
INSTITUTE OF THEORETICAL INFORMATICS, ALGORITHMICS II

HordeSat: A Massively Parallel Portfolio SAT Solver
SAT 2015, Austin, Texas, USA

Tomáš Balyo, Peter Sanders, and Carsten Sinz | September 22, 2015

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu

Definitions

CNF Formula
A Boolean variable has two values: True and False

A literal is Boolean variables or its negation

A clause is a disjunction (or) of literals

A CNF formula is a conjunction (and) of clauses

F = (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ x1) ∧ (x1) ∧ (x2 ∨ x4)

Satisfiability
A CNF formula is satisfiable if it has a satisfying assignment.

The problem of satisfiability (SAT) is to determine whether a given
CNF formula is satisfiable

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 2/20

Introduction
Goal
Design a massively parallel SAT solver that runs well on clusters with
thousands of processors (for industrial benchmarks)

Results
HordeSat – new parallel solver

Experiments with industrial benchmarks with up to 2048 processors

Significant speedups, especially for hard instances

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 3/20

Parallel Sat Solving

Explicit Search Space Partitioning
classical approach, search space does not overlap
each solver starts with a different fixed partial assignment
learned clauses are exchanged
used in solvers for grids and clusters

Pure Portfolio
modern approach, simple but strong
different solver(configuration)s work on the same problem
learned clauses are exchanged
often used in solvers for multi-core PCs

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 4/20

Parallel Sat Solving

Explicit Search Space Partitioning
classical approach, search space does not overlap
each solver starts with a different fixed partial assignment
learned clauses are exchanged
used in solvers for grids and clusters

Pure Portfolio
modern approach, simple but strong
different solver(configuration)s work on the same problem
learned clauses are exchanged
often used in solvers for multi-core PCs

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 5/20

Design Principles

Modular Design
blackbox approach to SAT solvers
any solver implementing a simple interface can be used

Decentralization
all nodes are equivalent, no central/master nodes

Overlapping Search and Communication
search procedure (SAT solver) never waits for clause exchange
at the expense of losing some shared clauses

Hierarchical Parallelization
running on clusters of multi-cpu nodes
shared memory inter-node clause sharing
message passing between nodes

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 6/20

Modular Design

Portfolio Solver Interface

void addClause(vector <int > clause);

SatResult solve (); // {SAT , UNSAT , UNKNOWN}

void setSolverInterrupt ();

void unsetSolverInterrupt ();

void setPhase(int var , bool phase);

void diversify(int rank , int size);

void addLearnedClause(vector <int > clause);

void setLearnedClauseCallback(LCCallback* clb);

void increaseClauseProduction ();

Lingeling implementation with just glue code

MiniSat implementation, small modification for learned clause stuff

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 7/20

Diversification

Setting Phases – ”void setPhase(int var, bool phase)”
Random – each variable random phase on each node

Sparse – each variable random phase on exactly one node

Sparse Random – each variable random phase with prob. 1
#solvers

Native Diversification – ”void diversify(int rank, int size)”
Each solver implements in its own way

Example: random seed, restart/decision heuristic

For lingeling we used plingeling diversification

Best is to use Sparse Random together with Native Diversification.

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 8/20

Clause Sharing

Regular (every 1 second) collective all-to-all clause exchange

Exporting Clauses
Duplicate clauses filtered using Bloom filters

Clause stored in a fixed buffer, when full clauses are discarded, when
underfilled solvers are asked to produce more clauses

Shorter clauses are preferred

Concurrent Access – clauses are discarded

Importing Clauses
Filtering duplicate clauses (Bloom filter)

Bloom filters are regularly cleared – the same clauses can be
imported after some time
Useful since solvers seem to ”forget” important clauses

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 9/20

Overall Algorithm

The Same Code for Each Process

SolveFormula(F, rank , size) {

for i = 1 to #threads do {

s[i] = new PortfolioSolver(Lingeling);

s[i]. addClauses(F);

diversify(s[i], rank , size);

new Thread(s[i]. solve ());

}

forever do {

sleep (1) // 1 second

if (anySolverFinished) break;

exchangeLearnedClauses(s, rank , size);

}

}

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 10/20

Experiments

Benchmarks
Sat Competition 2014+2011 Application track instances (545 inst.)
Phase Transition Random 3-SAT (200 SAT + 200 UNSAT inst.)

Computers
128 Nodes of the IC2 cluster

each with two octa-core Intel Xeon E5-2670 2.6GHz CPU, 64GB RAM
connected by InfiniBand 4X QDR Interconnect

In total 256 CPUs and 2048 cores

Setup
Each node runs 4 processes each with 4 threads with Lingeling
1000 seconds time limit (16.7 minutes) for parallel solvers
50000 seconds (13.9 hours) for sequential solvers

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 11/20

Experiments – Random 3-SAT

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180 200

Ti
m

e
 i
n
 s

e
co

n
d

s

Problems

Satisfiable Instances

No Diversification, No Sharing
Only Sharing

Only Diversification
Diversification and Sharing

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 12/20

Experiments – Random 3-SAT

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160

Ti
m

e
 i
n
 s

e
co

n
d

s

Problems

Unsatisfiable Instances

No Diversification, No Sharing
Only Sharing

Only Diversification
Diversification and Sharing

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 13/20

Experiments – (P)lingeling Comparison

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300 350 400

Ti
m

e
 i
n
 s

e
co

n
d

s

Problems

Lingeling (1 thread)
Plingeling (8 threads)

HordeSat 1x8x1 (8 threads)
Plingeling (16 threads)

HordeSat 1x16x1 (16 threads)

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 14/20

Experiments – (P)lingeling Comparison

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300 350 400

Ti
m

e
 i
n
 s

e
co

n
d

s

Problems

Lingeling (1 thread)
Plingeling (8 threads)

HordeSat 1x8x1 (8 threads)
Plingeling (16 threads)

HordeSat 1x16x1 (16 threads)

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 15/20

Experiments – Scalability on SAT 2011

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250

Ti
m

e
 i
n
 s

e
co

n
d

s

Problems

Lingeling
1x4x4
2x4x4
4x4x4
8x4x4

16x4x4
32x4x4
64x4x4

128x4x4

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 16/20

Experiments – SAT 2011+2014

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400 450 500

Ti
m

e
 i
n
 s

e
co

n
d

s

Problems

Lingeling
1x4x4
2x4x4
4x4x4
8x4x4

16x4x4
32x4x4
64x4x4

128x4x4

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 17/20

Experiments – Speedups

Big Instance = solved after 10 · (#threads) seconds by Lingeling

Core Parallel Both Speedup All Speedup Big
Solvers Solved Solved Avg. Tot. Med. Avg. Tot. Med.

1x4x4 385 363 303 25.01 3.08 524 26.83 4.92
2x4x4 421 392 310 30.38 4.35 609 33.71 9.55
4x4x4 447 405 323 41.30 5.78 766 49.68 16.92
8x4x4 466 420 317 50.48 7.81 801 60.38 32.55

16x4x4 480 425 330 65.27 9.42 1006 85.23 63.75
32x4x4 481 427 399 83.68 11.45 1763 167.13 162.22
64x4x4 476 421 377 104.01 13.78 2138 295.76 540.89

128x4x4 476 421 407 109.34 13.05 2607 352.16 867.00

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 18/20

Experiments – Speedups on Big Inst.
Big Instance = solved after 10 · (#threads) seconds by Lingeling

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250

S
p

e
e
d

u
p

s

Problems

2x4x4
4x4x4
8x4x4

16x4x4
32x4x4
64x4x4

128x4x4

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 19/20

Conclusion

HordeSat is scalable in highly parallel environments.

Superlinear and nearly linear scaling in average, total, and median
speedups, particularly on hard instances.
Runtimes of difficult SAT instances are reduced from hours to
minutes on commodity clusters

This may open up new interactive applications

On a single machine we match the state-of-the-art performance of
Plingeling

Tomáš Balyo, Peter Sanders, and Carsten Sinz – HordeSat September 22, 2015 20/20

