|---|---|
| Α | 7  | 0 | 2 | 3 | 5 | 5 |
| В | 4  | 2 | 3 | 1 | 0 | 4 |
| С | 3  | 7 | 2 | 3 | 3 | 1 |
| D | 25 | 2 | 1 | 3 | 5 | 0 |

#### Actions:

- (A3 = 7, B1 = 4) => (A3 = 1)
  (D3 = 2, D1 = 6) => (C5 = 1, B2 = 1)
  () => (C1 = 1)
- . . .

- Goal condition:
  - D6 = 1

Current state:

|   | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| Α | 7 | 0 | 2 | 3 | 5 | 5 |
| В | 4 | 2 | 3 | 1 | 0 | 4 |
| С | 3 | 7 | 2 | 3 | 3 | 1 |
|   |   |   |   |   |   |   |

5

• Action: (B4 = 1, C2 = 7) => C5 = 4

25

Current state:

|   | 1  | 2 | 3 | 4 | 5 | 6 |
|---|----|---|---|---|---|---|
| Α | 7  | 0 | 2 | 3 | 5 | 5 |
| В | 4  | 2 | 3 | 1 | 0 | 4 |
| С | 3  | 7 | 2 | 3 | 3 | 1 |
| D | 25 | 2 | 1 | 3 | 5 | 0 |

• Action: (B4 = 1, C2 = 7) => C5 = 4

• New state:

|   | 1  | 2 | 3 | 4 | 5 | 6 |
|---|----|---|---|---|---|---|
| Α | 7  | 0 | 2 | 3 | 5 | 5 |
| В | 4  | 2 | 3 | 1 | 0 | 4 |
| С | 3  | 7 | 2 | 3 | 4 | 1 |
| D | 25 | 2 | 1 | 3 | 5 | 0 |

• Action: (B4 = 1, C2 = 7) => C5 = 4

## Boolean satisfiability (SAT)

- Input: boolean formula in CNF
- Output: satisfying assignment to variables
   OR

"NO" if no such assignment exists

- NP-complete problem
- Lots of SAT solvers exist
  - Often effective on practical problems

## Planning as SAT

- Solving the planning problem using a SAT solver
  - Popular and competitive approach
- Basic idea:
  - For a planning problem P and a number k, we create a boolean formula F, such that
    - F is satisfiable if and only if there is a plan for P that contains k
      actions (steps)
    - A plan for P of a length k can by constructed from a satisficing assingnment to F
  - We increase k until the formula is satisfiable

- Some actions can be executed simultaneously
- Parallel steps:
  - Actions u and v can be in the same parellel step if
    - Effects of u don't violate preconditions of v and vice versa
  - "For all" semantics:
    - Set of actions can be in the same parallel step if all orderings of the actions form a valid plan
  - "Exists" semantics:
    - Set of actions can be in the same parallel step if there is an ordering of the actions that forms a valid plan
    - No longer a "parallel" semantics

- Some actions can be executed simultaneously
- Parallel steps:
  - Actions u and v can be in the same parellel step if
    - Effects of u don't violate preconditions of v and vice versa
  - "For all" semantics:
    - Set of actions can be in the same parallel step if all orderings of the actions form a valid plan
  - "Exists" semantics:
    - Set of actions can be in the same parallel step if there is an ordering of the actions that forms a valid plan
    - No longer a "parallel" semantics

- Some actions can be executed simultaneously
- Parallel steps:
  - Actions u and v can be in the same parellel step if
    - Effects of u don't violate preconditions of v and vice versa
  - Increasing planning efficiency
    - Shorter makespan, less SAT solver calls
    - How do we find actions that can be executed together?
  - Sufficient condition:
    - actions are pairwise independent (don't share variables)

• 
$$(A4 = 2, D1 = 3) => (A4 = 3)$$

• (A2 = 3, B1 = 4) => (C1 = 5)

• 
$$(A4 = 2, D1 = 3) => (A4 = 3)$$

• (A2 = 3, B1 = 4) => (D1 = 5)

• (A4 = 2, D1 = 3) => (D1 = 1)

• (A4 = 2, B1 = 4) => (B1 = 5)

independent

NOT independent

NOT independent

but parallelizable











#### **Transitions**

- Action can be seen as a set of transitions
- 3 kinds of transitions
  - Active

• 
$$(A2 = 3, B2 = 4) => (B2 = 5, C2 = 6)$$

Prevailing

• 
$$(A2 = 3, B2 = 4) => (B2 = 5, C2 = 6)$$

Mechanical

• 
$$(A2 = 3, B2 = 4) => (B2 = 5, C2 = 6)$$

## Reinforced encoding

- 3 kinds of SAT variables:
  - Action variables:  $a_i^t = true$  if action  $a_i$  occurs in the t-th parallel time step
  - Assignment variables:  $b_{x=v}^t = true$  if variable x has value v at the end of t-th time step
  - Transition variables:  $c_{x:d\rightarrow e}^t = true$  if transition  $x:d\rightarrow e$  occurs in the t-th time step
- + clauses ensuring correctness

## Reinforced encoding - clauses

- Only one value to each state variable
- Used transitions imply values changes
- 3. Transitions' preconditions 7. Excluding compatible hold in the previous step
- use of proper transition

- 5. Using action imply using all its transitions
- 6. Transitions has to be supported by actions
- non-independent actions
- 4. Value changes imply the 8. Encoding the initial state and goal condition
- Usually shorter clauses than with other encodings
- Sophisticated reductions of the number of clauses

## Other SAT encodings

- Direct encoding
  - Action based
  - Uses action and assignment variables
- SASE encoding
  - Transition based
  - Uses action and transition variables
- R<sup>2</sup>∃-step encoding
  - Uses different parallel semantics

## Experimental results - coverage

| Domain      | Dir | SASE | Reinf | <i>R</i> <sup>2</sup> ∃ |
|-------------|-----|------|-------|-------------------------|
| barman      | 4   | 4    | 4     | 8                       |
| elevators   | 20  | 20   | 20    | 20                      |
| floortile   | 16  | 11   | 18    | 18                      |
| nomystery   | 20  | 10   | 20    | 6                       |
| openstacks  | 0   | 0    | 0     | 15                      |
| parcprinter | 20  | 20   | 20    | 20                      |
| parking     | 0   | 0    | 0     | 0                       |
| pegsol      | 10  | 6    | 10    | 19                      |
| scanalyzer  | 14  | 12   | 15    | 9                       |
| sokoban     | 2   | 2    | 2     | 2                       |
| tidybot     | 2   | 2    | 2     | 2                       |
| transport   | 16  | 17   | 18    | 13                      |
| visitall    | 12  | 9    | 10    | 20                      |
| woodworking | 20  | 20   | 20    | 20                      |
| Total       | 156 | 133  | 159   | 172                     |

#### Conclusions & future work

- New encoding for planning as SAT
  - Outperforms other encodings on some domains
- Combination of *Direct* and *SASE* encoding
  - More variables may pay off
- Future work:
  - Decreasing the number of clauses
  - More compact way of encoding of the action interference constraints