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Abstract

Solving planning problems via translation to proposi-
tional satisfiability (SAT) is one of the most successful
approaches to automated planning. An important aspect
of this approach is the encoding, i.e., the construction
of a propositional formula from a given planning prob-
lem instance. Numerous encoding schemes have been
proposed in the recent years each aiming to outperform
the previous encodings on the majority of the bench-
mark problems. In this paper we take a different ap-
proach. Instead of trying to develop a new encoding
that is better for all kinds of benchmarks we take re-
cently developed specialized encoding schemes and de-
sign a method to automatically select the proper encod-
ing for a given planning problem instance. In the paper
we also examine ranking heuristics for the Relaxed Re-
laxed Exists-Step encoding, which plays an important
role in our algorithm. Experiments show that our new
approach significantly outperforms the state-of-the-art
encoding schemes when compared on the benchmarks
of the 2011 International Planning Competition.

Introduction
One of the most successful approaches to automated plan-
ning is encoding the planning problem into a series of satisfi-
ability (SAT) formulas and then using a SAT solver to solve
them. The method was first introduced by Kautz and Sel-
man (Kautz and Selman 1992) and is still very popular and
competitive. This is partly due to the power of SAT solvers,
which are getting more efficient year by year. Since then
many new improvements have been made to the method,
such as new compact and efficient encodings (Huang et al.
2010; Rintanen et al. 2006; Robinson et al. 2009; Balyo
2013), better ways of scheduling the SAT solvers (Rintanen
et al. 2006), and modifying the SAT solver’s heuristics to
be more suitable for solving planning problems (Rintanen
2012).

In this paper we focus on the problem of encoding, i.e., the
construction of propositional formulas from planning prob-
lem instances. The traditional approach is to design a uni-
versal encoding that works well for the largest subset of the
benchmark problems and then use that encoding for each
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problem. In contrast, our approach is to select a set of diverse
encoding schemes and design a rule that can choose the best
encoding from this set for a given problem instance. The
idea is closely related to the approach of sequential planning
portfolios (Seipp et al. 2012). We also revisit action ranking,
which is a crucial aspect of the Relaxed Relaxed Exists-Step
encoding used in our set of encodings.

In the experimental section of the paper we compare our
new method to state-of-the-art encodings on the complete set
of benchmark problems from the 2011 International Plan-
ning Competition (IPC) (Coles et al. 2012). The experimen-
tal results show that our new approach is a significant im-
provement over the state-of-the-art encodings with respect
to both the number of solved problems and the time required
to solve them.

Preliminaries
In this section we give the formal definitions of automated
planning. We will use the multivalued SAS+ formalism
(Bäckström and Nebel 1995) instead of the classical STRIPS
formalism (Fikes and Nilsson 1971) based on propositional
logic. A planning task Π in the SAS+ formalism is defined
as a tuple Π = (X,O, sI , sG) where

• X = {x1, . . . , xn} is a set of multivalued variables with
finite domains dom(xi).

• O is a set of actions (or operators). Each action a ∈ O
is a tuple (pre(a), eff(a)) where pre(a) is the set of pre-
conditions of a and eff(a) is the set of effects of a. Both
preconditions and effects are of the form xi = v where
v ∈ dom(xi).

• A state is a set of assignments to the state variables. Each
state variable has exactly one value assigned from its re-
spective domain. We denote by S the set of all states.
sI ∈ S is the initial state. sG is a partial assignment of
the state variables (not all variables have assigned values)
and a state s ∈ S is a goal state if sG ⊆ s.

An action a is applicable in the given state s if pre(a) ⊆
s. By s′ = apply(a, s) we denote the state after exe-
cuting the action a in the state s, where a is applica-
ble in s. All the assignments in s′ are the same as in
s except for the assignments in eff(a) which replace the
corresponding (same variable) assignments in s. If P =



[a1, . . . , ak] is a sequence of actions, then apply(P, s) =
apply(ak, apply(ak−1 . . . apply(a2, apply(a1, s)) . . . )). A
sequential plan P of length k for a given planning task Π is
a sequence of k actions P such that sG ⊆ apply(P, sI).

Parallel Plans
A parallel plan P with makespan k for a given planning
task Π is a sequence of sets of actions (called parallel steps)
P = [A1, . . . , Ak] such that �(A1) ⊕ · · · ⊕ �(Ak) is a se-
quential plan for Π, where � is an ordering function, which
transforms a set of actions Ai into a sequence of actions
�(Ai) and ⊕ denotes the concatenation of sequences.

Let us denote by sj the world state in between the par-
allel steps Aj and Aj+1, which is obtained by applying the
sequence �(Aj) on sj−1, i.e., sj = apply(�(Aj), sj−1)
(except for s0 = sI ).

Which actions can be together in a parallel step is de-
fined by four parallel planning semantics: ”for all”(∀)(Kautz
and Selman 1996), ”exists”(∃)(Rintanen et al. 2006), ”re-
laxed exists”(R∃)(Wehrle and Rintanen 2007), and ”relaxed
relaxed exists”(R2∃)(Balyo 2013). The requirements of the
semantics are displayed in the following table.

∀ ∃ R∃ R2∃
All possible orderings � of
the sets Aj make valid plans

√

Each action a ∈ Aj is
applicable in the state sj

√ √

The effects of all actions
a ∈ Aj are applied in sj+1

√ √ √

There exists an ordering � of
the sets Aj to make a valid plan

√ √ √ √

The following example demonstrates the differences be-
tween the four semantics and how the more relaxed seman-
tics can allow shorter makespan plans.
Example 1 We will model a simple package delivery sce-
nario with a truck that needs to deliver two packages to the
location C from the locations A and B. In the beginning the
truck is located in A. The locations A, B, and C are all con-
nected by direct roads. We will model the planning task using
the following variables:
• Truck location T, dom(T ) = {A,B,C}
• Package locations P1 and P2, dom(P1) = dom(P2) =
{A,B,C, L} (Pi = L represents that the package i is on
the truck).

Now, having defined the variables X = {T, P1, P2} and
their respective domains, we can define the initial state sI
and the goal conditions sG.
sI = {T = A,P1 = A,P2 = B} sG = {P1 = C,P2 = C}

The action templates (operators) are described in the fol-
lowing table. To get the actual actions we need to substitute
l, l1, l2 with A,B and C and i with 1 and 2.

Action Preconditions Effects
move(l1, l2) T = l1 T = l2
loadPi(l) T = l, Pi = l Pi = l
unloadPi(l) T = l, Pi = l Pi = l

An optimal sequential plan for this planning problem is
the following: P ∗ = [loadP1(A), move(A,B), loadP2(B),
move(B,C), unloadP1(C), unloadP2(C)]. The four se-
mantics allow four different parallel plans:
• The R2∃-Step semantics allows the single step plan

[{loadP1(A), move(A,B), loadP2(B), move(B,C),
unloadP1(C), unloadP2(C)}].

• The Relaxed ∃-Step semantics forbids having both
move operations inside one step, since the ef-
fect of the first move action is not applied after
the step. Therefore the shortest possible Relaxed ∃-
Step plan is the following two step parallel plan
[{loadP1(A), move(A,B), loadP2(B)}, {move(B,C),
unloadP1(C), unloadP2(C)}].

• The ∃-Step semantics does not allow the second load
action to be inside the first step, since its precondi-
tion is not satisfied in the initial state. Similarly, the
unload actions cannot be in the same step as the sec-
ond move action. Therefore the plan needs to have three
parallel steps [{loadP1(A), move(A,B)}, {loadP2(B),
move(B,C)}, {unloadP1(C), unloadP2(C)}].

• To satisfy the ∀-Step semantics all actions, ex-
cept for the unload actions, must be in sepa-
rate parallel steps. The following five step plan is
possible [{loadP1(A)}, {move(A,B)}, {loadP2(B)},
{move(B,C)}, {unloadP1(C), unloadP2(C)}].

Finding Plans using SAT
The basic idea of solving planning as SAT is the following
(Kautz and Selman 1992). We construct (by encoding the
planning task) a series of SAT formulas F1, F2, . . . such that
if Fi is satisfiable then there is a parallel plan of makespan
≤ i. Then we solve them one by one starting from F1 until
we reach the first satisfiable formula Fk. From the satisfying
assignment of Fk we can extract a plan of makespan k.

There exist more advanced algorithms for scheduling the
solving of the Fi formulas (Rintanen et al. 2006) but since
our goal is only to compare different encoding methods we
will use the basic sequential scheduling algorithm.

Action Ranking for the R2∃-Step Encoding
The recently introduced (Balyo 2013) Relaxed Relaxed
Exists-Step Encoding which approximates the R2∃-Step
parallel planning semantics has a very important aspect that
was not addressed adequately enough in the original publi-
cation. This aspect is the ranking of actions and since it is an
important part of our proposed method we will take a more
detailed look in this paper.

The Relaxed Relaxed Exists Step encoding only approx-
imates the R2∃-Step semantics due to working with a fixed
ordering of actions. This ordering is also used when the se-
quential plan is constructed from the action sets of the paral-
lel plan obtained from the satisfying assignment of the for-
mula Fk. To truly represent the R2∃-Step parallel planning
semantics the encoding would have to consider all the pos-
sible rankings (orderings) of actions. Since we work with
just one particular ordering a great care must be given to its
selection.



Table 1: Problems solved (#P) and their total makespan.

Domain TSort TSort−1 Input Input−1 Random
#P/Mks #P/Mks #P/Mks #P/Mks #P/Mks

barman 4/36 2/29 4/60 2/28 1/11
elevators 20/85 20/99 20/106 20/79 20/75
floortile 17/158 18/185 16/149 18/178 18/167

nomystery 3/14 4/20 3/13 6/33 3/14
openstacks 12/75 13/66 20/59 5/43 10/57
parcprinter 20/30 20/249 20/88 20/186 20/140

parking 0/0 0/0 0/0 0/0 0/0
pegsol 19/158 18/155 12/147 16/142 18/152

scanalyzer 6/11 9/16 7/12 6/13 6/12
sokoban 1/17 1/19 1/18 1/17 1/19
tidybot 1/1 1/1 1/1 1/1 1/1

transport 5/20 6/40 8/44 9/57 4/19
visitall 20/34 12/113 9/55 9/49 12/80

woodwork 20/33 20/57 20/58 20/30 20/40
Total 148 144 141 133 134

The ordering of actions will be defined using action ranks.
The ranking of actions is the assignment of a unique integer
rank r(a) to each action a ∈ O. For the sake of correctness
of the encoding the ranking can be arbitrary, however the
selection of the ranking affects the performance of the plan-
ning process dramatically. Intuitively, the ranking should be
such that the actions are ranked according to their order in
a valid plan for the given planning task. The problem is, of
course, that we do not know the plan in advance. Therefore,
we should try to guess the order in which the given actions
could appear in a plan.

In the original R2∃-Step paper (Balyo 2013) only one
ranking heuristic was described and used – the Topologi-
cal Ranking. In this paper we describe new ranking methods
and compare them experimentally. Altogether we examine
the following ranking heuristics.

• Random Ranking. The ranks are assigned randomly to ac-
tions, each action has a unique rank. The purpose of this
method is to serve as a baseline for comparison with the
other methods.

• Input Ranking. The ranks are assigned from 1 to n = |O|
to the actions in the order in which they are listed in the
input, i.e., in the definition of the planning task. The in-
tuition behind this method is, that the author of the prob-
lem may have defined the actions in the order they are
expected to appear in the plans.

• Inverted Input ranking. First we take the Input Ranking,
then we invert the ranks: r(a) := n − r(a), where n is
the number of actions. If the Input Ranking is a ‘good’
ranking, then this ranking is supposed to be bad.

• Topological Ranking. The original ranking method of
(Balyo 2013) is based on topologically ordering the ac-
tion enabling graph while ignoring cycles.

• Inverted Topological Ranking. We invert the Topological
Ranking in the same way we inverted the Input Ranking.

The weakness of all these ranking methods is that only the
actions of a planning task are considered. For example the
initial state and the goal conditions are not used at all. De-
signing better ranking heuristics is a matter of future work.

Ranking Comparison
We have run the basic SAT planning algorithm with the
R2∃-Step encoding using the five different ranking methods
described above with a time limit of five minutes for SAT
solving (time for ranking and encoding is not considered).
The details of the experimental environment are given in the
Experiments section below.

The number of solved problems (out of 20 in each do-
main) and the total makespan of the found plans is presented
in Table 1. Note, that the makespan represents the number of
propositional formulas that were solved to obtain the parallel
plan and not the length of the final sequential plans.

The Topological Ranking (TSort) method solved the high-
est number of problems while the Inverted Input and Ran-
dom methods were the least successful. Nevertheless, there
are five domains, where TSort was outperformed. Most no-
table among these is the openstacks domain, where the Input
ranking solved almost twice as many problems while its to-
tal makespan remained low. Focusing on the makespans, we
can observe, that in several cases TSort maintains the small-
est total makespan while solving as many or more problems
than the other methods. This is most apparent for the par-
cprinter and visitall domains.

Overall, we can conclude, that the action ranking affects
the performance of planning very significantly and different
ranking methods work well for different domains. Neverthe-
less, TSort appears to be the best choice in general while
Input provides great performance on some of the domains
and therefore we will use these two in our algorithm.

Encoding Selection
As we described in the introduction, our algorithm consists
of a set of encodings E and a selection rule. The task of the
selection rule is to select an encoding from E that should
be used to solve a given planning task based on the plan-
ning task itself and other available information (for example
the makespan parameter of the formula that we want to con-
struct). For our algorithm we will use two encodings, the Re-
inforced encoding (Balyo et al. 2015), which represents the
∀-Step parallel planning step semantics, and the R2∃-Step
encoding (Balyo 2013) with two ranking methods – Topo-
logical and Input ranking.

The selection rule is based on our experimental observa-
tions, which suggest, that the R2∃-Step encoding performs
best if the number of transitions is low. A transition (Huang
et al. 2010) is a change of a state variable and the set of tran-
sitions of a planning problem instance is defined by its ac-
tions. The selection rule decides based on the average num-
ber of transitions, i.e., the total number of transitions (|∆|)
divided by the number of state variables (|X|) in the given
planning task. Based on our experiments we decided to use
the threshold value 10. Therefore the first part of the rule
is: If |∆|/|X| > 10 then use the Reinforced encoding oth-
erwise use the R2∃-Step encoding. Furthermore, when the



Table 2: Problems solved (out of 20) in 30 mins.

Domain Reinf R2∃ Sel R∀ R∃ R*
barman 4 8 9 8 4 8

elevators 20 20 20 20 20 20
floortile 18 18 18 16 20 20

nomystery 20 6 20 20 20 20
openstacks 0 15 20 0 0 0
parcprinter 20 20 20 20 20 20

parking 0 0 0 0 0 0
pegsol 10 19 19 11 12 12

scanalyzer 15 9 15 17 18 18
sokoban 2 2 2 6 6 6
tidybot 2 2 2 13 15 15

transport 18 13 19 18 18 18
visitall 10 20 20 11 11 11

woodworking 20 20 20 20 20 20
Total 159 172 204 180 184 188
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Figure 1: Coverage per time limit.

R2∃-Step Encoding is used, we alternate between two action
ranking heuristics. For even makespans we use the Topolog-
ical Ranking method and for the odd makespans we use the
Input Ranking method (rank the actions in the order they are
defined in the input problem).

Experiments
The experiments were run on a computer with Intel i7
920 CPU @ 2.67 GHz processor and 6 GB of memory.
The benchmark problems are from the optimal track of the
2011 International Planning Competition (IPC) (Coles et al.
2012) translated from PDDL to SAS+ using Fast Down-
ward (Helmert 2006). To solve the instances we used the
SAT solver Lingeling (Biere 2014) (version ats).

We did experiments with a 30 minutes time limit for SAT
solving using the following six encodings. We used the Re-
inforced Encoding (Reinf) (Balyo et al. 2015) and R2∃-Step
Encoding (R2∃), which are the two components of the Se-
lective Encoding (Sel). We also used Rintanen’s ∀-Step (R∀)

and ∃-Step Encodings (Rintanen et al. 2006) from his pop-
ular state-of-the-art SAT based planning system Madagas-
car (Rintanen 2013). Best of Rintanen (R*) is a virtual best
encoding obtained by selecting the better result for each in-
stance from the results of R∀ and R∃.

The number of solved instances is presented in Table 2.
We can observe, that the openstacks domain is very difficult
for all but the R2∃-Step encoding (and Selective, which also
uses it). The Selective encoding solves more than the R2∃-
Step encoding thanks to using two kinds of action ranking
instead of just one. The sokoban and tidybot domains are
very hard for all of our encodings, while the encodings of
Rintanen can handle them much better.

If we compare the encodings, we can observe that the best
results are obtained by the Selective encoding followed by
the Rintanen encodings. The Selective encoding very suc-
cessfully combines the Reinforced and R2∃-Step encodings
and is never worse for any domain than any of its compo-
nents. The strength of the Selective encoding is that it can
properly select the Reinforced encoding for the domains and
problems, where the R2∃-Step is not efficient.

Although R∀ and R∃ are the best individual encodings,
their combination (the R*) does not bring any significant
improvement. This suggest that they are not as diverse in
the sense of problem coverage.

In Figure 1 we provide a so called cactus plot, that visually
compares the six tested encodings. The plot represents how
many problems can be solved withing a given time limit. It is
interesting, that the lines for the R2∃-Step and the ‘Rintanen
∀’ encoding cross each other several times, which means,
that for certain time limits R2∃-Step would solve more in-
stances than the ‘Rintanen ∀’ encoding. The cactus plot con-
firms, that the Selective method significantly outperforms all
the other methods, furthermore, this holds for any reason-
able time limit.

Conclusion
In this paper we demonstrated that the idea of combining
encodings by designing a simple rule that selects the more
suitable encoding for a given planning problem instance is
a perspective research direction to improve the performance
of SAT based planning algorithms. Our experiments also re-
vealed that simply combining the best state-of-the-art encod-
ings (of Rintanen) does not lead to the best results.

The presented rule is very simple and the set of encod-
ings used for the selection is relatively small. Therefore we
believe further improvements could be achieved by extend-
ing the set of encodings by novel or existing encodings and
finding more sophisticated selection rules.

Another promising topic of future work is finding better
ranking heuristics to be used for the Relaxed Relaxed Exists-
Step encoding. The current ones are very simplistic and do
not use all the available information about the problem in-
stance (such as initial state or goal conditions).
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Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11:625–656.
Balyo, T.; Barták, R.; and Trunda, O. 2015. Reinforced en-
coding for planning as sat. In Acta Polytechnica CTU Pro-
ceedings.
Balyo, T. 2013. Relaxing the relaxed exist-step parallel
planning semantics. In ICTAI, 865–871. IEEE.
Biere, A. 2014. Lingeling and plingeling home page.
http://fmv.jku.at/lingeling/.
Coles, A. J.; Coles, A.; Olaya, A. G.; Celorrio, S. J.; López,
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