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Abstract An SMT-solving procedure can be implemented by using a SAT solver
to find a satisfying assignment of the propositional skeleton of the predicate for-
mula and then deciding the feasibility of the assignment using a particular decision
procedure. The complexity of the decision procedure depends on the size of the
assignment. In case that the runtime of the solving is dominated by the decision
procedure it is convenient to find short satisfying assignments in the SAT solving
phase. Unfortunately most of the modern state-of-the-art SAT solvers always output
a complete assignment of variables for satisfiable formulas even if they can be satis-
fied by assigning truth values to only a fraction of the variables. In this paper, we first
describe an application in the code performance modeling domain, which requires
SMT-solving with a costly decision procedure. Then we focus on the problem of
finding minimum-size satisfying partial truth assignments. We describe and experi-
mentally evaluate several methods how to solve this problem. These include reduc-
tion to partial maximum satisfiability – PMAXSAT, PMINSAT, pseudo-Boolean
optimization and iterated SAT solving. We examine the methods experimentally
on existing benchmark formulas as well as on a new benchmark set based on the
performance modeling scenario.
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1 Introduction

Boolean satisfiability (SAT) is one of the most important and most studied prob-
lems of computer science. It is important in theoretical computer science, it was
the first NP-complete problem [12], as well as in practical applications. SAT has a
lot of successful applications in many fields such as A.I. planning [19], automated
reasoning [26] and hardware verification [29]. This is possible because of the high
practical efficiency of modern SAT solvers.

An important extension of the SAT problem is the SMT (Sat Modulo Theories)
problem [4, 24]. SMT is a combination of SAT and some theories, for example
arithmetic, arrays, or uninterpreted functions. Like SAT, SMT has numerous ap-
plications for example bounded model checking [1] or performance modeling of
software [10, 11]. SMT solving can be done by using a SAT solver to evaluate the
propositional skeleton of the SMT formula and then checking the result of the SAT
solver using the theory evaluation procedures. It might be the case, that the evalua-
tion of the theory is very time consuming and therefore it is beneficial to try to find
minimum satisfying assignments in the SAT solving phase.

Unfortunately, most of the current state-of-the-art SAT solvers always output a
complete satisfying truth assignment even for formulas that can be satisfied by small
partial truth assignments. It is because these solvers implement the conflict-driven
clause learning (CDCL) DPLL algorithm [7] in a very efficient manner. The search
for a satisfying assignment in these implementations is continued until all variables
are assigned or an empty clause is learned. Therefore the output of the solvers is a
complete truth assignment for satisfiable instances.

In this paper we first give a brief description and example of the challenge of
solving SMT problems with a theory that has a very costly decision procedure.
We show how it can be addressed using a special SAT solver, that gives minimum
partial satisfying assignments. The rest of the paper is then dedicated to finding such
assignments.

In the theory of Boolean functions the problem of finding a partial satisfying truth
assignment with the minimal number of assigned variables is called the shortest
implicant problem. The decision version of this problem has been shown to be Σ P

2
– complete for general formulas [28]. However, for CNF formulas, it is in NP (see
below), thus, theoretically, it is not harder than SAT.

This problem is also referred to as finding minimum-size implicants. It is some-
times confused with the problem of finding minimal-size implicants (implicants that
cannot be shortened, i.e., prime implicants). A minimum-size implicant is always a
minimal-size (prime) implicant but not vice versa. The problem of finding prime
implicants is well studied and there are many papers devoted to this topic, see e.g.
[25]. On the other hand, methods for finding minimum-size implicants are often
hidden inside papers dealing with other problems, where they are only briefly men-
tioned as a possible application. There are however some papers dealing directly
with minimum-size implicants such as [23] and [22].

Our goal is to give an overview of several methods for the minimum satisfying
assignment problem based on reducing this problem to other well known problems.
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Two of the described reductions (PMAXSAT and PMINSAT) have not been de-
scribed elsewhere. The others are mentioned in the literature. For more information
please see Section Related Work. In the paper we also do experimental comparison
of the described methods using relevant benchmark problems and state-of-the-art
solvers.

2 Motivation

2.1 SMT Solving With a Costly Decision Procedure

In general, the main motivation for short satisfying assignments is the case of an
SMT-solving [4, 24] algorithm with a costly decision procedure. SMT-solving is a
technique for finding satisfying assignments of predicate-logic formulas. The basic
idea of one of the approaches to SMT-solving is to employ a SAT solver for finding
a satisfying assignment of the propositional skeleton of a given predicate formula.
Having such a satisfying assignment, a decision procedure (specific to the particular
predicate logic) is employed in order to decide the feasibility of the assignment with
respect to the predicates. If the assignment is not feasible, the SAT solver is (incre-
mentally) asked for another satisfying skeleton assignment until the assignment is
feasible or there are no undecided assignments left. As an aside, the state-of-the-art
SMT solvers operate incrementally; i.e., they call the decision procedure already
for partial skeleton assignments. Nevertheless, since this potentially increases the
number of expensive decision procedure calls, we will consider the non-incremental
case. Note, that the unsatisfiability of a propositional skeleton implies unsatisfiabil-
ity of the associated predicate formula (the opposite does not hold). Additionally,
the satisfiability of a predicate formula implies the satisfiability of its propositional
skeleton.

A typical decision procedure of an SMT-solving algorithm is designed to work
with the conjunctive fragment of the predicate logic (i.e., conjunctions of predicates
and their negations). A formula in the conjunctive fragment can be easily obtained
from a satisfying skeleton assignment. Therefore, while deciding feasibility of a
skeleton assignment, it is necessary to evaluate some of the associated predicates;
in the case of a feasible assignment all of them.

Taking into account a decision procedure where an evaluation of a predicate is a
costly operation [11], it is beneficial to minimize the number of evaluated predicates
while deciding feasibility of a skeleton assignment. However, this minimization has
to be performed by the SAT solver by providing small satisfying assignments (as
the decision procedure works with the conjunctive fragment and thus has to evaluate
all the corresponding predicates).



4 Babka et al.

2.2 Stochastic Performance Logic

To illustrate this problem, we describe the Stochastic Performance Logic (SPL) [10,
11], for which evaluating the predicates is a very time-consuming operation and
which will thus greatly benefit from minimization of the satisfying skeleton assign-
ments during SMT-solving. Specifically, it is a predicate logic designed for express-
ing assumptions about performance of code and is motivated by the challenges in
the performance modeling domain. In particular, according to [11], it is beneficial to
provide means for performance testing similar to functional unit-testing approaches
– that is, being able to express performance-related developer assumptions or in-
tended usage in code in a platform-independent way and test or verify them auto-
matically.

The main goal of SPL is thus to capture performance conditions that should be
met by software (expressing performance-related developer assumptions or intended
usage) in a form of predicate formulas, semantics of which is platform-independent.
Specifically, the approach of SPL is based on capturing performance conditions
on a given function relatively to performance of a baseline function (rather than
on absolute metrics); e.g., in case of an encryption function, the baseline can be
the memory-copying function (i.e., no encryption). In practice, SPL formulas are
inserted into code (e.g., as Java annotations) and automatically validated [18].

The semantics of the predicates expressing the relative performance is based on
instrumentation and monitoring of the execution times of both the tested and base-
line function and performing a statistical test in order to validate or invalidate the
statistical hypothesis determined by the predicate. Therefore, the decision procedure
in SPL has to perform (expensive) execution-time measurements and a statistical
test in order to evaluate a single performance predicate. Thus, it is an extremely
time-consuming operation.

To provide a clearer perspective on this issue, we present a brief summary of
the SPL-solving algorithm (Fig. 1). Before going into detail, we first describe the
notation. For a given SPL formula F , the MakeSkeleton function returns its propo-
sitional skeleton FS. AP is a partial assignment of FS enforcing the results of the
previous decision-procedure runs. The ApplyAssignment(F,A) function returns for-
mula F after applying the assignment A ; i.e., with all variables from A replaced
by their assigned values. The PartSAT function returns for the given formula a
satisfying assignment with only some variables assigned (i.e., a partial satisfying
assignment). The tuple (var,val) denotes a variable and its value in an assignment.
The FilterAssigned function returns the assigned variables in the given assignment.
MeasureAndTest is the very expensive decision procedure deciding validity of a
single performance predicate associated with the given skeleton variable. Finally, m
is the result of the procedure (i.e., true or false).

After the propositional skeleton FS is created and the partial assignment AP is ini-
tialized (lines 1-2), a partial satisfying truth assignment Atemp of FS after applying
AP is obtained via the PartSAT function (line 3). If PartSAT indicates that FS af-
ter applying AP is unsatisfiable, the algorithm returns “false” (lines 4-6), because it
implies that the original SPL formula is unsatisfiable with respect to measurements
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1: FS←MakeSkeleton(F)
2: AP← /0
3: Atemp← PartSAT (ApplyAssignment(FS,AP))
4: if Atemp = f alse then
5: return f alse
6: end if
7: for all (var,val) ∈ FilterAssigned(Atemp) do
8: m←MeasureAndTest(var)
9: AP← AP∪{(var,m)}

10: if val 6= m then
11: goto line 3
12: end if
13: end for
14: return true

Fig. 1 SPL-solving algorithm

dictating AP. Otherwise, the algorithm sequentially processes assignments of all as-
signed variables; i.e., those which were not yet checked by the decision procedure
(line 7). Note that the order in which the variables are processed may depend on
further optimization; e.g., the variable corresponding to the “cheapest to measure”
performance predicate will be processed first. For each assigned variable, it is nec-
essary to call the decision procedure MeasureAndTest (line 8). The result of the
decision procedure is added to AP to be enforced in the subsequent PartSAT runs
(line 9). If the stored result conforms to the current skeleton valuation Atemp, the
next variable is processed. Otherwise (lines 10-12), Atemp is infeasible with respect
to the measurements and a new skeleton valuation has to be obtained from PartSAT .

It is important to stress, that each call of the decision procedure MeasureAndTest
for a typical performance predicate usually takes a non-trivial amount of time; i.e.,
hundreds of milliseconds. Thus, it is obvious that employing a PartSAT function that
supports partial satisfying assignments with the minimum number of assigned vari-
ables (and thus minimizes the number of performance predicates to be evaluated)
would significantly reduce the execution time of the whole SPL-solving algorithm.

The rest of the paper is devoted to the computation of the PartSAT function i.e.
finding minimum satisfying truth assignments of Boolean formulas.

3 Preliminaries

A Boolean variable is variable with two possible values True (1) and False (0).
A literal of a Boolean variable x is either x or x (positive or negative literal). A
clause is a disjunction (OR) of literals. A conjunctive normal form (CNF) formula
is a conjunction (AND) of clauses. The number of variables of a formula will be
denoted by n. A (partial) truth assignment φ of a formula F assigns a truth value
to (some of) its variables. The assignment φ satisfies a positive(negative) literal if
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it assigns the value true (false) to its variable and φ satisfies a clause if it satisfies
any of its literals. Finally, φ satisfies a CNF formula if it satisfies all of its clauses.
A formula F is said to be satisfiable if there is a (partial) truth assignment φ that
satisfies F . Such an assignment is called a satisfying assignment. The satisfiability
problem (SAT) is to find a satisfying assignment of a given CNF formula. We will
call φmin a minimum-size satisfying assignment of a formula F if there is no other
satisfying assignment φ of F , such that φ assigns truth values to fewer variables
than φmin.

A conjunction (AND) of literals is called a term. An implicant I of a formula F is
a term, such that any truth assignment that satisfies I also satisfies F . I is a shortest
implicant of a formula F if there is no other implicant I′ of F such that I′ contains
fewer literals than I. I is called a prime implicant if there is no other implicant I′

such that I′ ⊂ I. The shortest implicant problem is to find the shortest implicant of
a given formula. It is easy to observe that an implicant corresponds to a satisfying
partial truth assignment of its formula and the shortest implicant corresponds to a
minimum-size satisfying assignment.

4 Related Work

In the Boolean functions community the problem of shortest implicants is studied
mostly in the context of Boolean function minimization [28], which is the problem
of finding a minimal representation of Boolean functions [13]. The function is often
given in form of a CNF formula and the desired output is an equivalent CNF or
DNF formula of minimum size. In this context, finding shortest implicants is Σ P

2 –
complete for general formulas, [28].

Some papers about enumerating prime implicants also describe methods for find-
ing the shortest implicants. One such paper is by Bieganowky and Karatkevich,
which presents a heuristic for Thelen‘s method [5]. Thelen‘s method is an algo-
rithm for enumerating all prime implicants of a CNF formula. The proposed heuris-
tic should lead to a minimal prime implicant, but it is not guaranteed to find an
optimal solution.

In [25] a 0-1 programming scheme is used to encode the formula and additional
constraints which allow selective enumeration. The constraint can, of course, be the
length of the implicant, therefore this method is suitable for our purposes. Consid-
ering the efficiency of state-of-the-art pseudo-Boolean optimization (PBO) solvers,
this approach appears to be a promising one.

In [23] and [22] the authors describe some methods based on integer linear pro-
gramming (ILP) and binary decision diagrams (BDD).

Finally, in [8] there is a suggestion, that the problem could be solved by incre-
mental SAT solving. This requires us to encode cardinality constraints into SAT.
There are several available methods to do this, a survey of such methods is given in
[2].
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5 Solving the Shortest Implicant Problem

We shall start this section by describing a technique called dual rail encoding [9],
which will be used in all of the following methods.

5.1 Dual Rail Encoding

The first step of the dual rail encoding of a CNF formula F is introducing new dual
rail variables representing possible positive and negative assignments to the original
variables of F .

Definition 1 (Dual rail variables). Let X = {x1, . . . ,xn} be a set of Boolean vari-
ables. Then the Boolean variables XDR = {px1,nx1, px2,nx2, . . . , pxn,nxn} are the
dual rail variables for X .

Let φ be a partial truth assignment of X . Then we define φDR as a truth assignment
of XDR so that φDR(pxi) = 1⇔ φ(xi) = 1 and φDR(nxi) = 1⇔ φ(xi) = 0.

Notice that pxi and nxi are both negative under φDR iff xi is unassigned under φ .
This implies that the number of assigned variables under φ is equal to the number
of dual rail variables that are assigned 1 by φDR. Also observe that given φDR we can
easily construct φ and vice versa.

Definition 2 (Dual rail encoding). Let F be a CNF SAT formula with variables
X = {x1, . . . ,xn} and clauses C. Let CDR be the clauses obtained from the clauses
C by replacing all occurrences of the literal xi by pxi and literal xi by nxi for all
i ∈ {1 . . .n}. The dual rail encoding of F is a CNF formula

FDR =CDR∧
∧

i∈{1...n}
(pxi∨nxi)

Example 1 (Dual rail encoding). (x1∨ x2)∧ (x3∨ x1)∧ (x2∨ x3) would be encoded
as (px1∨nx2)∧ (px3∨nx1)∧ (nx2∨nx3)∧ (px1∨nx1)∧ (px2∨nx2)∧ (px3∨nx3).

Lemma 1. Let F be a CNF formula. Then φ is a satisfying assignment of F iff φDR
is a satisfying assignments of FDR.

Proof. Let φ satisfy F . Let C be an arbitrary clause of F , then there is a literal x
(or x) in C that is satisfied under φ . It implies by definition that px (or nx) is True
under φDR. Hence the clause corresponding to C in FDR is satisfied by px (or nx).
The clauses (nxi∨ pxi) of FDR are satisfied under any φDR since a Boolean variable
cannot be assigned both values True and False.

On the other hand, let φDR satisfy FDR. The (nxi∨ pxi) clauses ensure that either
pxi or nxi is False under φDR and thus φ is a valid partial truth assignment. Let C
be an arbitrary clause in F . The corresponding clause to C in FDR is satisfied by a
literal px (or nx), surely is then C satisfied by x (or x) under φ .
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5.2 Solving via Pseudo-Boolean Optimization

In this section we describe a method for solving the shortest implicant problem by
reducing it to the pseudo-Boolean optimization problem [7]. We start by its defini-
tion.

A PB-constraint is an inequality C0×x0+C1×x1+ · · ·+Ck−1×xk−1≥Ck, where
Ci are integer coefficients and xi are literals. The integer value of a Boolean variable
is defined as 1 (0) if it is True (False). Positive (negative) literals of a variable x are
expressed as x ((1− x)) in the inequality. A (partial) truth assignment φ satisfies a
PB-constraint if the inequality holds. An objective function is a sum C0×x0 +C1×
x1 + · · ·+Cl × xl , where Ci are integer coefficients and xi are literals. The pseudo-
Boolean optimization problem is to find a satisfying assignment to a set of PB-
constraints that minimizes a given objective function.

Now, we describe how a CNF formula F can be reduced into a PB optimization
problem. For a clause C = (l1 ∨ l2 ∨ ·· · ∨ lk) we define its PB-constraint PB(C) =
(1× l1+1× l2+ · · ·+1× lk ≥ 1). It is easy to see that a partial assignment φ satisfies
the clause C iff it satisfies its PB-constraint PB(C). For a CNF formula F we denote
its PB-constraints PB(F) = {PB(C) |C ∈ F}.

Example 2 (Reducing a clause into a PB-constraint). (x1∨x2∨x3) would yield 1×
x1 +1× (1− x2)+1× x3 ≥ 1.

For a given CNF formula F we encode the instance of the shortest impli-
cant problem as the pseudo-Boolean optimization problem PBO(F) as follows.
First we construct the dual rail encoding FDR of F . Then we translate it into
its PB-constraints PB(FDR). Finally, we define the objective function O(FDR) as
O(FDR) = ∑

n
i=1(1× pxi+1×nxi). Let us denote PBO(F) = (PB(FDR),O(FDR)) the

pseudo-Boolean optimization problem with the constraints PB(FDR) and the objec-
tive function O(FDR).

The optimal solution of PBO(F) is a truth assignment that satisfies all the con-
straints and minimizes the objective function. Now, we can use a PB solver to find
an optimal solution of PBO(F) and from the optimal solution we can extract the
shortest implicant in the following way.

Definition 3. For a truth assignment ψ of the dual rail variables we define the term
Iψ as

Iψ =
∧

i : ψ(pxi)=1

xi ∧
∧

i : ψ(nxi)=1

xi

Theorem 1. Let F be a CNF formula and ψ the optimal solution of PBO(F). Then
Iψ is the shortest implicant of F.

Proof. From Lemma 1 and the correspondence of satisfying assignments and impli-
cants we get that Iψ is an implicant of F . By contradiction we show that there is no
shorter implicant. Let I′ be a shorter implicant than Iψ . Then I′ defines a satisfying
assignment φ of F . Realize the fact that the length of the implicant is exactly the
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number of the variables assigned by φ which equals the value of the objective func-
tion O(FDR) for φDR. Thus φ allows us to construct a better solution for PBO(F)
than ψ . That is contradictory with ψ being an optimal solution of PB(F).

5.3 Solving via Partial Maximum Satisfiability

In this section we describe a reduction of shortest implicant problem into a partial
maximum satisfiability (PMAXSAT) problem [7]. The reduction is again based on
dual rail encoding, therefore it is very similar to the PB optimization approach. First
we define the PMAXSAT problem.

A PMAXSAT formula is a tuple of two sets of clauses called soft clauses and
hard clauses. A solution of a PMAXSAT problem is a truth assignment that satisfies
all hard clauses and some soft clauses. An optimal solution of a PMAXSAT problem
is a solution φ that there is no other solution that satisfies more soft clauses than φ .

To reduce shortest implicant problem given by a CNF formula F to a PMAXSAT
problem PMAX(F) we first apply dual rail encoding on F . The clauses of FDR are
the hard clauses of PMAX(F). The soft clauses of PMAX(F) are defined as the unit
clauses pxi and nxi for each i. The shortest implicant from the optimal solution of
PMAX(F) is extracted in the same way as in the case of PB optimization. A precise
formulation and proof follows.

Theorem 2. Let F be a CNF formula and ψ an optimal solution of PMAX(F).
Then Iψ is a shortest implicant of F.

Proof. Let ψ be an optimal solution of PMAX(F). All hard clauses of PMAX(F)
are satisfied under ψ and thus by Lemma 1 Iψ is an implicant of F . The implicant
Iψ is also the shortest possible. The existence of a shorter one would allow a partial
truth assignment φ of F such that φDR satisfies more soft clauses than ψ . Indeed, the
number of unsatisfied soft clauses is equal to the number dual rail variables assigned
the value True.

5.4 Solving via Partial Minimum Satisfiability

The partial minimum satisfiability (PMINSAT) problem [7] is analogous to the
PMAXSAT problem with the only difference being, that the goal is to minimize
the number of satisfied soft clauses. The reduction of the shortest implicant problem
to PMINSAT is a straightforward modification of the PMAXSAT reduction. Instead
of using the unit soft clauses pxi and nxi for each i we use pxi and nxi (e.g. the soft
clauses of PMAX(F) are negated).
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5.5 Solving via Iterative SAT Solving

The method described in this section is in a way similar to planning as satisfiability
[19]. For a given CNF formula F we construct another CNF formula G(F,k) which
will be satisfiable iff F has an implicant of size k or shorter. We construct and test
G(F,k) for various k iteratively until we find the smallest k such that G(F,k) is
satisfiable. From the satisfying assignment of G(F,k) we extract a shortest implicant
of size k.

To construct G(F,k) we again start by dual rail encoding F into FDR and then we
add a cardinality constraint≤k (px1,nx1, . . . , pxn,nxn) meaning (∑n

i=1 pxi+nxi)≤ k.
There are several methods of encoding cardinality constraints into SAT. A survey
on these methods is given in [2]. Many of these encodings are polynomial (relative
to n and k) in size and time required to construct them. There is even a linear encod-
ing [14]. The resulting formula G(F,k) is a conjunction of the cardinality constraint
and the dual rail encoding of the original formula.

The reduction can be improved by adding a set of n new variables sxi which en-
code if the variable xi is assigned: (pxi∨nxi)→ sxi. Then we encode the cardinality
constraint over sxi instead of pxi and nxi. The improved reduction Gs(F,k) is then

Gs(F,k) =FDR∧
n∧

i=1

[(pxi∨ sxi)∧ (nxi∨ sxi)]

∧ ≤k (sx1,sx2, . . . ,sxn)

Why is this an improvement? In fact most encodings of cardinality constraints
add a lot of new variables and clauses to the formula. Therefore it is good to use
the cardinality constraint on fewer variables. Overall, Gs(F,k) has fewer variables
than G(F,k) for almost every known cardinality encoding. Also, in our experiments
Gs(F,k) vastly outperformed G(F,k) in terms of time required to solve them by a
SAT solver. A theorem of this approach‘s validity follows.

Theorem 3. Let F be a CNF formula, k be the smallest integer such that Gs(F,k)
is satisfiable. If ψ is a partial truth assignment satisfying Gs(F,k), then the term
Iψ|{px1,nx1,...,pxn,nxn}

1 is the shortest implicant of F.

Proof. Lemma 1 implies that I = Iψ|{px1,nx1,...,pxn,nxn} is an implicant of F . Observe
that I has length exactly k. For the sake of contradiction assume that there is a
shorter implicant I′ with length k′ < k. Then Gs(F,k′) must be satisfiable which is
contradictory with the choice of k.

The proper k can be found for example by iteratively solving Gs(F,k− 1) for
k = n,n− 1, . . . ,1 until Gs(F,k− 1) is unsatisfiable. A better way is to use binary
search to find the proper k, which we used in our experiments.

What we described above is actually a polynomial reduction of the decision ver-
sion of the shortest implicant problem into SAT. Since SAT is in NP, the shortest
implicant problem for CNF formulas is also in NP.

1 By ψ|{px1,nx1, . . . , pxn,nxn} we mean the restriction of ψ to the variables px1,nx1, . . . , pxn,nxn.
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Table 1 Results for the tested algorithms and instances

Benchmark Set maxsat minsat iter. sat pbo local sat

Random no. solved (opt. no./approx.) 79 80 80 81 79 (75/1.0003) 81
total time [s] 8767 6516 5887 5037 4005 20.15

SPL no. solved (opt. no./approx.) 24 35 98 19 98 (20/1.0045) 98
total time [s] 139835 133047 4680 143827 18447 1.51

BMC no. solved (opt. no./approx.) 0 3 9 3 0 (0/∞) 13
total time [s] 23400 18302 12096 18502 11714 14

The bold value indicates the best result. In the case of local search we also give the number of
optimal solutions and the average approximation ratio.

5.6 Solving via Incomplete Methods

In the previous sections we incorporated various complete methods which find the
optimal solution for certain optimization problems. However it is often the case
that there are also incomplete methods based on local search which solve the same
problems. The general advantage of incomplete solvers is that they run fast and are
able to quickly produce a first but rough estimate of the objective function. The
unpleasant price is that they are not guaranteed to find the optimal solution.

Several incomplete methods have been already designed for the PMAXSAT
problem. They can, of course, be used for solving the shortest implicant instances
using the same encoding. Thus the only difference is that the produced implicant
cannot be proven to be of minimum size. When using incomplete methods we have
to consider the quality of the solutions together with the running time of the algo-
rithms in order to compare the algorithms correctly.

6 Experiment Setup

To compare the practical usability of the above described methods, we conducted
experiments on various benchmark problems. We implemented the reductions in
Java, particularly, to encode cardinality constraints for iterative SAT we employed
the BoolVar/PB Java library [3]. BoolVar/PB implements several methods; we con-
cretely used the “linear” encoding, which implements a sorter based encoding intro-
duced by Eén and Sörensson [14].

For PMAXSAT solving we used Akmaxsat by Adrian Kügel [20] and for PMIN-
SAT minsat [15]. For PB-optimization we selected bsolo [21]. The SAT solver used
for iterative SAT solving was PrecoSAT by Armin Biere [6]. As for the incomplete
solver we chose UBCSAT [27] particularly the g2wsat algorithm.

Our focus was on our own new benchmark set – SPL – but we also used bench-
mark formulas from SATLIB [17].
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As for the SPL benchmark, we have exploited several SPL use-cases [10, 11],
As a simple example, consider the following: if a method M uses two implementa-
tions A and B of a library function, we may want to express that performance of M
depends on performance of the fastest one of A and B. In the propositional skeleton
of the corresponding SPL formula, this could be expressed (after simplification) by
the following conjunction:

(VA is f aster than B =⇒ VM depends on A)

∧ (VB is f aster than A =⇒ VM depends on B)

∧ (VA is f aster than B ∨ VB is f aster than A)

∧ (¬VA is f aster than B ∨ ¬VB is f aster than A)

Note, that in SPL such a formula corresponds to particular values of performance
parameters (e.g., size of an input array). A scenario typically covers several such val-
ues (e.g., array sizes 100, 200, and 500). We have always considered several scenar-
ios to generate each benchmark CNF formula. In particular, the formula comprises
a conjunction of sub-formulas encoding the individual scenarios. Since the scenar-
ios are independent, all the sub-formulas use disjoint sets of variables. Basically, the
scenarios cover different forms of selection of a suitable variant of a function imple-
mentation, based on the relative performance of the implementation for the given
performance parameters (e.g. size of an input array). In general, the main param-
eters determining the produced sub-formula for each scenario are: (i) the number
of alternative implementation variants, and (ii) the range of performance parame-
ter values to be covered. The former case increases the size of the clauses of the
generated sub-formulas, while the latter increases the number of the sub-formulas.
Overall, the SPL benchmark uses randomization while generating the sub-formulas.
The final formula is produced by repeating the randomized generation process un-
til reaching the required number of clauses and/or variables. For our experiments,
we have generated formulas in a range of sizes, starting with hundreds of clauses
and variables, and ending with tens of thousands. As an aside, in SPL, the relation
“faster than” has a slightly different semantics to “slower or equal”, therefore there
are two different variables in the example – VA is f aster than B and VB is f aster than A –
rather the just one and its negation. Moreover, because of SPL semantics, the vari-
able VM depends on A has to be in the benchmark formula actually represented as a
conjunction of variables “M is at most c1% slower than A” and “M is at most c2%
faster than A”, where c1 and c2 express the level of dependency of M on A.

The other input data are chosen from the SATLIB benchmarks [16]. For our
experiments we selected the “bmc” and “Uniform Random-3-SAT” formulas. The
BMC formulas arise from bounded model checking problem instances which are
modelled as SAT. And the random formulas are from phase transition region with
number of variables ranging from 50 to 250. For further explanation of the formulas
consult the SATLIB benchmark site [16].

The experiments were run for each input type on a computer with Intel i7 920
CPU @ 2.67 GHz processor and 6 GB of memory. The timelimit for a single in-
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stance was 1800 seconds. The instances were sorted by the number of variables and
if the solver timed out eight times in a row we stopped running it on that input set.
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7 Experiment Results

In Table 1 and Figure 3 we compared the running times required to solve the SAT
formulas (using Precosat [6]) with the running times required to find the shortest
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implicants by the described methods. In the case of the local search, g2wsat algo-
rithm, (named local) we also provide the number of optimal solutions found and
the average approximation ratio – the length of the found implicant divided by the
optimal length. The total time is the sum of the running times on all the instances.
If the solver did not terminate within the time limit we used the time limit as the
running time. Let us note that the SAT solver was able to solve all the instances.

Verifying if the input formula is satisfiable turns out to be by orders of magnitude
faster than finding the minimum satisfying assignment. We think that this is also the
reason why the iterative SAT is the fastest method.

To support this idea we also experimented with various modifications of iterative
SAT. First we chose different initial lower and upper bounds on the the length of
the shortest implicant. We obtained them using the Akmaxsat solver or set them to 1
and n respecitvely. The other modification is just a simple linear search, i.e., we used
the iterative SAT reduction with the limit u, then u−1 and so on until the optimum
length was found.

Out of all the possible modifications binary search with the initial bounds set to
1 and n performed the best when considering the number of solved instances. It also
always ran faster and solved more instances than the binary search with the bounds
initialized by Akmxasat solver. Thus we think that Akmaxsat spends a nonnegligible
amount of time by deriving the bounds, especially the upper one. This fact is based
on the observation that the linear search starting from the lower bound achieves
comparable results to the binary search.

All the iterative methods solve more instances than the Akmaxsat solver, espe-
cially the method approaching the optimum from below. We also observed that the
iterative methods based on the linear search are less stable than the binary search
with bounds 1 and n, i.e. they never solved more instances. However on some inputs
the linear search approaching the optimum from below performed faster.

The performance of linear search does not substantially depend on the fact if the
bound is derived by akmaxsat – the methods have roughly the same performance.
For the methods starting with lower bounds, which seems to be easy to obtain, we
think that sat solving dominates the running time. For the methods starting with the
upper bound the number of iterations is certainly lower see Figure 2. On the other
hand sat solving is harder since the upper limit on the implicant length prunes less
of the search space than the lower bound. For the lower bound methods the fact that
solving unsatisfiable formulas does seem to have a detrimal effect.

The other complete methods (PMAXSAT, PMINSAT, and PBO) give very sim-
ilar results relative to each other but are considerably weaker than iterative SAT.
It is interesting that there is a relatively big gap between PMAXSAT (worst of the
3) and PMINSAT (best of the 3) since these problems and our encodings for them
are very similar. The difference is probably caused by the different heuristics and
implementation of the solvers.

Let us note that the performance of incomplete methods, especially the quality of
the solution, crucially depends on a proper choice of the parameters of the algorithm
such as the number of steps, number or restarts and overall iteration count. When
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these parameters are well chosen the quality of the solution is comparable to the
optimal solution as observed in Figure 2.

Altogether we can conclude that the best strategy is iterative SAT followed by
iterative SAT using simple linear search. For the hard formulas incomplete methods
could also be useful but one has to tweak their parameters.

8 Conclusion

In this paper we have shown that finding minimum-size satisfying assignments is
both useful and can be computed relatively efficiently for many relevant formulas.
The usefulness was demonstrated by describing a class of SMT problems with a
costly decision procedure and an application of this kind – the SPL framework.

We described five possible methods to solve this problem from which the reduc-
tions to PMINSAT and PMAXSAT are novel to our best knowledge. Although the
other three already appeared in the literature, there is no published comparison of
these methods.

We did exhaustive experiments using modern state-of-the-art solvers and relevant
benchmark problems to measure the performance of the methods we described. One
of the benchmark sets was generated according to ideas of the SPL framework.
Unfortunately, we were unable to do direct experiments to measure the usefulness
of the methods for the SPL framework, since it is still under development and the
number of its large-scale case studies is limited.

As for future work, we plan to improve the methods with support for assignment
costs. Finding optimal short assignments with respect to a given assignment cost
function would be beneficial in the cases presented in the motivation section, SPL
in particular. Here, the cost of a SAT assignment could be determined by the exe-
cution times of the measurements to be performed by the SMT decision procedure
in order to decide the feasibility of the skeleton assignment. In consequence, this
would allow preferring the fast measurements to the slower ones while solving the
SPL formulas.
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