KIT

Algorithms
Karlsruhe Institute of Technology

HordeSat: A Massively Parallel Portfolio SAT Solver

SAT 2015, Austin, Texas, USA
Tomas Balyo, Peter Sanders, and Carsten Sinz \ September 22, 2015

INSTITUTE OF THEORETICAL INFORMATICS, ALGORITHMICS I

KIT - University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

http://www.kit.edu

Definitions

CNF Formula
m A Boolean variable has two values: True and False
m A literal is Boolean variables or its negation

a A clause is a disjunction (or) of literals

a A CNF formula is a conjunction (and) of clauses

F=(x1VxaVXs)AN(X3V x1)A(x1) A (X2 V Xg)
Satisfiability
m A CNF formula is satisfiable if it has a satisfying assignment.
a The problem of satisfiability (SAT) is to determine whether a given
CNF formula is satisfiable

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat

S

September 22, 2015

2/20

Introduction AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Design a massively parallel SAT solver that runs well on clusters with
thousands of processors (for industrial benchmarks)

m HordeSat — new parallel solver
m Experiments with industrial benchmarks with up to 2048 processors

a Significant speedups, especially for hard instances

(g =

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 3/20

Parallel Sat Solving ﬂ(“

m Explicit Search Space Partitioning
m classical approach, search space does not overlap
a each solver starts with a different fixed partial assignment
m learned clauses are exchanged
m used in solvers for grids and clusters
a Pure Portfolio
a modern approach, simple but strong
different solver(configuration)s work on the same problem
learned clauses are exchanged
often used in solvers for multi-core PCs

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 4/20

Parallel Sat Solving ﬂ(“

m Explicit Search Space Partitioning
m classical approach, search space does not overlap
a each solver starts with a different fixed partial assignment
m learned clauses are exchanged
m used in solvers for grids and clusters
a Pure Portfolio
a modern approach, simple but strong
different solver(configuration)s work on the same problem
learned clauses are exchanged
often used in solvers for multi-core PCs

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 5/20

Design Principles ﬂ(“

a Modular Design

m blackbox approach to SAT solvers
a any solver implementing a simple interface can be used

a Decentralization
m all nodes are equivalent, no central/master nodes
a Overlapping Search and Communication

a search procedure (SAT solver) never waits for clause exchange
a at the expense of losing some shared clauses

m Hierarchical Parallelization

a running on clusters of multi-cpu nodes
a shared memory inter-node clause sharing
® message passing between nodes

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 6/20

Modular Design

Portfolio Solver Interface

void

addClause (vector<int> clause) ;

SatResult solve(); // {SAT, UNSAT, UNKNOWN}

void
void
void
void
void
void
void

setSolverInterrupt ();
unsetSolverInterrupt ();

setPhase (int var, bool phase);
diversify(int rank, int size);
addLearnedClause (vector<int> clause);
setlLearnedClauseCallback (LCCallback* clb);
increaseClauseProduction () ;

a Lingeling implementation with just glue code

a MiniSat implementation, small modification for learned clause stuff

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 7/20

Diversification N(“

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Setting Phases — "void setPhase(int var, bool phase)”
® Random — each variable random phase on each node

m Sparse — each variable random phase on exactly one node

m Sparse Random — each variable random phase with prob. m

Native Diversification — "void diversify(int rank, int size)”

a Each solver implements in its own way
a Example: random seed, restart/decision heuristic
a For lingeling we used plingeling diversification

m Best is to use Sparse Random together with Native Diversification.

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 8/20

Clause Sharing AT
Regular (every 1 second) collective all-to-all clause exchange

a Duplicate clauses filtered using Bloom filters

m Clause stored in a fixed buffer, when full clauses are discarded, when
underfilled solvers are asked to produce more clauses

m Shorter clauses are preferred

m Concurrent Access — clauses are discarded

Importing Clauses
a Filtering duplicate clauses (Bloom filter)

a Bloom filters are regularly cleared — the same clauses can be
imported after some time

a Useful since solvers seem to "forget” important clauses

] = =

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 9/20

Overall Algorithm
The Same Code for Each Process

SolveFormula(F, rank, size) {
for i = 1 to #threads do {
s[i] = new PortfolioSolver(Lingeling);
s[i].addClauses (F);
diversify(s[i], rank, size);
new Thread(s[i].solve());

}

forever do {
sleep(1) // 1 second
if (anySolverFinished) break;
exchangelearnedClauses (s, rank, size);

}

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 10/20

Experiments ﬂ(“

a Benchmarks
m Sat Competition 2014+2011 Application track instances (545 inst.)
m Phase Transition Random 3-SAT (200 SAT + 200 UNSAT inst.)

a Computers
a 128 Nodes of the IC2 cluster

m each with two octa-core Intel Xeon E5-2670 2.6GHz CPU, 64GB RAM
a connected by InfiniBand 4X QDR Interconnect

m In total 256 CPUs and 2048 cores
a Setup

a Each node runs 4 processes each with 4 threads with Lingeling
a 1000 seconds time limit (16.7 minutes) for parallel solvers
® 50000 seconds (13.9 hours) for sequential solvers

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 11/20

Experiments — Random 3-SAT

Satisfiable Instances

Karlsruhe Institute of Technology.

1000 T T T T T T
No Diversification, No Sharing ———
900 - Only Sharing

Only Diversification

800 - Diversification and Sharing ———
n 700
2
o 600 -
o
Q
a 500 -
£
o 400 -
£
= 300 -

200 - /

100 _—
-
0 1 1 e | L
0 20 40 60 80 100 120
Problems

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat

September 22, 2015

12/20

Experiments — Random 3-SAT

Unsatisfiable Instances

1000

Karlsruhe Institute of Technology.

900 - Only Sharing
800 |- Only Diversification

700
600 -
500 -
400 ~

Time in seconds

300 -
200 -
100 +

T T T T
No Diversification, No Sharing ———

Diversification and Sharing ——— |

Problems

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat

140

September 22, 2015

13/20

Experiments — (P)lingeling Comparison AT

1000 T T T T T T T
Lingeling (1 thread) —— :
900 Plingeling (8 threads) | A
HordeSat 1x8x1 (8 threads) ——
800 Plingeling (16 threads) ——— | n
HordeSat 1x16x1 (16 threads) /

700 b
w
2
151 600 |
1)
(9
a 500]
£
(9] -
£ 400
T 300 .

200]

100 b

0
0 400

Problems

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 14/20

Experiments — (P)lingeling Comparison AT

1000 T T T T T T T
Lingeling (1 thread) —— :
900 Plingeling (8 threads) | A
HordeSat 1x8x1 (8 threads) ——
800 Plingeling (16 threads) ——— | n
HordeSat 1x16x1 (16 threads) /

700 b
w
2
151 600 |
1)
(9
a 500]
£
(9] -
£ 400
T 300 .

200]

100 b

0
0 400

Problems

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 15/20

A
A

Experiments — Scalability on SAT 2011

Karlsruhe Institute of Technology.

1200 T T T T
Lingeling —
1x4x4
1000 | 2x4x4 ——— |
4x4x4
8x4x4
16x4x4
w — -
2 800 32x4x4
S 64x4x4
9]
g 600 - 128x4x4 |
£
9]
€
= 400 -
200 b
0 —=
0 250

Problems

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 16/20

Experiments — SAT 2011+2014 AT

Karlsruhe Institute of Technology.

1200 L . T T T T T T T T
Lingeling
1x4x4
1000 | 2x4x4 |
4x4x4
8x4x4
16x4x4
w — -
2 800 32x4x4
S 64x4x4
9]
g 600 - 128x4x4 |
£
9]
€
= 400 -
200 b
0
0 500

Problems

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 17/20

Experiments — Speedups

Big Instance = solved after 10 - (#threads) seconds by Lingeling

Core Parallel Both Speedup All Speedup Big
Solvers || Solved | Solved | Avg. Tot. Med. | Avg. Tot. Med.
1x4x4 385 363 | 303 25.01 3.08| 524 26.83 4.92
2x4x4 421 392 | 310 30.38 435 | 609 33.71 9.55
4x4x4 447 405 | 323 4130 578 | 766 49.68 16.92
8x4x4 466 420 | 317 5048 7.81 | 801 60.38 32.55
16x4x4 480 425 | 330 65.27 9.42 | 1006 8523 63.75
32x4x4 481 427 | 399 83.68 11.45| 1763 167.13 162.22
64x4x4 476 421 | 377 104.01 13.78 | 2138 295.76 540.89
128x4x4 476 421 | 407 109.34 13.05 | 2607 352.16 867.00

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat

September 22, 2015 18/20

Experiments — Speedups on Big Inst.
Big Instance = solved after 10 - (#threads) seconds by Lingeling

100000 - T T []
10000 [4
1000 -
"]
Q /
> /
2 100 B
(0] 4
o
@ 2x4x4 1
X o
107, 4x4x4 9
8x4x4 —
. 16x4x4 ———
1y 32x4x4 E
64x4x4 1
128x4x4 —— A
0.1 I 1 1 1
0 50 100 150 200 250

Problems

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 19/20

Conclusion ﬂ(“

a HordeSat is scalable in highly parallel environments.
m Superlinear and nearly linear scaling in average, total, and median
speedups, particularly on hard instances.

m Runtimes of difficult SAT instances are reduced from hours to
minutes on commodity clusters

a This may open up new interactive applications

a On a single machine we match the state-of-the-art performance of
Plingeling

Tomas Balyo, Peter Sanders, and Carsten Sinz — HordeSat September 22, 2015 20/20

